From 058f98a63658dc1a2579826ba167fd61bed1e21f Mon Sep 17 00:00:00 2001 From: sanine Date: Fri, 4 Mar 2022 10:47:15 -0600 Subject: add assimp submodule --- .../code/AssetLib/X3D/X3DGeoHelper.cpp | 531 +++++++++++++++++++++ 1 file changed, 531 insertions(+) create mode 100644 src/mesh/assimp-master/code/AssetLib/X3D/X3DGeoHelper.cpp (limited to 'src/mesh/assimp-master/code/AssetLib/X3D/X3DGeoHelper.cpp') diff --git a/src/mesh/assimp-master/code/AssetLib/X3D/X3DGeoHelper.cpp b/src/mesh/assimp-master/code/AssetLib/X3D/X3DGeoHelper.cpp new file mode 100644 index 0000000..a9ac57e --- /dev/null +++ b/src/mesh/assimp-master/code/AssetLib/X3D/X3DGeoHelper.cpp @@ -0,0 +1,531 @@ +#include "X3DGeoHelper.h" +#include "X3DImporter.hpp" + +#include +#include +#include + +#include + +namespace Assimp { + +aiVector3D X3DGeoHelper::make_point2D(float angle, float radius) { + return aiVector3D(radius * std::cos(angle), radius * std::sin(angle), 0); +} + +void X3DGeoHelper::make_arc2D(float pStartAngle, float pEndAngle, float pRadius, size_t numSegments, std::list &pVertices) { + // check argument values ranges. + if ((pStartAngle < -AI_MATH_TWO_PI_F) || (pStartAngle > AI_MATH_TWO_PI_F)) { + throw DeadlyImportError("GeometryHelper_Make_Arc2D.pStartAngle"); + } + if ((pEndAngle < -AI_MATH_TWO_PI_F) || (pEndAngle > AI_MATH_TWO_PI_F)) { + throw DeadlyImportError("GeometryHelper_Make_Arc2D.pEndAngle"); + } + if (pRadius <= 0) { + throw DeadlyImportError("GeometryHelper_Make_Arc2D.pRadius"); + } + + // calculate arc angle and check type of arc + float angle_full = std::fabs(pEndAngle - pStartAngle); + if ((angle_full > AI_MATH_TWO_PI_F) || (angle_full == 0.0f)) { + angle_full = AI_MATH_TWO_PI_F; + } + + // calculate angle for one step - angle to next point of line. + float angle_step = angle_full / (float)numSegments; + // make points + for (size_t pi = 0; pi <= numSegments; pi++) { + float tangle = pStartAngle + pi * angle_step; + pVertices.emplace_back(make_point2D(tangle, pRadius)); + } // for(size_t pi = 0; pi <= pNumSegments; pi++) + + // if we making full circle then add last vertex equal to first vertex + if (angle_full == AI_MATH_TWO_PI_F) pVertices.push_back(*pVertices.begin()); +} + +void X3DGeoHelper::extend_point_to_line(const std::list &pPoint, std::list &pLine) { + std::list::const_iterator pit = pPoint.begin(); + std::list::const_iterator pit_last = pPoint.end(); + + --pit_last; + + if (pPoint.size() < 2) { + throw DeadlyImportError("GeometryHelper_Extend_PointToLine.pPoint.size() can not be less than 2."); + } + + // add first point of first line. + pLine.push_back(*pit++); + // add internal points + while (pit != pit_last) { + pLine.push_back(*pit); // second point of previous line + pLine.push_back(*pit); // first point of next line + ++pit; + } + // add last point of last line + pLine.push_back(*pit); +} + +void X3DGeoHelper::polylineIdx_to_lineIdx(const std::list &pPolylineCoordIdx, std::list &pLineCoordIdx) { + std::list::const_iterator plit = pPolylineCoordIdx.begin(); + + while (plit != pPolylineCoordIdx.end()) { + // add first point of polyline + pLineCoordIdx.push_back(*plit++); + while ((*plit != (-1)) && (plit != pPolylineCoordIdx.end())) { + std::list::const_iterator plit_next; + + plit_next = plit, ++plit_next; + pLineCoordIdx.push_back(*plit); // second point of previous