From 058f98a63658dc1a2579826ba167fd61bed1e21f Mon Sep 17 00:00:00 2001 From: sanine Date: Fri, 4 Mar 2022 10:47:15 -0600 Subject: add assimp submodule --- .../code/AssetLib/FBX/FBXConverter.cpp | 3679 ++++++++++++++++++++ 1 file changed, 3679 insertions(+) create mode 100644 src/mesh/assimp-master/code/AssetLib/FBX/FBXConverter.cpp (limited to 'src/mesh/assimp-master/code/AssetLib/FBX/FBXConverter.cpp') diff --git a/src/mesh/assimp-master/code/AssetLib/FBX/FBXConverter.cpp b/src/mesh/assimp-master/code/AssetLib/FBX/FBXConverter.cpp new file mode 100644 index 0000000..3287210 --- /dev/null +++ b/src/mesh/assimp-master/code/AssetLib/FBX/FBXConverter.cpp @@ -0,0 +1,3679 @@ +/* +Open Asset Import Library (assimp) +---------------------------------------------------------------------- + +Copyright (c) 2006-2022, assimp team + +All rights reserved. + +Redistribution and use of this software in source and binary forms, +with or without modification, are permitted provided that the +following conditions are met: + +* Redistributions of source code must retain the above + copyright notice, this list of conditions and the + following disclaimer. + +* Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the + following disclaimer in the documentation and/or other + materials provided with the distribution. + +* Neither the name of the assimp team, nor the names of its + contributors may be used to endorse or promote products + derived from this software without specific prior + written permission of the assimp team. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +---------------------------------------------------------------------- +*/ + +/** @file FBXConverter.cpp + * @brief Implementation of the FBX DOM -> aiScene converter + */ + +#ifndef ASSIMP_BUILD_NO_FBX_IMPORTER + +#include "FBXConverter.h" +#include "FBXDocument.h" +#include "FBXImporter.h" +#include "FBXMeshGeometry.h" +#include "FBXParser.h" +#include "FBXProperties.h" +#include "FBXUtil.h" + +#include +#include + +#include + +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace Assimp { +namespace FBX { + +using namespace Util; + +#define MAGIC_NODE_TAG "_$AssimpFbx$" + +#define CONVERT_FBX_TIME(time) static_cast(time) / 46186158000LL + +FBXConverter::FBXConverter(aiScene *out, const Document &doc, bool removeEmptyBones) : + defaultMaterialIndex(), + mMeshes(), + lights(), + cameras(), + textures(), + materials_converted(), + textures_converted(), + meshes_converted(), + node_anim_chain_bits(), + mNodeNames(), + anim_fps(), + mSceneOut(out), + doc(doc), + mRemoveEmptyBones(removeEmptyBones) { + // animations need to be converted first since this will + // populate the node_anim_chain_bits map, which is needed + // to determine which nodes need to be generated. + ConvertAnimations(); + // Embedded textures in FBX could be connected to nothing but to itself, + // for instance Texture -> Video connection only but not to the main graph, + // The idea here is to traverse all objects to find these Textures and convert them, + // so later during material conversion it will find converted texture in the textures_converted array. + if (doc.Settings().readTextures) { + ConvertOrphanedEmbeddedTextures(); + } + ConvertRootNode(); + + if (doc.Settings().readAllMaterials) { + // unfortunately this means we have to evaluate all objects + for (const ObjectMap::value_type &v : doc.Objects()) { + + const Object *ob = v.second->Get(); + if (!ob) { + continue; + } + + const Material *mat = dynamic_cast(ob); + if (mat) { + + if (materials_converted.find(mat) == materials_converted.end()) { + ConvertMaterial(*mat, 0); + } + } + } + } + + ConvertGlobalSettings(); + TransferDataToScene(); + + // if we didn't read any meshes set the AI_SCENE_FLAGS_INCOMPLETE + // to make sure the scene passes assimp's validation. FBX files + // need not contain geometry (i.e. camera animations, raw armatures). + if (out->mNumMeshes == 0) { + out->mFlags |= AI_SCENE_FLAGS_INCOMPLETE; + } +} + +FBXConverter::~FBXConverter() { + std::for_each(mMeshes.begin(), mMeshes.end(), Util::delete_fun()); + std::for_each(materials.begin(), materials.end(), Util::delete_fun()); + std::for_each(animations.begin(), animations.end(), Util::delete_fun()); + std::for_each(lights.begin(), lights.end(), Util::delete_fun()); + std::for_each(cameras.begin(), cameras.end(), Util::delete_fun()); + std::for_each(textures.begin(), textures.end(), Util::delete_fun()); +} + +void FBXConverter::ConvertRootNode() { + mSceneOut->mRootNode = new aiNode(); + std::string unique_name; + GetUniqueName("RootNode", unique_name); + mSceneOut->mRootNode->mName.Set(unique_name); + + // root has ID 0 + ConvertNodes(0L, mSceneOut->mRootNode, mSceneOut->mRootNode); +} + +static std::string getAncestorBaseName(const aiNode *node) { + const char *nodeName = nullptr; + size_t length = 0; + while (node && (!nodeName || length == 0)) { + nodeName = node->mName.C_Str(); + length = node->mName.length; + node = node->mParent; + } + + if (!nodeName || length == 0) { + return {}; + } + // could be std::string_view if c++17 available + return std::string(nodeName, length); +} + +// Make unique name +std::string FBXConverter::MakeUniqueNodeName(const Model *const model, const aiNode &parent) { + std::string original_name = FixNodeName(model->Name()); + if (original_name.empty()) { + original_name = getAncestorBaseName(&parent); + } + std::string unique_name; + GetUniqueName(original_name, unique_name); + return unique_name; +} + +/// This struct manages nodes which may or may not end up in the node hierarchy. +/// When a node becomes a child of another node, that node becomes its owner and mOwnership should be released. +struct FBXConverter::PotentialNode +{ + PotentialNode() : mOwnership(new aiNode), mNode(mOwnership.get()) {} + PotentialNode(const std::string& name) : mOwnership(new aiNode(name)), mNode(mOwnership.get()) {} + aiNode* operator->() { return mNode; } + std::unique_ptr mOwnership; + aiNode* mNode; +}; + +/// todo: pre-build node hierarchy +/// todo: get bone from stack +/// todo: make map of aiBone* to aiNode* +/// then update convert clusters to the new format +void FBXConverter::ConvertNodes(uint64_t id, aiNode *parent, aiNode *root_node) { + const std::vector &conns = doc.GetConnectionsByDestinationSequenced(id, "Model"); + + std::vector nodes; + nodes.reserve(conns.size()); + + std::vector nodes_chain; + std::vector post_nodes_chain; + + for (const Connection *con : conns) { + // ignore object-property links + if (con->PropertyName().length()) { + // really important we document why this is ignored. + FBXImporter::LogInfo("ignoring property link - no docs on why this is ignored"); + continue; //? + } + + // convert connection source object into Object base class + const Object *const object = con->SourceObject(); + if (nullptr == object) { + FBXImporter::LogError("failed to convert source object for Model link"); + continue; + } + + // FBX