From c5fc66ee58f2c60f2d226868bb1cf5b91badaf53 Mon Sep 17 00:00:00 2001 From: sanine Date: Sat, 1 Oct 2022 20:59:36 -0500 Subject: add ode --- libs/ode-0.16.1/OPCODE/Ice/IceMatrix3x3.h | 499 ++++++++++++++++++++++++++++++ 1 file changed, 499 insertions(+) create mode 100644 libs/ode-0.16.1/OPCODE/Ice/IceMatrix3x3.h (limited to 'libs/ode-0.16.1/OPCODE/Ice/IceMatrix3x3.h') diff --git a/libs/ode-0.16.1/OPCODE/Ice/IceMatrix3x3.h b/libs/ode-0.16.1/OPCODE/Ice/IceMatrix3x3.h new file mode 100644 index 0000000..e3b950f --- /dev/null +++ b/libs/ode-0.16.1/OPCODE/Ice/IceMatrix3x3.h @@ -0,0 +1,499 @@ +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +/** + * Contains code for 3x3 matrices. + * \file IceMatrix3x3.h + * \author Pierre Terdiman + * \date April, 4, 2000 + */ +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Include Guard +#ifndef __ICEMATRIX3X3_H__ +#define __ICEMATRIX3X3_H__ + + // Forward declarations + class Quat; + + #define MATRIX3X3_EPSILON (1.0e-7f) + + class ICEMATHS_API Matrix3x3 + { + public: + //! Empty constructor + inline_ Matrix3x3() {} + //! Constructor from 9 values + inline_ Matrix3x3(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22) + { + m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; + m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; + m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; + } + //! Copy constructor + inline_ Matrix3x3(const Matrix3x3& mat) { CopyMemory(m, &mat.m, 9*sizeof(float)); } + //! Destructor + inline_ ~Matrix3x3() {} + + //! Assign values + template + inline_ void Set(trotationfloat m00, trotationfloat m01, trotationfloat m02, + trotationfloat m10, trotationfloat m11, trotationfloat m12, + trotationfloat m20, trotationfloat m21, trotationfloat m22) + { + m[0][0] = (float)m00; m[0][1] = (float)m01; m[0][2] = (float)m02; + m[1][0] = (float)m10; m[1][1] = (float)m11; m[1][2] = (float)m12; + m[2][0] = (float)m20; m[2][1] = (float)m21; m[2][2] = (float)m22; + } + + //! Sets the scale from a Point. The point is put on the diagonal. + inline_ void SetScale(const Point& p) { m[0][0] = p.x; m[1][1] = p.y; m[2][2] = p.z; } + + //! Sets the scale from floats. Values are put on the diagonal. + inline_ void SetScale(float sx, float sy, float sz) { m[0][0] = sx; m[1][1] = sy; m[2][2] = sz; } + + //! Scales from a Point. Each row is multiplied by a component. + inline_ void Scale(const Point& p) + { + m[0][0] *= p.x; m[0][1] *= p.x; m[0][2] *= p.x; + m[1][0] *= p.y; m[1][1] *= p.y; m[1][2] *= p.y; + m[2][0] *= p.z; m[2][1] *= p.z; m[2][2] *= p.z; + } + + //! Scales from floats. Each row is multiplied by a value. + inline_ void Scale(float sx, float sy, float sz) + { + m[0][0] *= sx; m[0][1] *= sx; m[0][2] *= sx; + m[1][0] *= sy; m[1][1] *= sy; m[1][2] *= sy; + m[2][0] *= sz; m[2][1] *= sz; m[2][2] *= sz; + } + + //! Copy from a Matrix3x3 + inline_ void Copy(const Matrix3x3& source) { CopyMemory(m, source.m, 9*sizeof(float)); } + + // Row-column access + //! Returns a row. + inline_ void GetRow(const udword r, Point& p) const { p.x = m[r][0]; p.y = m[r][1]; p.z = m[r][2]; } + //! Returns a row. + inline_ const Point& GetRow(const udword r) const { return *(const Point*)&m[r][0]; } + //! Returns a row. + inline_ Point& GetRow(const udword r) { return *(Point*)&m[r][0]; } + //! Sets a row. + inline_ void SetRow(const udword r, const Point& p) { m[r][0] = p.x; m[r][1] = p.y; m[r][2] = p.z; } + //! Returns a column. + inline_ void GetCol(const udword c, Point& p) const { p.x = m[0][c]; p.y = m[1][c]; p.z = m[2][c]; } + //! Sets a column. + inline_ void SetCol(const udword c, const Point& p) { m[0][c] = p.x; m[1][c] = p.y; m[2][c] = p.z; } + + //! Computes the trace. The trace is the sum of the 3 diagonal components. + inline_ float Trace() const { return m[0][0] + m[1][1] + m[2][2]; } + //! Clears the matrix. + inline_ void Zero() { ZeroMemory(&m, sizeof(m)); } + //! Sets the identity matrix. + inline_ void Identity() { Zero(); m[0][0] = m[1][1] = m[2][2] = 1.0f; } + //! Checks for identity + inline_ bool IsIdentity() const + { + if(IR(m[0][0])!=IEEE_1_0) return false; + if(IR(m[0][1])!=0) return false; + if(IR(m[0][2])!=0) return false; + + if(IR(m[1][0])!=0) return false; + if(IR(m[1][1])!=IEEE_1_0) return false; + if(IR(m[1][2])!=0) return false; + + if(IR(m[2][0])!=0) return false; + if(IR(m[2][1])!=0) return false; + if(IR(m[2][2])!=IEEE_1_0) return false; + + return true; + } + + //! Checks matrix validity + inline_ BOOL IsValid() const + { + for(udword j=0;j<3;j++) + { + for(udword i=0;i<3;i++) + { + if(!IsValidFloat(m[j][i])) return FALSE; + } + } + return TRUE; + } + + //! Makes a skew-symmetric matrix (a.k.a. Star(*) Matrix) + //! [ 0.0 -a.z a.y ] + //! [ a.z 0.0 -a.x ] + //! [ -a.y a.x 0.0 ] + //! This is also called a "cross matrix" since for any vectors A and B, + //! A^B = Skew(A) * B = - B * Skew(A); + inline_ void SkewSymmetric(const Point& a) + { + m[0][0] = 0.0f; + m[0][1] = -a.z; + m[0][2] = a.y; + + m[1][0] = a.z; + m[1][1] = 0.0f; + m[1][2] = -a.x; + + m[2][0] = -a.y; + m[2][1] = a.x; + m[2][2] = 0.0f; + } + + //! Negates the matrix + inline_ void Neg() + { + m[0][0] = -m[0][0]; m[0][1] = -m[0][1]; m[0][2] = -m[0][2]; + m[1][0] = -m[1][0]; m[1][1] = -m[1][1]; m[1][2] = -m[1][2]; + m[2][0] = -m[2][0]; m[2][1] = -m[2][1]; m[2][2] = -m[2][2]; + } + + //! Neg from another matrix + inline_ void Neg(const Matrix3x3& mat) + { + m[0][0] = -mat.m[0][0]; m[0][1] = -mat.m[0][1]; m[0][2] = -mat.m[0][2]; + m[1][0] = -mat.m[1][0]; m[1][1] = -mat.m[1][1]; m[1][2] = -mat.m[1][2]; + m[2][0] = -mat.m[2][0]; m[2][1] = -mat.m[2][1]; m[2][2] = -mat.m[2][2]; + } + + //! Add another matrix + inline_ void Add(const Matrix3x3& mat) + { + m[0][0] += mat.m[0][0]; m[0][1] += mat.m[0][1]; m[0][2] += mat.m[0][2]; + m[1][0] += mat.m[1][0]; m[1][1] += mat.m[1][1]; m[1][2] += mat.m[1][2]; + m[2][0] += mat.m[2][0]; m[2][1] += mat.m[2][1]; m[2][2] += mat.m[2][2]; + } + + //! Sub another matrix + inline_ void Sub(const Matrix3x3& mat) + { + m[0][0] -= mat.m[0][0]; m[0][1] -= mat.m[0][1]; m[0][2] -= mat.m[0][2]; + m[1][0] -= mat.m[1][0]; m[1][1] -= mat.m[1][1]; m[1][2] -= mat.m[1][2]; + m[2][0] -= mat.m[2][0]; m[2][1] -= mat.m[2][1]; m[2][2] -= mat.m[2][2]; + } + //! Mac + inline_ void Mac(const Matrix3x3& a, const Matrix3x3& b, float s) + { + m[0][0] = a.m[0][0] + b.m[0][0] * s; + m[0][1] = a.m[0][1] + b.m[0][1] * s; + m[0][2] = a.m[0][2] + b.m[0][2] * s; + + m[1][0] = a.m[1][0] + b.m[1][0] * s; + m[1][1] = a.m[1][1] + b.m[1][1] * s; + m[1][2] = a.m[1][2] + b.m[1][2] * s; + + m[2][0] = a.m[2][0] + b.m[2][0] * s; + m[2][1] = a.m[2][1] + b.m[2][1] * s; + m[2][2] = a.m[2][2] + b.m[2][2] * s; + } + //! Mac + inline_ void Mac(const Matrix3x3& a, float s) + { + m[0][0] += a.m[0][0] * s; m[0][1] += a.m[0][1] * s; m[0][2] += a.m[0][2] * s; + m[1][0] += a.m[1][0] * s; m[1][1] += a.m[1][1] * s; m[1][2] += a.m[1][2] * s; + m[2][0] += a.m[2][0] * s; m[2][1] += a.m[2][1] * s; m[2][2] += a.m[2][2] * s; + } + + //! this = A * s + inline_ void Mult(const Matrix3x3& a, float s) + { + m[0][0] = a.m[0][0] * s; m[0][1] = a.m[0][1] * s; m[0][2] = a.m[0][2] * s; + m[1][0] = a.m[1][0] * s; m[1][1] = a.m[1][1] * s; m[1][2] = a.m[1][2] * s; + m[2][0] = a.m[2][0] * s; m[2][1] = a.m[2][1] * s; m[2][2] = a.m[2][2] * s; + } + + inline_ void Add(const Matrix3x3& a, const Matrix3x3& b) + { + m[0][0] = a.m[0][0] + b.m[0][0]; m[0][1] = a.m[0][1] + b.m[0][1]; m[0][2] = a.m[0][2] + b.m[0][2]; + m[1][0] = a.m[1][0] + b.m[1][0]; m[1][1] = a.m[1][1] + b.m[1][1]; m[1][2] = a.m[1][2] + b.m[1][2]; + m[2][0] = a.m[2][0] + b.m[2][0]; m[2][1] = a.m[2][1] + b.m[2][1]; m[2][2] = a.m[2][2] + b.m[2][2]; + } + + inline_ void Sub(const Matrix3x3& a, const Matrix3x3& b) + { + m[0][0] = a.m[0][0] - b.m[0][0]; m[0][1] = a.m[0][1] - b.m[0][1]; m[0][2] = a.m[0][2] - b.m[0][2]; + m[1][0] = a.m[1][0] - b.m[1][0]; m[1][1] = a.m[1][1] - b.m[1][1]; m[1][2] = a.m[1][2] - b.m[1][2]; + m[2][0] = a.m[2][0] - b.m[2][0]; m[2][1] = a.m[2][1] - b.m[2][1]; m[2][2] = a.m[2][2] - b.m[2][2]; + } + + //! this = a * b + inline_ void Mult(const Matrix3x3& a, const Matrix3x3& b) + { + m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[1][0] + a.m[0][2] * b.m[2][0]; + m[0][1] = a.m[0][0] * b.m[0][1] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[2][1]; + m[0][2] = a.m[0][0] * b.m[0][2] + a.m[0][1] * b.m[1][2] + a.m[0][2] * b.m[2][2]; + m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[1][2] * b.m[2][0]; + m[1][1] = a.m[1][0] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[2][1]; + m[1][2] = a.m[1][0] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[1][2] * b.m[2][2]; + m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[1][0] + a.m[2][2] * b.m[2][0]; + m[2][1] = a.m[2][0] * b.m[0][1] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[2][1]; + m[2][2] = a.m[2][0] * b.m[0][2] + a.m[2][1] * b.m[1][2] + a.m[2][2] * b.m[2][2]; + } + + //! this = transpose(a) * b + inline_ void MultAtB(const Matrix3x3& a, const