From ebc50b387ab209c9f9a0d92e340ac293d5697274 Mon Sep 17 00:00:00 2001 From: sanine Date: Sat, 11 Mar 2023 15:58:20 -0600 Subject: build & link with luajit instead of lua5.1 --- libs/luajit-cmake/luajit/doc/extensions.html | 472 +++++++++++++++++++++++++++ 1 file changed, 472 insertions(+) create mode 100644 libs/luajit-cmake/luajit/doc/extensions.html (limited to 'libs/luajit-cmake/luajit/doc/extensions.html') diff --git a/libs/luajit-cmake/luajit/doc/extensions.html b/libs/luajit-cmake/luajit/doc/extensions.html new file mode 100644 index 0000000..f006a6d --- /dev/null +++ b/libs/luajit-cmake/luajit/doc/extensions.html @@ -0,0 +1,472 @@ + + + +Extensions + + + + + + + + +
+Lua +
+ + +
+

+LuaJIT is fully upwards-compatible with Lua 5.1. It supports all +» standard Lua +library functions and the full set of +» Lua/C API +functions. +

+

+LuaJIT is also fully ABI-compatible to Lua 5.1 at the linker/dynamic +loader level. This means you can compile a C module against the +standard Lua headers and load the same shared library from either Lua +or LuaJIT. +

+

+LuaJIT extends the standard Lua VM with new functionality and adds +several extension modules. Please note, this page is only about +functional enhancements and not about performance enhancements, +such as the optimized VM, the faster interpreter or the JIT compiler. +

+ +

Extensions Modules

+

+LuaJIT comes with several built-in extension modules: +

+ +

bit.* — Bitwise operations

+

+LuaJIT supports all bitwise operations as defined by +» Lua BitOp: +

+
+bit.tobit  bit.tohex  bit.bnot    bit.band bit.bor  bit.bxor
+bit.lshift bit.rshift bit.arshift bit.rol  bit.ror  bit.bswap
+
+

+This module is a LuaJIT built-in — you don't need to download or +install Lua BitOp. The Lua BitOp site has full documentation for all +» Lua BitOp API functions. +The FFI adds support for +64 bit bitwise operations, +using the same API functions. +

+

+Please make sure to require the module before using any of +its functions: +

+
+local bit = require("bit")
+
+

+An already installed Lua BitOp module is ignored by LuaJIT. +This way you can use bit operations from both Lua and LuaJIT on a +shared installation. +

+ +

ffi.* — FFI library

+

+The FFI library allows calling external +C functions and the use of C data structures from pure Lua +code. +

+ +

jit.* — JIT compiler control

+

+The functions in this module +control the behavior of the JIT compiler engine. +

+ +

C API extensions

+

+LuaJIT adds some +extra functions to the Lua/C API. +

+ +

Profiler

+

+LuaJIT has an integrated profiler. +

+ +

Enhanced Standard Library Functions

+ +

xpcall(f, err [,args...]) passes arguments

+

+Unlike the standard implementation in Lua 5.1, xpcall() +passes any arguments after the error function to the function +which is called in a protected context. +

+ +

loadfile() etc. handle UTF-8 source code

+

+Non-ASCII characters are handled transparently by the Lua source code parser. +This allows the use of UTF-8 characters in identifiers and strings. +A UTF-8 BOM is skipped at the start of the source code. +

+ +

tostring() etc. canonicalize NaN and ±Inf

+

+All number-to-string conversions consistently convert non-finite numbers +to the same strings on all platforms. NaN results in "nan", +positive infinity results in "inf" and negative infinity results +in "-inf". +

+ +

tonumber() etc. use builtin string to number conversion

+

+All string-to-number conversions consistently convert integer and +floating-point inputs in decimal, hexadecimal and binary on all platforms. +strtod() is not used anymore, which avoids numerous +problems with poor C library implementations. The builtin conversion +function provides full precision according to the IEEE-754 standard, it +works independently of the current locale and it supports hex floating-point +numbers (e.g. 0x1.5p-3). +

+ +

string.dump(f [,strip]) generates portable bytecode

+

+An extra argument has been added to string.dump(). If set to +true, 'stripped' bytecode without debug information is +generated. This speeds up later bytecode loading and reduces memory +usage. See also the +-b command line option. +