Model::Cube, Model::Bone001, etc elements + // This detects if we can cast the object into this model structure. + const Model *const model = dynamic_cast(object); + + if (nullptr != model) { + nodes_chain.clear(); + post_nodes_chain.clear(); + + aiMatrix4x4 new_abs_transform = parent->mTransformation; + std::string node_name = FixNodeName(model->Name()); + // even though there is only a single input node, the design of + // assimp (or rather: the complicated transformation chain that + // is employed by fbx) means that we may need multiple aiNode's + // to represent a fbx node's transformation. + + // generate node transforms - this includes pivot data + // if need_additional_node is true then you t + const bool need_additional_node = GenerateTransformationNodeChain(*model, node_name, nodes_chain, post_nodes_chain); + + // assert that for the current node we must have at least a single transform + ai_assert(nodes_chain.size()); + + if (need_additional_node) { + nodes_chain.emplace_back(PotentialNode(node_name)); + } + + //setup metadata on newest node + SetupNodeMetadata(*model, *nodes_chain.back().mNode); + + // link all nodes in a row + aiNode *last_parent = parent; + for (PotentialNode& child : nodes_chain) { + ai_assert(child.mNode); + + if (last_parent != parent) { + last_parent->mNumChildren = 1; + last_parent->mChildren = new aiNode *[1]; + last_parent->mChildren[0] = child.mOwnership.release(); + } + + child->mParent = last_parent; + last_parent = child.mNode; + + new_abs_transform *= child->mTransformation; + } + + // attach geometry + ConvertModel(*model, nodes_chain.back().mNode, root_node, new_abs_transform); + + // check if there will be any child nodes + const std::vector &child_conns = doc.GetConnectionsByDestinationSequenced(model->ID(), "Model"); + + // if so, link the geometric transform inverse nodes + // before we attach any child nodes + if (child_conns.size()) { + for (PotentialNode& postnode : post_nodes_chain) { + ai_assert(postnode.mNode); + + if (last_parent != parent) { + last_parent->mNumChildren = 1; + last_parent->mChildren = new aiNode *[1]; + last_parent->mChildren[0] = postnode.mOwnership.release(); + } + + postnode->mParent = last_parent; + last_parent = postnode.mNode; + + new_abs_transform *= postnode->mTransformation; + } + } else { + // free the nodes we allocated as we don't need them + post_nodes_chain.clear(); + } + + // recursion call - child nodes + ConvertNodes(model->ID(), last_parent, root_node); + + if (doc.Settings().readLights) { + ConvertLights(*model, node_name); + } + + if (doc.Settings().readCameras) { + ConvertCameras(*model, node_name); + } + + nodes.push_back(std::move(nodes_chain.front())); + nodes_chain.clear(); + } + } + + if (nodes.size()) { + parent->mChildren = new aiNode *[nodes.size()](); + parent->mNumChildren = static_cast(nodes.size()); + + for (unsigned int i = 0; i < nodes.size(); ++i) + { + parent->mChildren[i] = nodes[i].mOwnership.release(); + } + nodes.clear(); + } else { + parent->mNumChildren = 0; + parent->mChildren = nullptr; + } +} + +void FBXConverter::ConvertLights(const Model &model, const std::string &orig_name) { + const std::vector &node_attrs = model.GetAttributes(); + for (const NodeAttribute *attr : node_attrs) { + const Light *const light = dynamic_cast(attr); + if (light) { + ConvertLight(*light, orig_name); + } + } +} + +void FBXConverter::ConvertCameras(const Model &model, const std::string &orig_name) { + const std::vector &node_attrs = model.GetAttributes(); + for (const NodeAttribute *attr : node_attrs) { + const Camera *const cam = dynamic_cast(attr); + if (cam) { + ConvertCamera(*cam, orig_name); + } + } +} + +void FBXConverter::ConvertLight(const Light &light, const std::string &orig_name) { + lights.push_back(new aiLight()); + aiLight *const out_light = lights.back(); + + out_light->mName.Set(orig_name); + + const float intensity = light.Intensity() / 100.0f; + const aiVector3D &col = light.Color(); + + out_light->mColorDiffuse = aiColor3D(col.x, col.y, col.z); + out_light->mColorDiffuse.r *= intensity; + out_light->mColorDiffuse.g *= intensity; + out_light->mColorDiffuse.b *= intensity; + + out_light->mColorSpecular = out_light->mColorDiffuse; + + //lights are defined along negative y direction + out_light->mPosition = aiVector3D(0.0f); + out_light->mDirection = aiVector3D(0.0f, -1.0f, 0.0f); + out_light->mUp = aiVector3D(0.0f, 0.0f, -1.0f); + + switch (light.LightType()) { + case Light::Type_Point: + out_light->mType = aiLightSource_POINT; + break; + + case Light::Type_Directional: + out_light->mType = aiLightSource_DIRECTIONAL; + break; + + case Light::Type_Spot: + out_light->mType = aiLightSource_SPOT; + out_light->mAngleOuterCone = AI_DEG_TO_RAD(light.OuterAngle()); + out_light->mAngleInnerCone = AI_DEG_TO_RAD(light.InnerAngle()); + break; + + case Light::Type_Area: + FBXImporter::LogWarn("cannot represent area light, set to UNDEFINED"); + out_light->mType = aiLightSource_UNDEFINED; + break; + + case Light::Type_Volume: + FBXImporter::LogWarn("cannot represent volume light, set to UNDEFINED"); + out_light->mType = aiLightSource_UNDEFINED; + break; + default: + ai_assert(false); + } + + float decay = light.DecayStart(); + switch (light.DecayType()) { + case Light::Decay_None: + out_light->mAttenuationConstant = decay; + out_light->mAttenuationLinear = 0.0f; + out_light->mAttenuationQuadratic = 0.0f; + break; + case Light::Decay_Linear: + out_light->mAttenuationConstant = 0.0f; + out_light->mAttenuationLinear = 2.0f / decay; + out_light->mAttenuationQuadratic = 0.0f; + break; + case Light::Decay_Quadratic: + out_light->mAttenuationConstant = 0.0f; + out_light->mAttenuationLinear = 0.0f; + out_light->mAttenuationQuadratic = 2.0f / (decay * decay); + break; + case Light::Decay_Cubic: + FBXImporter::LogWarn("cannot represent cubic attenuation, set to Quadratic"); + out_light->mAttenuationQuadratic = 1.0f; + break; + default: + ai_assert(false); + break; + } +} + +void FBXConverter::ConvertCamera(const Camera &cam, const std::string &orig_name) { + cameras.push_back(new aiCamera()); + aiCamera *const out_camera = cameras.back(); + + out_camera->mName.Set(orig_name); + + out_camera->mAspect = cam.AspectWidth() / cam.AspectHeight(); + + out_camera->mPosition = aiVector3D(0.0f); + out_camera->mLookAt = aiVector3D(1.0f, 0.0f, 0.0f); + out_camera->mUp = aiVector3D(0.0f, 1.0f, 0.0f); + + out_camera->mHorizontalFOV = AI_DEG_TO_RAD(cam.FieldOfView()); + + out_camera->mClipPlaneNear = cam.NearPlane(); + out_camera->mClipPlaneFar = cam.FarPlane(); + + out_camera->mHorizontalFOV = AI_DEG_TO_RAD(cam.FieldOfView()); + out_camera->mClipPlaneNear = cam.NearPlane(); + out_camera->mClipPlaneFar = cam.FarPlane(); +} + +void FBXConverter::GetUniqueName(const std::string &name, std::string &uniqueName) { + uniqueName = name; + auto it_pair = mNodeNames.insert({ name, 0 }); // duplicate node name instance count + unsigned