Matrix3x3& b) + { + m[0][0] = a.m[0][0] * b.m[0][0] + a.m[1][0] * b.m[1][0] + a.m[2][0] * b.m[2][0]; + m[0][1] = a.m[0][0] * b.m[0][1] + a.m[1][0] * b.m[1][1] + a.m[2][0] * b.m[2][1]; + m[0][2] = a.m[0][0] * b.m[0][2] + a.m[1][0] * b.m[1][2] + a.m[2][0] * b.m[2][2]; + m[1][0] = a.m[0][1] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[2][1] * b.m[2][0]; + m[1][1] = a.m[0][1] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[2][1] * b.m[2][1]; + m[1][2] = a.m[0][1] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[2][1] * b.m[2][2]; + m[2][0] = a.m[0][2] * b.m[0][0] + a.m[1][2] * b.m[1][0] + a.m[2][2] * b.m[2][0]; + m[2][1] = a.m[0][2] * b.m[0][1] + a.m[1][2] * b.m[1][1] + a.m[2][2] * b.m[2][1]; + m[2][2] = a.m[0][2] * b.m[0][2] + a.m[1][2] * b.m[1][2] + a.m[2][2] * b.m[2][2]; + } + + //! this = a * transpose(b) + inline_ void MultABt(const Matrix3x3& a, const Matrix3x3& b) + { + m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[0][1] + a.m[0][2] * b.m[0][2]; + m[0][1] = a.m[0][0] * b.m[1][0] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[1][2]; + m[0][2] = a.m[0][0] * b.m[2][0] + a.m[0][1] * b.m[2][1] + a.m[0][2] * b.m[2][2]; + m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[0][1] + a.m[1][2] * b.m[0][2]; + m[1][1] = a.m[1][0] * b.m[1][0] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[1][2]; + m[1][2] = a.m[1][0] * b.m[2][0] + a.m[1][1] * b.m[2][1] + a.m[1][2] * b.m[2][2]; + m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[0][1] + a.m[2][2] * b.m[0][2]; + m[2][1] = a.m[2][0] * b.m[1][0] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[1][2]; + m[2][2] = a.m[2][0] * b.m[2][0] + a.m[2][1] * b.m[2][1] + a.m[2][2] * b.m[2][2]; + } + + //! Makes a rotation matrix mapping vector "from" to vector "to". + Matrix3x3& FromTo(const Point& from, const Point& to); + + //! Set a rotation matrix around the X axis. + //! 1 0 0 + //! RX = 0 cx sx + //! 0 -sx cx + void RotX(float angle); + //! Set a rotation matrix around the Y axis. + //! cy 0 -sy + //! RY = 0 1 0 + //! sy 0 cy + void RotY(float angle); + //! Set a rotation matrix around the Z axis. + //! cz sz 0 + //! RZ = -sz cz 0 + //! 0 0 1 + void RotZ(float angle); + //! cy sx.sy -sy.cx + //! RY.RX 0 cx sx + //! sy -sx.cy cx.cy + void RotYX(float y, float x); + + //! Make a rotation matrix about an arbitrary axis + Matrix3x3& Rot(float angle, const Point& axis); + + //! Transpose the matrix. + void Transpose() + { + TSwap(m[1][0], m[0][1]); + TSwap(m[2][0], m[0][2]); + TSwap(m[2][1], m[1][2]); + } + + //! this = Transpose(a) + void Transpose(const Matrix3x3& a) + { + m[0][0] = a.m[0][0]; m[0][1] = a.m[1][0]; m[0][2] = a.m[2][0]; + m[1][0] = a.m[0][1]; m[1][1] = a.m[1][1]; m[1][2] = a.m[2][1]; + m[2][0] = a.m[0][2]; m[2][1] = a.m[1][2]; m[2][2] = a.m[2][2]; + } + + //! Compute the determinant of the matrix. We use the rule of Sarrus. + float Determinant() const + { + return (m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0] + m[0][2]*m[1][0]*m[2][1]) + - (m[2][0]*m[1][1]*m[0][2] + m[2][1]*m[1][2]*m[0][0] + m[2][2]*m[1][0]*m[0][1]); + } +/* + //! Compute a cofactor. Used for matrix inversion. + float CoFactor(ubyte row, ubyte column) const + { + static const sdword gIndex[3+2] = { 0, 1, 2, 0, 1 }; + return (m[gIndex[row+1]][gIndex[column+1]]*m[gIndex[row+2]][gIndex[column+2]] - m[gIndex[row+2]][gIndex[column+1]]*m[gIndex[row+1]][gIndex[column+2]]); + } +*/ + //! Invert the matrix. Determinant must be different from zero, else matrix can't be inverted. + Matrix3x3& Invert() + { + float Det = Determinant(); // Must be !