line. + pLineCoordIdx.push_back(-1); // delimiter + if ((*plit_next == (-1)) || (plit_next == pPolylineCoordIdx.end())) break; // current polyline is finished + + pLineCoordIdx.push_back(*plit); // first point of next line. + plit = plit_next; + } // while((*plit != (-1)) && (plit != pPolylineCoordIdx.end())) + } // while(plit != pPolylineCoordIdx.end()) +} + +#define MACRO_FACE_ADD_QUAD_FA(pCCW, pOut, pIn, pP1, pP2, pP3, pP4) \ + do { \ + if (pCCW) { \ + pOut.push_back(pIn[pP1]); \ + pOut.push_back(pIn[pP2]); \ + pOut.push_back(pIn[pP3]); \ + pOut.push_back(pIn[pP4]); \ + } else { \ + pOut.push_back(pIn[pP4]); \ + pOut.push_back(pIn[pP3]); \ + pOut.push_back(pIn[pP2]); \ + pOut.push_back(pIn[pP1]); \ + } \ + } while (false) + +#define MESH_RectParallelepiped_CREATE_VERT \ + aiVector3D vert_set[8]; \ + float x1, x2, y1, y2, z1, z2, hs; \ + \ + hs = pSize.x / 2, x1 = -hs, x2 = hs; \ + hs = pSize.y / 2, y1 = -hs, y2 = hs; \ + hs = pSize.z / 2, z1 = -hs, z2 = hs; \ + vert_set[0].Set(x2, y1, z2); \ + vert_set[1].Set(x2, y2, z2); \ + vert_set[2].Set(x2, y2, z1); \ + vert_set[3].Set(x2, y1, z1); \ + vert_set[4].Set(x1, y1, z2); \ + vert_set[5].Set(x1, y2, z2); \ + vert_set[6].Set(x1, y2, z1); \ + vert_set[7].Set(x1, y1, z1) + +void X3DGeoHelper::rect_parallel_epiped(const aiVector3D &pSize, std::list &pVertices) { + MESH_RectParallelepiped_CREATE_VERT; + MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 3, 2, 1, 0); // front + MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 6, 7, 4, 5); // back + MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 7, 3, 0, 4); // left + MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 2, 6, 5, 1); // right + MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 0, 1, 5, 4); // top + MACRO_FACE_ADD_QUAD_FA(true, pVertices, vert_set, 7, 6, 2, 3); // bottom +} + +#undef MESH_RectParallelepiped_CREATE_VERT + +void X3DGeoHelper::coordIdx_str2faces_arr(const std::vector &pCoordIdx, std::vector &pFaces, unsigned int &pPrimitiveTypes) { + std::vector f_data(pCoordIdx); + std::vector inds; + unsigned int prim_type = 0; + + if (f_data.back() != (-1)) { + f_data.push_back(-1); + } + + // reserve average size. + pFaces.reserve(f_data.size() / 3); + inds.reserve(4); + //PrintVectorSet("build. ci", pCoordIdx); + for (std::vector::iterator it = f_data.begin(); it != f_data.end(); ++it) { + // when face is got count how many indices in it. + if (*it == (-1)) { + aiFace tface; + size_t ts; + + ts = inds.size(); + switch (ts) { + case 0: + goto mg_m_err; + case 1: + prim_type |= aiPrimitiveType_POINT; + break; + case 2: + prim_type |= aiPrimitiveType_LINE; + break; + case 3: + prim_type |= aiPrimitiveType_TRIANGLE; + break; + default: + prim_type |= aiPrimitiveType_POLYGON; + break; + } + + tface.mNumIndices = static_cast(ts); + tface.mIndices = new unsigned int[ts]; + memcpy(tface.mIndices, inds.data(), ts * sizeof(unsigned int)); + pFaces.push_back(tface); + inds.clear(); + } // if(*it == (-1)) + else { + inds.push_back(*it); + } // if(*it == (-1)) else + } // for(std::list::iterator it = f_data.begin(); it != f_data.end(); it++) + //PrintVectorSet("build. faces", pCoordIdx); + + pPrimitiveTypes = prim_type; + + return; + +mg_m_err: + for (size_t i = 0, i_e = pFaces.size(); i < i_e; i++) + delete[] pFaces.at(i).mIndices; + + pFaces.clear(); +} + +void X3DGeoHelper::add_color(aiMesh &pMesh, const std::list &pColors, const bool pColorPerVertex) { + std::list tcol; + + // create RGBA array from RGB. + for (std::list::const_iterator it = pColors.begin(); it != pColors.end(); ++it) + tcol.push_back(aiColor4D((*it).r, (*it).g, (*it).b, 1)); + + // call existing function for adding RGBA colors + add_color(pMesh, tcol, pColorPerVertex); +} + +void X3DGeoHelper::add_color(aiMesh &pMesh, const std::list &pColors, const bool pColorPerVertex) { + std::list::const_iterator col_it = pColors.begin(); + + if (pColorPerVertex) { + if (pColors.size() < pMesh.mNumVertices) { + throw DeadlyImportError("MeshGeometry_AddColor1. Colors count(" + ai_to_string(pColors.size()) + ") can not be less than Vertices count(" + + ai_to_string(pMesh.mNumVertices) + ")."); + } + + // copy colors to mesh + pMesh.mColors[0] = new aiColor4D[pMesh.mNumVertices]; + for (size_t i = 0; i < pMesh.mNumVertices; i++) + pMesh.mColors[0][i] = *col_it++; + } // if(pColorPerVertex) + else { + if (pColors.size() < pMesh.mNumFaces) { + throw DeadlyImportError("MeshGeometry_AddColor1. Colors count(" + ai_to_string(pColors.size()) + ") can not be less than Faces count(" + + ai_to_string(pMesh.mNumFaces) + ")."); + } + + // copy colors to mesh + pMesh.mColors[0] = new aiColor4D[pMesh.mNumVertices]; + for (size_t fi = 0; fi < pMesh.mNumFaces; fi++) { + // apply color to all vertices of face + for (size_t vi = 0, vi_e = pMesh.mFaces[fi].mNumIndices; vi < vi_e; vi++) { + pMesh.mColors[0][pMesh.mFaces[fi].mIndices[vi]] = *col_it; + } + + ++col_it; + } + } // if(pColorPerVertex) else +} + +void X3DGeoHelper::add_color(aiMesh &pMesh, const std::vector &pCoordIdx, const std::vector &pColorIdx, + const std::list &pColors, const bool pColorPerVertex) { + std::list tcol; + + // create RGBA array from RGB. + for (std::list::const_iterator it = pColors.begin(); it != pColors.end(); ++it) { + tcol.push_back(aiColor4D((*it).r, (*it).g, (*it).b, 1)); + } + + // call existing function for adding RGBA colors + add_color(pMesh, pCoordIdx, pColorIdx, tcol, pColorPerVertex); +} + +void X3DGeoHelper::add_color(aiMesh &pMesh, const std::vector &coordIdx, const std::vector &colorIdx, + const std::list &colors, bool pColorPerVertex) { + std::vector col_tgt_arr; + std::list col_tgt_list; + std::vector col_arr_copy; + + if (coordIdx.size() == 0) { + throw DeadlyImportError("MeshGeometry_AddColor2. pCoordIdx can not be empty."); + } + + // copy list to array because we are need indexed access to colors. + col_arr_copy.reserve(colors.size()); + for (std::list::const_iterator it = colors.begin(); it != colors.end(); ++it) { + col_arr_copy.push_back(*it); + } + + if (pColorPerVertex) { + if (colorIdx.size() > 0) { + // check indices array count. + if (colorIdx.size() < coordIdx.size()) { + throw DeadlyImportError("MeshGeometry_AddColor2. Colors indices count(" + ai_to_string(colorIdx.size()) + + ") can not be less than Coords indices count(" + ai_to_string(coordIdx.size()) + ")."); + } + // create list with colors for every vertex. + col_tgt_arr.resize(pMesh.mNumVertices); + for (std::vector::const_iterator colidx_it = colorIdx.begin(), coordidx_it = coordIdx.begin(); colidx_it != colorIdx.end(); ++colidx_it, ++coordidx_it) { + if (*colidx_it == (-1)) { + continue; // skip faces delimiter + } + if ((unsigned int)(*coordidx_it) > pMesh.mNumVertices) { + throw