int &i = it_pair.first->second; + while (!it_pair.second) { + i++; + std::ostringstream ext; + ext << name << std::setfill('0') << std::setw(3) << i; + uniqueName = ext.str(); + it_pair = mNodeNames.insert({ uniqueName, 0 }); + } +} + +const char *FBXConverter::NameTransformationComp(TransformationComp comp) { + switch (comp) { + case TransformationComp_Translation: + return "Translation"; + case TransformationComp_RotationOffset: + return "RotationOffset"; + case TransformationComp_RotationPivot: + return "RotationPivot"; + case TransformationComp_PreRotation: + return "PreRotation"; + case TransformationComp_Rotation: + return "Rotation"; + case TransformationComp_PostRotation: + return "PostRotation"; + case TransformationComp_RotationPivotInverse: + return "RotationPivotInverse"; + case TransformationComp_ScalingOffset: + return "ScalingOffset"; + case TransformationComp_ScalingPivot: + return "ScalingPivot"; + case TransformationComp_Scaling: + return "Scaling"; + case TransformationComp_ScalingPivotInverse: + return "ScalingPivotInverse"; + case TransformationComp_GeometricScaling: + return "GeometricScaling"; + case TransformationComp_GeometricRotation: + return "GeometricRotation"; + case TransformationComp_GeometricTranslation: + return "GeometricTranslation"; + case TransformationComp_GeometricScalingInverse: + return "GeometricScalingInverse"; + case TransformationComp_GeometricRotationInverse: + return "GeometricRotationInverse"; + case TransformationComp_GeometricTranslationInverse: + return "GeometricTranslationInverse"; + case TransformationComp_MAXIMUM: // this is to silence compiler warnings + default: + break; + } + + ai_assert(false); + + return nullptr; +} + +const char *FBXConverter::NameTransformationCompProperty(TransformationComp comp) { + switch (comp) { + case TransformationComp_Translation: + return "Lcl Translation"; + case TransformationComp_RotationOffset: + return "RotationOffset"; + case TransformationComp_RotationPivot: + return "RotationPivot"; + case TransformationComp_PreRotation: + return "PreRotation"; + case TransformationComp_Rotation: + return "Lcl Rotation"; + case TransformationComp_PostRotation: + return "PostRotation"; + case TransformationComp_RotationPivotInverse: + return "RotationPivotInverse"; + case TransformationComp_ScalingOffset: + return "ScalingOffset"; + case TransformationComp_ScalingPivot: + return "ScalingPivot"; + case TransformationComp_Scaling: + return "Lcl Scaling"; + case TransformationComp_ScalingPivotInverse: + return "ScalingPivotInverse"; + case TransformationComp_GeometricScaling: + return "GeometricScaling"; + case TransformationComp_GeometricRotation: + return "GeometricRotation"; + case TransformationComp_GeometricTranslation: + return "GeometricTranslation"; + case TransformationComp_GeometricScalingInverse: + return "GeometricScalingInverse"; + case TransformationComp_GeometricRotationInverse: + return "GeometricRotationInverse"; + case TransformationComp_GeometricTranslationInverse: + return "GeometricTranslationInverse"; + case TransformationComp_MAXIMUM: // this is to silence compiler warnings + break; + } + + ai_assert(false); + + return nullptr; +} + +aiVector3D FBXConverter::TransformationCompDefaultValue(TransformationComp comp) { + // XXX a neat way to solve the never-ending special cases for scaling + // would be to do everything in log space! + return comp == TransformationComp_Scaling ? aiVector3D(1.f, 1.f, 1.f) : aiVector3D(); +} + +void FBXConverter::GetRotationMatrix(Model::RotOrder mode, const aiVector3D &rotation, aiMatrix4x4 &out) { + if (mode == Model::RotOrder_SphericXYZ) { + FBXImporter::LogError("Unsupported RotationMode: SphericXYZ"); + out = aiMatrix4x4(); + return; + } + + const float angle_epsilon = Math::getEpsilon(); + + out = aiMatrix4x4(); + + bool is_id[3] = { true, true, true }; + + aiMatrix4x4 temp[3]; + if (std::fabs(rotation.z) > angle_epsilon) { + aiMatrix4x4::RotationZ(AI_DEG_TO_RAD(rotation.z), temp[2]); + is_id[2] = false; + } + if (std::fabs(rotation.y) > angle_epsilon) { + aiMatrix4x4::RotationY(AI_DEG_TO_RAD(rotation.y), temp[1]); + is_id[1] = false; + } + if (std::fabs(rotation.x) > angle_epsilon) { + aiMatrix4x4::RotationX(AI_DEG_TO_RAD(rotation.x), temp[0]); + is_id[0] = false; + } + + int order[3] = { -1, -1, -1 }; + + // note: rotation order is inverted since we're left multiplying as is usual in assimp + switch (mode) { + case Model::RotOrder_EulerXYZ: + order[0] = 2; + order[1] = 1; + order[2] = 0; + break; + + case Model::RotOrder_EulerXZY: + order[0] = 1; + order[1] = 2; + order[2] = 0; + break; + + case Model::RotOrder_EulerYZX: + order[0] = 0; + order[1] = 2; + order[2] = 1; + break; + + case Model::RotOrder_EulerYXZ: + order[0] = 2; + order[1] = 0; + order[2] = 1; + break; + + case Model::RotOrder_EulerZXY: + order[0] = 1; + order[1] = 0; + order[2] = 2; + break; + + case Model::RotOrder_EulerZYX: + order[0] = 0; + order[1] = 1; + order[2] = 2; + break; + + default: + ai_assert(false); + break; + } + + ai_assert(order[0] >= 0); + ai_assert(order[0] <= 2); + ai_assert(order[1] >= 0); + ai_assert(order[1] <= 2); + ai_assert(order[2] >= 0); + ai_assert(order[2] <= 2); + + if (!is_id[order[0]]) { + out = temp[order[0]]; + } + + if (!is_id[order[1]]) { + out = out * temp[order[1]]; + } + + if (!is_id[order[2]]) { + out = out * temp[order[2]]; + } +} + +bool FBXConverter::NeedsComplexTransformationChain(const Model &model) { + const PropertyTable &props = model.Props(); + bool ok; + + const float zero_epsilon = ai_epsilon; + const aiVector3D all_ones(1.0f, 1.0f, 1.0f); + for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) { + const TransformationComp comp = static_cast(i); + + if (comp == TransformationComp_Rotation || comp == TransformationComp_Scaling || comp == TransformationComp_Translation || + comp == TransformationComp_PreRotation || comp == TransformationComp_PostRotation) { + continue; + } + + bool scale_compare = (comp == TransformationComp_GeometricScaling || comp == TransformationComp_Scaling); + + const aiVector3D &v = PropertyGet(props, NameTransformationCompProperty(comp), ok); + if (ok && scale_compare) { + if ((v - all_ones).SquareLength() > zero_epsilon) { + return true; + } + } else if (ok) { + if (v.SquareLength() > zero_epsilon) { + return true; + } + } + } + + return false; +} + +std::string FBXConverter::NameTransformationChainNode(const std::string &name, TransformationComp comp) { + return name + std::string(MAGIC_NODE_TAG) + "_" + NameTransformationComp(comp); +} + +bool FBXConverter::GenerateTransformationNodeChain(const Model &model, const std::string &name, std::vector &output_nodes, + std::vector &post_output_nodes) { + const PropertyTable &props = model.Props(); + const Model::RotOrder rot = model.RotationOrder(); + + bool ok; + + aiMatrix4x4 chain[TransformationComp_MAXIMUM]; + + ai_assert(TransformationComp_MAXIMUM < 32); + std::uint32_t chainBits = 0; + // A node won't need a node chain if it only has these. + const std::uint32_t chainMaskSimple = (1 << TransformationComp_Translation) + (1 << TransformationComp_Scaling) + (1 << TransformationComp_Rotation); + // A node will need a node chain if it has any of these. + const std::uint32_t chainMaskComplex = ((1 << (TransformationComp_MAXIMUM)) - 1) - chainMaskSimple; + + std::fill_n(chain, static_cast(TransformationComp_MAXIMUM), aiMatrix4x4()); + + // generate transformation matrices for all the different transformation components + const float zero_epsilon = Math::getEpsilon(); + const aiVector3D all_ones(1.0f, 1.0f, 1.0f); + + const aiVector3D &PreRotation = PropertyGet(props, "PreRotation", ok); + if (ok && PreRotation.SquareLength() > zero_epsilon) { + chainBits = chainBits | (1 << TransformationComp_PreRotation); + + GetRotationMatrix(Model::RotOrder::RotOrder_EulerXYZ, PreRotation, chain[TransformationComp_PreRotation]); + } + + const aiVector3D &PostRotation = PropertyGet(props, "PostRotation", ok); + if (ok && PostRotation.SquareLength() > zero_epsilon) { + chainBits = chainBits | (1 << TransformationComp_PostRotation); + + GetRotationMatrix(Model::RotOrder::RotOrder_EulerXYZ, PostRotation, chain[TransformationComp_PostRotation]); + } + + const aiVector3D &RotationPivot = PropertyGet(props, "RotationPivot", ok); + if (ok && RotationPivot.SquareLength() > zero_epsilon) { + chainBits = chainBits | (1 << TransformationComp_RotationPivot) | (1 << TransformationComp_RotationPivotInverse); + + aiMatrix4x4::Translation(RotationPivot, chain[TransformationComp_RotationPivot]); + aiMatrix4x4::Translation(-RotationPivot, chain[TransformationComp_RotationPivotInverse]); + } + + const aiVector3D &RotationOffset = PropertyGet(props, "RotationOffset", ok); + if (ok && RotationOffset.SquareLength() > zero_epsilon) { + chainBits = chainBits | (1 << TransformationComp_RotationOffset); + + aiMatrix4x4::Translation(RotationOffset, chain[TransformationComp_RotationOffset]); + } + + const aiVector3D &ScalingOffset = PropertyGet(props, "ScalingOffset", ok); + if (ok && ScalingOffset.SquareLength() > zero_epsilon) { + chainBits = chainBits | (1 << TransformationComp_ScalingOffset); + + aiMatrix4x4::Translation(ScalingOffset, chain[TransformationComp_ScalingOffset]); + } + + const aiVector3D &ScalingPivot = PropertyGet(props, "ScalingPivot", ok); + if (ok && ScalingPivot.SquareLength() > zero_epsilon) { + chainBits = chainBits | (1 << TransformationComp_ScalingPivot) | (1 << TransformationComp_ScalingPivotInverse); + + aiMatrix4x4::Translation(ScalingPivot, chain[TransformationComp_ScalingPivot]); + aiMatrix4x4::Translation(-ScalingPivot, chain[TransformationComp_ScalingPivotInverse]); + } + + const aiVector3D &Translation = PropertyGet(props, "Lcl Translation", ok); + if (ok && Translation.SquareLength() > zero_epsilon) { + chainBits = chainBits | (1 << TransformationComp_Translation); + + aiMatrix4x4::Translation(Translation, chain[TransformationComp_Translation]); + } + + const aiVector3D &Scaling = PropertyGet(props, "Lcl Scaling", ok); + if (ok && (Scaling - all_ones).SquareLength() > zero_epsilon) { + chainBits = chainBits | (1 << TransformationComp_Scaling); + + aiMatrix4x4::Scaling(Scaling, chain[TransformationComp_Scaling]); + } + + const aiVector3D &Rotation = PropertyGet(props, "Lcl Rotation", ok); + if (ok && Rotation.SquareLength() > zero_epsilon) { + chainBits = chainBits | (1 << TransformationComp_Rotation); + + GetRotationMatrix(rot, Rotation, chain[TransformationComp_Rotation]); + } + + const aiVector3D &GeometricScaling = PropertyGet(props, "GeometricScaling", ok); + if (ok && (GeometricScaling - all_ones).SquareLength() > zero_epsilon) { + chainBits = chainBits | (1 << TransformationComp_GeometricScaling); + aiMatrix4x4::Scaling(GeometricScaling, chain[TransformationComp_GeometricScaling]); + aiVector3D GeometricScalingInverse = GeometricScaling; + bool canscale = true; + for (unsigned int i = 0; i < 3; ++i) { + if (std::fabs(GeometricScalingInverse[i]) > zero_epsilon) { + GeometricScalingInverse[i] = 1.0f / GeometricScaling[i]; + } else { + FBXImporter::LogError("cannot invert geometric scaling matrix with a 0.0 scale component"); + canscale = false; + break; + } + } + if (canscale) { + chainBits = chainBits | (1 << TransformationComp_GeometricScalingInverse); + aiMatrix4x4::Scaling(GeometricScalingInverse, chain[TransformationComp_GeometricScalingInverse]); + } + } + + const aiVector3D &GeometricRotation = PropertyGet(props, "GeometricRotation", ok); + if (ok && GeometricRotation.SquareLength() > zero_epsilon) { + chainBits = chainBits | (1 << TransformationComp_GeometricRotation) | (1 << TransformationComp_GeometricRotationInverse); + GetRotationMatrix(rot, GeometricRotation, chain[TransformationComp_GeometricRotation]); + GetRotationMatrix(rot, GeometricRotation, chain[TransformationComp_GeometricRotationInverse]); + chain[TransformationComp_GeometricRotationInverse].Inverse(); + } + + const aiVector3D &GeometricTranslation = PropertyGet(props, "GeometricTranslation", ok); + if (ok && GeometricTranslation.SquareLength() > zero_epsilon) { + chainBits = chainBits | (1 << TransformationComp_GeometricTranslation) | (1 << TransformationComp_GeometricTranslationInverse); + aiMatrix4x4::Translation(GeometricTranslation, chain[TransformationComp_GeometricTranslation]); + aiMatrix4x4::Translation(-GeometricTranslation, chain[TransformationComp_GeometricTranslationInverse]); + } + + // now, if we have more than just Translation, Scaling and Rotation, + // we need to generate a full node chain to accommodate for assimp's + // lack to express pivots and offsets. + if ((chainBits & chainMaskComplex) && doc.Settings().preservePivots) { + FBXImporter::LogInfo("generating full transformation chain for node: ", name); + + // query the anim_chain_bits dictionary to find out which chain elements + // have associated node animation channels. These can not be dropped + // even if they have identity transform in bind pose. + NodeAnimBitMap::const_iterator it = node_anim_chain_bits.find(name); + const unsigned int anim_chain_bitmask = (it == node_anim_chain_bits.end() ? 