=0 + float OneOverDet = 1.0f / Det; + + Matrix3x3 Temp; + Temp.m[0][0] = +(m[1][1] * m[2][2] - m[2][1] * m[1][2]) * OneOverDet; + Temp.m[1][0] = -(m[1][0] * m[2][2] - m[2][0] * m[1][2]) * OneOverDet; + Temp.m[2][0] = +(m[1][0] * m[2][1] - m[2][0] * m[1][1]) * OneOverDet; + Temp.m[0][1] = -(m[0][1] * m[2][2] - m[2][1] * m[0][2]) * OneOverDet; + Temp.m[1][1] = +(m[0][0] * m[2][2] - m[2][0] * m[0][2]) * OneOverDet; + Temp.m[2][1] = -(m[0][0] * m[2][1] - m[2][0] * m[0][1]) * OneOverDet; + Temp.m[0][2] = +(m[0][1] * m[1][2] - m[1][1] * m[0][2]) * OneOverDet; + Temp.m[1][2] = -(m[0][0] * m[1][2] - m[1][0] * m[0][2]) * OneOverDet; + Temp.m[2][2] = +(m[0][0] * m[1][1] - m[1][0] * m[0][1]) * OneOverDet; + + *this = Temp; + + return *this; + } + + Matrix3x3& Normalize(); + + //! this = exp(a) + Matrix3x3& Exp(const Matrix3x3& a); + +void FromQuat(const Quat &q); +void FromQuatL2(const Quat &q, float l2); + + // Arithmetic operators + //! Operator for Matrix3x3 Plus = Matrix3x3 + Matrix3x3; + inline_ Matrix3x3 operator+(const Matrix3x3& mat) const + { + return Matrix3x3( + m[0][0] + mat.m[0][0], m[0][1] + mat.m[0][1], m[0][2] + mat.m[0][2], + m[1][0] + mat.m[1][0], m[1][1] + mat.m[1][1], m[1][2] + mat.m[1][2], + m[2][0] + mat.m[2][0], m[2][1] + mat.m[2][1], m[2][2] + mat.m[2][2]); + } + + //! Operator for Matrix3x3 Minus = Matrix3x3 - Matrix3x3; + inline_ Matrix3x3 operator-(const Matrix3x3& mat) const + { + return Matrix3x3( + m[0][0] - mat.m[0][0], m[0][1] - mat.m[0][1], m[0][2] - mat.m[0][2], + m[1][0] - mat.m[1][0], m[1][1] - mat.m[1][1], m[1][2] - mat.m[1][2], + m[2][0] - mat.m[2][0], m[2][1] - mat.m[2][1], m[2][2] - mat.m[2][2]); + } + + //! Operator for Matrix3x3 Mul = Matrix3x3 * Matrix3x3; + inline_ Matrix3x3 operator*(const Matrix3x3& mat) const + { + return Matrix3x3( + m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0], + m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1], + m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2], + + m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0], + m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1], + m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2], + + m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0], + m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1], + m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2]); + } + + //! Operator for Point Mul = Matrix3x3 * Point; + inline_ Point operator*(const Point& v) const { return Point(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v); } + + //! Operator for Matrix3x3 Mul = Matrix3x3 * float; + inline_ Matrix3x3 operator*(float s) const + { + return Matrix3x3( + m[0][0]*s, m[0][1]*s, m[0][2]*s, + m[1][0]*s, m[1][1]*s, m[1][2]*s, + m[2][0]*s, m[2][1]*s, m[2][2]*s); + } + + //! Operator for Matrix3x3 Mul = float * Matrix3x3; + inline_ friend Matrix3x3 operator*(float