+

+The generated bytecode is portable and can be loaded on any architecture +that LuaJIT supports, independent of word size or endianess. However, the +bytecode compatibility versions must match. Bytecode stays compatible +for dot releases (x.y.0 → x.y.1), but may change with major or +minor releases (2.0 → 2.1) or between any beta release. Foreign +bytecode (e.g. from Lua 5.1) is incompatible and cannot be loaded. +

+

+Note: LJ_GC64 mode requires a different frame layout, which implies +a different, incompatible bytecode format for all 64 bit ports. This may be +rectified in the future. +

+ +

table.new(narray, nhash) allocates a pre-sized table

+

+An extra library function table.new() can be made available via +require("table.new"). This creates a pre-sized table, just like +the C API equivalent lua_createtable(). This is useful for big +tables if the final table size is known and automatic table resizing is +too expensive. +

+ +

table.clear(tab) clears a table

+

+An extra library function table.clear() can be made available +via require("table.clear"). This clears all keys and values +from a table, but preserves the allocated array/hash sizes. This is +useful when a table, which is linked from multiple places, needs to be +cleared and/or when recycling a table for use by the same context. This +avoids managing backlinks, saves an allocation and the overhead of +incremental array/hash part growth. +

+

+Please note, this function is meant for very specific situations. In most +cases it's better to replace the (usually single) link with a new table +and let the GC do its work. +

+ +

Enhanced PRNG for math.random()

+

+LuaJIT uses a Tausworthe PRNG with period 2^223 to implement +math.random() and math.randomseed(). The quality of +the PRNG results is much superior compared to the standard Lua +implementation, which uses the platform-specific ANSI rand(). +

+

+The PRNG generates the same sequences from the same seeds on all +platforms and makes use of all bits in the seed argument. +math.random() without arguments generates 52 pseudo-random bits +for every call. The result is uniformly distributed between 0.0 and 1.0. +It's correctly scaled up and rounded for math.random(n [,m]) to +preserve uniformity. +

+

+Important: Neither this nor any other PRNG based on the simplistic +math.random() API is suitable for cryptographic use. +

+ +

io.* functions handle 64 bit file offsets

+

+The file I/O functions in the standard io.* library handle +64 bit file offsets. In particular, this means it's possible +to open files larger than 2 Gigabytes and to reposition or obtain +the current file position for offsets beyond 2 GB +(fp:seek() method). +

+ +

debug.* functions identify metamethods

+

+debug.getinfo() and lua_getinfo() also return information +about invoked metamethods. The namewhat field is set to +"metamethod" and the name field has the name of +the corresponding metamethod (e.g. "__index"). +

+ +

Fully Resumable VM

+

+The LuaJIT VM is fully resumable. This means you can yield from a +coroutine even across contexts, where this would not possible with +the standard Lua 5.1 VM: e.g. you can yield across pcall() +and xpcall(), across iterators and across metamethods. +

+ +

Extensions from Lua 5.2

+

+LuaJIT supports some language and library extensions from Lua 5.2. +Features that are unlikely to break existing code are unconditionally +enabled: +

+ +

+Other features are only enabled, if LuaJIT is built with +-DLUAJIT_ENABLE_LUA52COMPAT: +

+ +

+Note: this provides only partial compatibility with Lua 5.2 at the +language and Lua library level. LuaJIT is API+ABI-compatible with +Lua 5.1, which prevents implementing features that would otherwise +break the Lua/C API and ABI (e.g. _ENV). +

+ +

Extensions from Lua 5.3

+

+LuaJIT supports some extensions from Lua 5.3: +

+ +

C++ Exception Interoperability

+

+LuaJIT has built-in support for interoperating with C++ exceptions. +The available range of features depends on the target platform and +the toolchain used to compile LuaJIT: +

+ + + + + + + + + + + + + + + + + + + + + + + + + + +
PlatformCompilerInteroperability
External frame unwindingGCC, Clang, MSVCFull
Internal frame unwinding + DWARF2GCC, ClangLimited
Windows 64 bitnon-MSVCLimited
Other platformsOther compilersNo
+

+Full interoperability means: +

+ +

+Limited interoperability means: +

+ + +

+No interoperability means: +

+ +
+
+ + + -- cgit v1.2.1