0 : (*it).second); + + unsigned int bit = 0x1; + for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i, bit <<= 1) { + const TransformationComp comp = static_cast(i); + + if ((chainBits & bit) == 0 && (anim_chain_bitmask & bit) == 0) { + continue; + } + + if (comp == TransformationComp_PostRotation) { + chain[i] = chain[i].Inverse(); + } + + PotentialNode nd; + nd->mName.Set(NameTransformationChainNode(name, comp)); + nd->mTransformation = chain[i]; + + // geometric inverses go in a post-node chain + if (comp == TransformationComp_GeometricScalingInverse || + comp == TransformationComp_GeometricRotationInverse || + comp == TransformationComp_GeometricTranslationInverse) { + post_output_nodes.emplace_back(std::move(nd)); + } else { + output_nodes.emplace_back(std::move(nd)); + } + } + + ai_assert(output_nodes.size()); + return true; + } + + // else, we can just multiply the matrices together + PotentialNode nd; + + // name passed to the method is already unique + nd->mName.Set(name); + // for (const auto &transform : chain) { + // skip inverse chain for no preservePivots + for (unsigned int i = TransformationComp_Translation; i < TransformationComp_MAXIMUM; i++) { + nd->mTransformation = nd->mTransformation * chain[i]; + } + output_nodes.push_back(std::move(nd)); + return false; +} + +void FBXConverter::SetupNodeMetadata(const Model &model, aiNode &nd) { + const PropertyTable &props = model.Props(); + DirectPropertyMap unparsedProperties = props.GetUnparsedProperties(); + + // create metadata on node + const std::size_t numStaticMetaData = 2; + aiMetadata *data = aiMetadata::Alloc(static_cast(unparsedProperties.size() + numStaticMetaData)); + nd.mMetaData = data; + int index = 0; + + // find user defined properties (3ds Max) + data->Set(index++, "UserProperties", aiString(PropertyGet(props, "UDP3DSMAX", ""))); + // preserve the info that a node was marked as Null node in the original file. + data->Set(index++, "IsNull", model.IsNull() ? true : false); + + // add unparsed properties to the node's metadata + for (const DirectPropertyMap::value_type &prop : unparsedProperties) { + // Interpret the property as a concrete type + if (const TypedProperty *interpretedBool = prop.second->As>()) { + data->Set(index++, prop.first, interpretedBool->Value()); + } else if (const TypedProperty *interpretedInt = prop.second->As>()) { + data->Set(index++, prop.first, interpretedInt->Value()); + } else if (const TypedProperty *interpretedUint64 = prop.second->As>()) { + data->Set(index++, prop.first, interpretedUint64->Value()); + } else if (const TypedProperty *interpretedFloat = prop.second->As>()) { + data->Set(index++, prop.first, interpretedFloat->Value()); + } else if (const TypedProperty *interpretedString = prop.second->As>()) { + data->Set(index++, prop.first, aiString(interpretedString->Value())); + } else if (const TypedProperty *interpretedVec3 = prop.second->As>()) { + data->Set(index++, prop.first, interpretedVec3->Value()); + } else { + ai_assert(false); + } + } +} + +void FBXConverter::ConvertModel(const Model &model, aiNode *parent, aiNode *root_node, + const aiMatrix4x4 &absolute_transform) { + const std::vector &geos = model.GetGeometry(); + + std::vector meshes; + meshes.reserve(geos.size()); + + for (const Geometry *geo : geos) { + + const MeshGeometry *const mesh = dynamic_cast(geo); + const LineGeometry *const line = dynamic_cast(geo); + if (mesh) { + const std::vector &indices = ConvertMesh(*mesh, model, parent, root_node, + absolute_transform); + std::copy(indices.begin(), indices.end(), std::back_inserter(meshes)); + } else if (line) { + const std::vector &indices = ConvertLine(*line, root_node); + std::copy(indices.begin(), indices.end(), std::back_inserter(meshes)); + } else if (geo) { + FBXImporter::LogWarn("ignoring unrecognized geometry: ", geo->Name()); + } else { + FBXImporter::LogWarn("skipping null geometry"); + } + } + + if (meshes.size()) { + parent->mMeshes = new unsigned int[meshes.size()](); + parent->mNumMeshes = static_cast(meshes.size()); + + std::swap_ranges(meshes.begin(), meshes.end(), parent->mMeshes); + } +} + +std::vector +FBXConverter::ConvertMesh(const MeshGeometry &mesh, const Model &model, aiNode *parent, aiNode *root_node, + const aiMatrix4x4 &absolute_transform) { + std::vector temp; + + MeshMap::const_iterator it = meshes_converted.find(&mesh); + if (it != meshes_converted.end()) { + std::copy((*it).second.begin(), (*it).second.end(), std::back_inserter(temp)); + return temp; + } + + const std::vector &vertices = mesh.GetVertices(); + const std::vector &faces = mesh.GetFaceIndexCounts(); + if (vertices.empty() || faces.empty()) { + FBXImporter::LogWarn("ignoring empty geometry: ", mesh.Name()); + return temp; + } + + // one material per mesh maps easily to aiMesh. Multiple material + // meshes need to be split. + const MatIndexArray &mindices = mesh.GetMaterialIndices(); + if (doc.Settings().readMaterials && !mindices.empty()) { + const MatIndexArray::value_type base = mindices[0]; + for (MatIndexArray::value_type index : mindices) { + if (index != base) { + return ConvertMeshMultiMaterial(mesh, model, parent, root_node, absolute_transform); + } + } + } + + // faster code-path, just copy the data + temp.push_back(ConvertMeshSingleMaterial(mesh, model, absolute_transform, parent, root_node)); + return temp; +} + +std::vector FBXConverter::ConvertLine(const LineGeometry &line, aiNode *root_node) { + std::vector temp; + + const std::vector &vertices = line.GetVertices(); + const std::vector &indices = line.GetIndices(); + if (vertices.empty() || indices.empty()) { + FBXImporter::LogWarn("ignoring empty line: ", line.Name()); + return temp; + } + + aiMesh *const out_mesh = SetupEmptyMesh(line, root_node); + out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE; + + // copy vertices + out_mesh->mNumVertices = static_cast(vertices.size()); + out_mesh->mVertices = new aiVector3D[out_mesh->mNumVertices]; + std::copy(vertices.begin(), vertices.end(), out_mesh->mVertices); + + //Number of line segments (faces) is "Number of Points - Number of Endpoints" + //N.B.: Endpoints in FbxLine are denoted by negative indices. + //If such an Index is encountered, add 1 and multiply by -1 to get the real index. + unsigned int epcount = 0; + for (unsigned i = 0; i < indices.size(); i++) { + if (indices[i] < 0) { + epcount++; + } + } + unsigned int pcount = static_cast(indices.size()); + unsigned int scount = out_mesh->mNumFaces = pcount - epcount; + + aiFace *fac = out_mesh->mFaces = new aiFace[scount](); + for (unsigned int i = 0; i < pcount; ++i) { + if (indices[i] < 0) continue; + aiFace &f = *fac++; + f.mNumIndices = 2; //2 == aiPrimitiveType_LINE + f.mIndices = new unsigned int[2]; + f.mIndices[0] = indices[i]; + int segid = indices[(i + 1 == pcount ? 