s, const Matrix3x3& mat) + { + return Matrix3x3( + s*mat.m[0][0], s*mat.m[0][1], s*mat.m[0][2], + s*mat.m[1][0], s*mat.m[1][1], s*mat.m[1][2], + s*mat.m[2][0], s*mat.m[2][1], s*mat.m[2][2]); + } + + //! Operator for Matrix3x3 Div = Matrix3x3 / float; + inline_ Matrix3x3 operator/(float s) const + { + if (s) s = 1.0f / s; + return Matrix3x3( + m[0][0]*s, m[0][1]*s, m[0][2]*s, + m[1][0]*s, m[1][1]*s, m[1][2]*s, + m[2][0]*s, m[2][1]*s, m[2][2]*s); + } + + //! Operator for Matrix3x3 Div = float / Matrix3x3; + inline_ friend Matrix3x3 operator/(float s, const Matrix3x3& mat) + { + return Matrix3x3( + s/mat.m[0][0], s/mat.m[0][1], s/mat.m[0][2], + s/mat.m[1][0], s/mat.m[1][1], s/mat.m[1][2], + s/mat.m[2][0], s/mat.m[2][1], s/mat.m[2][2]); + } + + //! Operator for Matrix3x3 += Matrix3x3 + inline_ Matrix3x3& operator+=(const Matrix3x3& mat) + { + m[0][0] += mat.m[0][0]; m[0][1] += mat.m[0][1]; m[0][2] += mat.m[0][2]; + m[1][0] += mat.m[1][0]; m[1][1] += mat.m[1][1]; m[1][2] += mat.m[1][2]; + m[2][0] += mat.m[2][0]; m[2][1] += mat.m[2][1]; m[2][2] += mat.m[2][2]; + return *this; + } + + //! Operator for Matrix3x3 -= Matrix3x3 + inline_ Matrix3x3& operator-=(const Matrix3x3& mat) + { + m[0][0] -= mat.m[0][0]; m[0][1] -= mat.m[0][1]; m[0][2] -= mat.m[0][2]; + m[1][0] -= mat.m[1][0]; m[1][1] -= mat.m[1][1]; m[1][2] -= mat.m[1][2]; + m[2][0] -= mat.m[2][0]; m[2][1] -= mat.m[2][1]; m[2][2] -= mat.m[2][2]; + return *this; + } + + //! Operator for Matrix3x3 *= Matrix3x3 + inline_ Matrix3x3& operator*=(const Matrix3x3& mat) + { + Point TempRow; + + GetRow(0, TempRow); + m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0]; + m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1]; + m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2]; + + GetRow(1, TempRow); + m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0]; + m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1]; + m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2]; + + GetRow(2, TempRow); + m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0]; + m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1]; + m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2]; + return *this; + } + + //! Operator for Matrix3x3 *= float + inline_ Matrix3x3& operator*=(float s) + { + m[0][0] *= s; m[0][1] *= s; m[0][2] *= s; + m[1][0] *= s; m[1][1] *= s; m[1][2] *= s; + m[2][0] *= s; m[2][1] *= s; m[2][2] *= s; + return *this; + } + + //! Operator for Matrix3x3 /= float + inline_ Matrix3x3& operator/=(float s) + { + if (s) s = 1.0f / s; + m[0][0] *= s; m[0][1] *= s; m[0][2] *= s; + m[1][0] *= s; m[1][1] *= s; m[1][2] *= s; + m[2][0] *= s; m[2][1] *= s; m[2][2] *= s; + return *this; + } + + // Cast operators + //! Cast a Matrix3x3 to a Matrix4x4. + operator Matrix4x4() const; + //! Cast a Matrix3x3 to a Quat. + operator Quat() const; + + inline_ const Point& operator[](int row) const { return *(const Point*)&m[row][0]; } + inline_ Point& operator[](int row) { return *(Point*)&m[row][0]; } + + public: + + float m[3][3]; + }; + +#endif // __ICEMATRIX3X3_H__ + -- cgit v1.2.1