0 : i + 1)]; //If we have reached he last point, wrap around + f.mIndices[1] = (segid < 0 ? (segid + 1) * -1 : segid); //Convert EndPoint Index to normal Index + } + temp.push_back(static_cast(mMeshes.size() - 1)); + return temp; +} + +aiMesh *FBXConverter::SetupEmptyMesh(const Geometry &mesh, aiNode *parent) { + aiMesh *const out_mesh = new aiMesh(); + mMeshes.push_back(out_mesh); + meshes_converted[&mesh].push_back(static_cast(mMeshes.size() - 1)); + + // set name + std::string name = mesh.Name(); + if (name.substr(0, 10) == "Geometry::") { + name = name.substr(10); + } + + if (name.length()) { + out_mesh->mName.Set(name); + } else { + out_mesh->mName = parent->mName; + } + + return out_mesh; +} + +unsigned int FBXConverter::ConvertMeshSingleMaterial(const MeshGeometry &mesh, const Model &model, + const aiMatrix4x4 &absolute_transform, aiNode *parent, + aiNode *) { + const MatIndexArray &mindices = mesh.GetMaterialIndices(); + aiMesh *const out_mesh = SetupEmptyMesh(mesh, parent); + + const std::vector &vertices = mesh.GetVertices(); + const std::vector &faces = mesh.GetFaceIndexCounts(); + + // copy vertices + out_mesh->mNumVertices = static_cast(vertices.size()); + out_mesh->mVertices = new aiVector3D[vertices.size()]; + + std::copy(vertices.begin(), vertices.end(), out_mesh->mVertices); + + // generate dummy faces + out_mesh->mNumFaces = static_cast(faces.size()); + aiFace *fac = out_mesh->mFaces = new aiFace[faces.size()](); + + unsigned int cursor = 0; + for (unsigned int pcount : faces) { + aiFace &f = *fac++; + f.mNumIndices = pcount; + f.mIndices = new unsigned int[pcount]; + switch (pcount) { + case 1: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT; + break; + case 2: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE; + break; + case 3: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE; + break; + default: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON; + break; + } + for (unsigned int i = 0; i < pcount; ++i) { + f.mIndices[i] = cursor++; + } + } + + // copy normals + const std::vector &normals = mesh.GetNormals(); + if (normals.size()) { + ai_assert(normals.size() == vertices.size()); + + out_mesh->mNormals = new aiVector3D[vertices.size()]; + std::copy(normals.begin(), normals.end(), out_mesh->mNormals); + } + + // copy tangents - assimp requires both tangents and bitangents (binormals) + // to be present, or neither of them. Compute binormals from normals + // and tangents if needed. + const std::vector &tangents = mesh.GetTangents(); + const std::vector *binormals = &mesh.GetBinormals(); + + if (tangents.size()) { + std::vector tempBinormals; + if (!binormals->size()) { + if (normals.size()) { + tempBinormals.resize(normals.size()); + for (unsigned int i = 0; i < tangents.size(); ++i) { + tempBinormals[i] = normals[i] ^ tangents[i]; + } + + binormals = &tempBinormals; + } else { + binormals = nullptr; + } + } + + if (binormals) { + ai_assert(tangents.size() == vertices.size()); + ai_assert(binormals->size() == vertices.size()); + + out_mesh->mTangents = new aiVector3D[vertices.size()]; + std::copy(tangents.begin(), tangents.end(), out_mesh->mTangents); + + out_mesh->mBitangents = new aiVector3D[vertices.size()]; + std::copy(binormals->begin(), binormals->end(), out_mesh->mBitangents); + } + } + + // copy texture coords + for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { + const std::vector &uvs = mesh.GetTextureCoords(i); + if (uvs.empty()) { + break; + } + + aiVector3D *out_uv = out_mesh->mTextureCoords[i] = new aiVector3D[vertices.size()]; + for (const aiVector2D &v : uvs) { + *out_uv++ = aiVector3D(v.x, v.y, 0.0f); + } + + out_mesh->SetTextureCoordsName(i, aiString(mesh.GetTextureCoordChannelName(i))); + + out_mesh->mNumUVComponents[i] = 2; + } + + // copy vertex colors + for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i) { + const std::vector &colors = mesh.GetVertexColors(i); + if (colors.empty()) { + break; + } + + out_mesh->mColors[i] = new aiColor4D[vertices.size()]; + std::copy(colors.begin(), colors.end(), out_mesh->mColors[i]); + } + + if (!doc.Settings().readMaterials || mindices.empty()) { + FBXImporter::LogError("no material assigned to mesh, setting default material"); + out_mesh->mMaterialIndex = GetDefaultMaterial(); + } else { + ConvertMaterialForMesh(out_mesh, model, mesh, mindices[0]); + } + + if (doc.Settings().readWeights && mesh.DeformerSkin() != nullptr) { + ConvertWeights(out_mesh, mesh, absolute_transform, parent, NO_MATERIAL_SEPARATION, nullptr); + } + + std::vector animMeshes; + for (const BlendShape *blendShape : mesh.GetBlendShapes()) { + for (const BlendShapeChannel *blendShapeChannel : blendShape->BlendShapeChannels()) { + const std::vector &shapeGeometries = blendShapeChannel->GetShapeGeometries(); + for (size_t i = 0; i < shapeGeometries.size(); i++) { + aiAnimMesh *animMesh = aiCreateAnimMesh(out_mesh); + const ShapeGeometry *shapeGeometry = shapeGeometries.at(i); + const std::vector &curVertices = shapeGeometry->GetVertices(); + const std::vector &curNormals = shapeGeometry->GetNormals(); + const std::vector &curIndices = shapeGeometry->GetIndices(); + //losing channel name if using shapeGeometry->Name() + animMesh->mName.Set(FixAnimMeshName(blendShapeChannel->Name())); + for (size_t j = 0; j < curIndices.size(); j++) { + const unsigned int curIndex = curIndices.at(j); + aiVector3D vertex = curVertices.at(j); + aiVector3D normal = curNormals.at(j); + unsigned int count = 0; + const unsigned int *outIndices = mesh.ToOutputVertexIndex(curIndex, count); + for (unsigned int k = 0; k < count; k++) { + unsigned int index = outIndices[k]; + animMesh->mVertices[index] += vertex; + if (animMesh->mNormals != nullptr) { + animMesh->mNormals[index] += normal; + animMesh->mNormals[index].NormalizeSafe(); + } + } + } + animMesh->mWeight = shapeGeometries.size() > 1 ? blendShapeChannel->DeformPercent() / 100.0f : 1.0f; + animMeshes.push_back(animMesh); + } + } + } + const size_t numAnimMeshes = animMeshes.size(); + if (numAnimMeshes > 0) { + out_mesh->mNumAnimMeshes = static_cast(numAnimMeshes); + out_mesh->mAnimMeshes = new aiAnimMesh *[numAnimMeshes]; + for (size_t i = 0; i < numAnimMeshes; i++) { + out_mesh->mAnimMeshes[i] = animMeshes.at(i); + } + } + return static_cast(mMeshes.size() - 1); +} + +std::vector +FBXConverter::ConvertMeshMultiMaterial(const MeshGeometry &mesh, const Model &model, aiNode *parent, + aiNode *root_node, + const aiMatrix4x4 &absolute_transform) { + const MatIndexArray &mindices = mesh.GetMaterialIndices(); + ai_assert(mindices.size()); + + std::set had; + std::vector indices; + + for (MatIndexArray::value_type index : mindices) { + if (had.find(index) == had.end()) { + + indices.push_back(ConvertMeshMultiMaterial(mesh, model, index, parent, root_node, absolute_transform)); + had.insert(index); + } + } + + return indices; +} + +unsigned int FBXConverter::ConvertMeshMultiMaterial(const MeshGeometry &mesh, const Model &model, + MatIndexArray::value_type index, + aiNode *parent, aiNode *, + const aiMatrix4x4 &absolute_transform) { + aiMesh *const out_mesh = SetupEmptyMesh(mesh, parent); + + const MatIndexArray &mindices = mesh.GetMaterialIndices(); + const std::vector &vertices = mesh.GetVertices(); + const std::vector &faces = mesh.GetFaceIndexCounts(); + + const bool process_weights = doc.Settings().readWeights && mesh.DeformerSkin() != nullptr; + + unsigned int count_faces = 0; + unsigned int count_vertices = 0; + + // count faces + std::vector::const_iterator itf = faces.begin(); + for (MatIndexArray::const_iterator it = mindices.begin(), + end = mindices.end(); + it != end; ++it, ++itf) { + if ((*it) != index) { + continue; + } + ++count_faces; + count_vertices += *itf; + } + + ai_assert(count_faces); + ai_assert(count_vertices); + + // mapping from output indices to DOM indexing, needed to resolve weights or blendshapes + std::vector reverseMapping; + std::map translateIndexMap; + if (process_weights || mesh.GetBlendShapes().size() > 0) { + reverseMapping.resize(count_vertices); + } + + // allocate output data arrays, but don't fill them yet + out_mesh->mNumVertices = count_vertices; + out_mesh->mVertices = new aiVector3D[count_vertices]; + + out_mesh->mNumFaces = count_faces; + aiFace *fac = out_mesh->mFaces = new aiFace[count_faces](); + + // allocate normals + const std::vector &normals = mesh.GetNormals(); + if (normals.size()) { + ai_assert(normals.size() == vertices.size()); + out_mesh->mNormals = new aiVector3D[count_vertices]; + } + + // allocate tangents, binormals. + const std::vector &tangents = mesh.GetTangents(); + const std::vector *binormals = &mesh.GetBinormals(); + std::vector tempBinormals; + + if (tangents.size()) { + if (!binormals->size()) { + if (normals.size()) { + // XXX this computes the binormals for the entire mesh, not only + // the part for which we need them. + tempBinormals.resize(normals.size()); + for (unsigned int i = 0; i < tangents.size(); ++i) { + tempBinormals[i] = normals[i] ^ tangents[i]; + } + + binormals = &tempBinormals; + } else { + binormals = nullptr; + } + } + + if (binormals) { + ai_assert(tangents.size() == vertices.size()); + ai_assert(binormals->size() == vertices.size()); + + out_mesh->mTangents = new aiVector3D[count_vertices]; + out_mesh->mBitangents = new aiVector3D[count_vertices]; + } + } + + // allocate texture coords + unsigned int num_uvs = 0; + for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i, ++num_uvs) { + const std::vector &uvs = mesh.GetTextureCoords(i); + if (uvs.empty()) { + break; + } + + out_mesh->mTextureCoords[i] = new aiVector3D[count_vertices]; + out_mesh->mNumUVComponents[i] = 2; + } + + // allocate vertex colors + unsigned int num_vcs = 0; + for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i, ++num_vcs) { + const std::vector &colors = mesh.GetVertexColors(i); + if (colors.empty()) { + break; + } + + out_mesh->mColors[i] = new aiColor4D[count_vertices]; + } + + unsigned int cursor = 0, in_cursor = 0; + + itf = faces.begin(); + for (MatIndexArray::const_iterator it = mindices.begin(), end = mindices.end(); it != end; ++it, ++itf) { + const unsigned int pcount = *itf; + if ((*it) != index) { + in_cursor += pcount; + continue; + } + + aiFace &f = *fac++; + + f.mNumIndices = pcount; + f.mIndices = new unsigned int[pcount]; + switch (pcount) { + case 1: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT; + break; + case 2: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE; + break; + case 3: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE; + break; + default: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON; + break; + } + for (unsigned int i = 0; i < pcount; ++i, ++cursor, ++in_cursor) { + f.mIndices[i] = cursor; + + if (reverseMapping.size()) { + reverseMapping[cursor] = in_cursor; + translateIndexMap[in_cursor] = cursor; + } + + out_mesh->mVertices[cursor] = vertices[in_cursor]; + + if (out_mesh->mNormals) { + out_mesh->mNormals[cursor] = normals[in_cursor]; + } + + if (out_mesh->mTangents) { + out_mesh->mTangents[cursor] = tangents[in_cursor]; + out_mesh->mBitangents[cursor] = (*binormals)[in_cursor]; + } + + for (unsigned int j = 0; j < num_uvs; ++j) { + const std::vector &uvs = mesh.GetTextureCoords(j); + out_mesh->mTextureCoords[j][cursor] = aiVector3D(uvs[in_cursor].x, uvs[in_cursor].y, 0.0f); + } + + for (unsigned int j = 0; j < num_vcs; ++j) { + const std::vector &cols = mesh.GetVertexColors(j); + out_mesh->mColors[j][cursor] = cols[in_cursor]; + } + } + } + + ConvertMaterialForMesh(out_mesh, model, mesh, index); + + if (process_weights) { + ConvertWeights(out_mesh, mesh, absolute_transform, parent, index, &reverseMapping); + } + + std::vector animMeshes; + for (const BlendShape *blendShape : mesh.GetBlendShapes()) { + for (const BlendShapeChannel *blendShapeChannel : blendShape->BlendShapeChannels()) { + const std::vector &shapeGeometries = blendShapeChannel->GetShapeGeometries(); + for (size_t i = 0; i < shapeGeometries.size(); i++) { + aiAnimMesh *animMesh = aiCreateAnimMesh(out_mesh); + const ShapeGeometry *shapeGeometry = shapeGeometries.at(i); + const std::vector &curVertices = shapeGeometry->GetVertices(); + const std::vector &curNormals = shapeGeometry->GetNormals(); + const std::vector &curIndices = shapeGeometry->GetIndices(); + animMesh->mName.Set(FixAnimMeshName(shapeGeometry->Name())); + for (size_t j = 0; j < curIndices.size(); j++) { + unsigned int curIndex = curIndices.at(j); + aiVector3D vertex = curVertices.at(j); + aiVector3D normal = curNormals.at(j); + unsigned int count = 0; + const unsigned int *outIndices = mesh.ToOutputVertexIndex(curIndex, count); + for (unsigned int k = 0; k < count; k++) { + unsigned int outIndex = outIndices[k]; + if (translateIndexMap.find(outIndex) == translateIndexMap.end()) + continue; + unsigned int transIndex = translateIndexMap[outIndex]; + animMesh->mVertices[transIndex] += vertex; + if (animMesh->mNormals != nullptr) { + animMesh->mNormals[transIndex] += normal; + animMesh->mNormals[transIndex].NormalizeSafe(); + } + } + } + animMesh->mWeight = shapeGeometries.size() > 1 ? blendShapeChannel->DeformPercent() / 100.0f : 1.0f; + animMeshes.push_back(animMesh); + } + } + } + + const size_t numAnimMeshes = animMeshes.size(); + if (numAnimMeshes > 0) { + out_mesh->mNumAnimMeshes = static_cast(numAnimMeshes); + out_mesh->mAnimMeshes = new aiAnimMesh *[numAnimMeshes]; + for (size_t i = 0; i < numAnimMeshes; i++) { + out_mesh->mAnimMeshes[i] = animMeshes.at(i); + } + } + + return static_cast(mMeshes.size() - 1); +} + +void FBXConverter::ConvertWeights(aiMesh *out, const MeshGeometry &geo, + const aiMatrix4x4 &absolute_transform, + aiNode *parent, unsigned int materialIndex, + std::vector *outputVertStartIndices) { + ai_assert(geo.DeformerSkin()); + + std::vector out_indices; + std::vector index_out_indices; + std::vector count_out_indices; + + const Skin &sk = *geo.DeformerSkin(); + + std::vector bones; + + const bool no_mat_check = materialIndex == NO_MATERIAL_SEPARATION; + ai_assert(no_mat_check || outputVertStartIndices); + + try { + // iterate over the sub deformers + for (const Cluster *cluster : sk.Clusters()) { + ai_assert(cluster); + + const WeightIndexArray &indices = cluster->GetIndices(); + + const MatIndexArray &mats = geo.GetMaterialIndices(); + + const size_t no_index_sentinel = std::numeric_limits::max(); + + count_out_indices.clear(); + index_out_indices.clear(); + out_indices.clear(); + + // now check if *any* of these weights is contained in the output mesh, + // taking notes so we don't need to do it twice. + for (WeightIndexArray::value_type index : indices) { + + unsigned int count = 0; + const unsigned int *const out_idx = geo.ToOutputVertexIndex(index, count); + // ToOutputVertexIndex only returns nullptr if index is out of bounds + // which should never happen + ai_assert(out_idx != nullptr); + + index_out_indices.push_back(no_index_sentinel); + count_out_indices.push_back(0); + + for (unsigned int i = 0; i < count; ++i) { + if (no_mat_check || static_cast(mats[geo.FaceForVertexIndex(out_idx[i])]) == materialIndex) { + + if (index_out_indices.back() == no_index_sentinel) { + index_out_indices.back() = out_indices.size(); + } + + if (no_mat_check) { + out_indices.push_back(out_idx[i]); + } else { + // this extra lookup is in O(logn), so the entire algorithm becomes O(nlogn) + const std::vector::iterator it = std::lower_bound( + outputVertStartIndices->begin(), + outputVertStartIndices->end(), + out_idx[i]); + + out_indices.push_back(std::distance(outputVertStartIndices->begin(), it)); + } + + ++count_out_indices.back(); + } + } + } + + // if we found at least one, generate the output bones + // XXX this could be heavily simplified by collecting the bone + // data in a single step. + ConvertCluster(bones, cluster, out_indices, index_out_indices, + count_out_indices, absolute_transform, parent); + } + + bone_map.clear(); + } catch (std::exception &) { + std::for_each(bones.begin(), bones.end(), Util::delete_fun()); + throw; + } + + if (bones.empty()) { + out->mBones = nullptr; + out->mNumBones = 0; + return; + } else { + out->mBones = new aiBone *[bones.size()](); + out->mNumBones = static_cast(bones.size()); + + std::swap_ranges(bones.begin(), bones.end(), out->mBones); + } +} + +const aiNode *GetNodeByName(aiNode *current_node) { + aiNode *iter = current_node; + //printf("Child count: %d", iter->mNumChildren); + return iter; +} + +void FBXConverter::ConvertCluster(std::vector &local_mesh_bones, const Cluster *cl, + std::vector &out_indices, std::vector &index_out_indices, + std::vector &count_out_indices, const aiMatrix4x4 &absolute_transform, + aiNode *) { + ai_assert(cl); // make sure cluster valid + std::string deformer_name = cl->TargetNode()->Name(); + aiString bone_name = aiString(FixNodeName(deformer_name)); + + aiBone *bone = nullptr; + + if (bone_map.count(deformer_name)) { + ASSIMP_LOG_VERBOSE_DEBUG("retrieved bone from lookup ", bone_name.C_Str(), ". Deformer:", deformer_name); + bone = bone_map[deformer_name]; + } else { + ASSIMP_LOG_VERBOSE_DEBUG("created new bone ", bone_name.C_Str(), ". Deformer: ", deformer_name); + bone = new aiBone(); + bone->mName = bone_name; + + // store local transform link for post processing + bone->mOffsetMatrix = cl->TransformLink(); + bone->mOffsetMatrix.Inverse(); + + aiMatrix4x4 matrix = (aiMatrix4x4)absolute_transform; + + bone->mOffsetMatrix = bone->mOffsetMatrix * matrix; // * mesh_offset + + // + // Now calculate the aiVertexWeights + // + + aiVertexWeight *cursor = nullptr; + + bone->mNumWeights = static_cast(out_indices.size()); + cursor = bone->mWeights = new aiVertexWeight[out_indices.size()]; + + const size_t no_index_sentinel = std::numeric_limits::max(); + const WeightArray &weights = cl->GetWeights(); + + const size_t c = index_out_indices.size(); + for (size_t i = 0; i < c; ++i) { + const size_t index_index = index_out_indices[i]; + + if (index_index == no_index_sentinel) { + continue; + } + + const size_t cc = count_out_indices[i]; + for (size_t j = 0; j < cc; ++j) { + // cursor runs from first element relative to the start + // or relative to the start of the next indexes. + aiVertexWeight &out_weight = *cursor++; + + out_weight.mVertexId = static_cast(out_indices[index_index + j]); + out_weight.mWeight = weights[i]; + } + } + + bone_map.insert(std::pair(deformer_name, bone)); + } + + ASSIMP_LOG_DEBUG("bone research: Indices size: ", out_indices.size()); + + // lookup must be populated in case something goes wrong + // this also allocates bones to mesh instance outside + local_mesh_bones.push_back(bone); +} + +void FBXConverter::ConvertMaterialForMesh(aiMesh *out, const Model &model, const MeshGeometry &geo, + MatIndexArray::value_type materialIndex) { + // locate source materials for this mesh + const std::vector &mats = model.GetMaterials(); + if (static_cast(materialIndex) >= mats.size() || materialIndex < 0) { + FBXImporter::LogError("material index out of bounds, setting default material"); + out->mMaterialIndex = GetDefaultMaterial(); + return; + } + + const Material *const mat = mats[materialIndex]; + MaterialMap::const_iterator it = materials_converted.find(mat); + if (it != materials_converted.end()) { + out->mMaterialIndex = (*it).second; + return; + } + + out->mMaterialIndex = ConvertMaterial(*mat, &geo); + materials_converted[mat] = out->mMaterialIndex; +} + +unsigned int FBXConverter::GetDefaultMaterial() { + if (defaultMaterialIndex) { + return defaultMaterialIndex - 1; + } + + aiMaterial *out_mat = new aiMaterial(); + materials.push_back(out_mat); + + const aiColor3D diffuse = aiColor3D(0.8f, 0.8f, 0.8f); + out_mat->AddProperty(&diffuse, 1, AI_MATKEY_COLOR_DIFFUSE); + + aiString s; + s.Set(AI_DEFAULT_MATERIAL_NAME); + + out_mat->AddProperty(&s, AI_MATKEY_NAME); + + defaultMaterialIndex = static_cast(materials.size()); + return defaultMaterialIndex - 1; +} + +unsigned int FBXConverter::ConvertMaterial(const Material &material, const MeshGeometry *const mesh) { + const PropertyTable &props = material.Props(); + + // generate empty output material + aiMaterial *out_mat = new aiMaterial(); + materials_converted[&material] = static_cast(materials.size()); + + materials.push_back(out_mat); + + aiString str; + + // strip Material:: prefix + std::string name = material.Name(); + if (name.substr(0, 10) == "Material::") { + name = name.substr(10); + } + + // set material name if not empty - this could happen + // and there should be no key for it in this case. + if (name.length()) { + str.Set(name); + out_mat->AddProperty(&str, AI_MATKEY_NAME); + } + + // Set the shading mode as best we can: The FBX specification only mentions Lambert and Phong, and only Phong is mentioned in Assimp's aiShadingMode enum. + if (material.GetShadingModel() == "phong") { + aiShadingMode shadingMode = aiShadingMode_Phong; + out_mat->AddProperty(&shadingMode, 1, AI_MATKEY_SHADING_MODEL); + } + + // shading stuff and colors + SetShadingPropertiesCommon(out_mat, props); + SetShadingPropertiesRaw(out_mat, props, material.Textures(), mesh); + + // texture assignments + SetTextureProperties(out_mat, material.Textures(), mesh); + SetTextureProperties(out_mat, material.LayeredTextures(), mesh); + + return static_cast(materials.size() - 1); +} + +unsigned int FBXConverter::ConvertVideo(const Video &video) { + // generate empty output texture + aiTexture *out_tex = new aiTexture(); + textures.push_back(out_tex); + + // assuming the texture is compressed + out_tex->mWidth = static_cast(video.ContentLength()); // total data size + out_tex->mHeight = 0; // fixed to 0 + + // steal the data from the Video to avoid an additional copy + out_tex->pcData = reinterpret_cast(const_cast