DeadlyImportError("MeshGeometry_AddColor2. Coordinate idx is out of range."); + } + if ((unsigned int)*colidx_it > pMesh.mNumVertices) { + throw DeadlyImportError("MeshGeometry_AddColor2. Color idx is out of range."); + } + + col_tgt_arr[*coordidx_it] = col_arr_copy[*colidx_it]; + } + } // if(pColorIdx.size() > 0) + else { + // when color indices list is absent use CoordIdx. + // check indices array count. + if (colors.size() < pMesh.mNumVertices) { + throw DeadlyImportError("MeshGeometry_AddColor2. Colors count(" + ai_to_string(colors.size()) + ") can not be less than Vertices count(" + + ai_to_string(pMesh.mNumVertices) + ")."); + } + // create list with colors for every vertex. + col_tgt_arr.resize(pMesh.mNumVertices); + for (size_t i = 0; i < pMesh.mNumVertices; i++) { + col_tgt_arr[i] = col_arr_copy[i]; + } + } // if(pColorIdx.size() > 0) else + } // if(pColorPerVertex) + else { + if (colorIdx.size() > 0) { + // check indices array count. + if (colorIdx.size() < pMesh.mNumFaces) { + throw DeadlyImportError("MeshGeometry_AddColor2. Colors indices count(" + ai_to_string(colorIdx.size()) + + ") can not be less than Faces count(" + ai_to_string(pMesh.mNumFaces) + ")."); + } + // create list with colors for every vertex using faces indices. + col_tgt_arr.resize(pMesh.mNumFaces); + + std::vector::const_iterator colidx_it = colorIdx.begin(); + for (size_t fi = 0; fi < pMesh.mNumFaces; fi++) { + if ((unsigned int)*colidx_it > pMesh.mNumFaces) throw DeadlyImportError("MeshGeometry_AddColor2. Face idx is out of range."); + + col_tgt_arr[fi] = col_arr_copy[*colidx_it++]; + } + } // if(pColorIdx.size() > 0) + else { + // when color indices list is absent use CoordIdx. + // check indices array count. + if (colors.size() < pMesh.mNumFaces) { + throw DeadlyImportError("MeshGeometry_AddColor2. Colors count(" + ai_to_string(colors.size()) + ") can not be less than Faces count(" + + ai_to_string(pMesh.mNumFaces) + ")."); + } + // create list with colors for every vertex using faces indices. + col_tgt_arr.resize(pMesh.mNumFaces); + for (size_t fi = 0; fi < pMesh.mNumFaces; fi++) + col_tgt_arr[fi] = col_arr_copy[fi]; + + } // if(pColorIdx.size() > 0) else + } // if(pColorPerVertex) else + + // copy array to list for calling function that add colors. + for (std::vector::const_iterator it = col_tgt_arr.begin(); it != col_tgt_arr.end(); ++it) + col_tgt_list.push_back(*it); + // add prepared colors list to mesh. + add_color(pMesh, col_tgt_list, pColorPerVertex); +} + +void X3DGeoHelper::add_normal(aiMesh &pMesh, const std::vector &pCoordIdx, const std::vector &pNormalIdx, + const std::list &pNormals, const bool pNormalPerVertex) { + std::vector tind; + std::vector norm_arr_copy; + + // copy list to array because we are need indexed access to normals. + norm_arr_copy.reserve(pNormals.size()); + for (std::list::const_iterator it = pNormals.begin(); it != pNormals.end(); ++it) { + norm_arr_copy.push_back(*it); + } + + if (pNormalPerVertex) { + if (pNormalIdx.size() > 0) { + // check indices array count. + if (pNormalIdx.size() != pCoordIdx.size()) throw DeadlyImportError("Normals and Coords inidces count must be equal."); + + tind.reserve(pNormalIdx.size()); + for (std::vector::const_iterator it = pNormalIdx.begin(); it != pNormalIdx.end(); ++it) { + if (*it != (-1)) tind.push_back(*it); + } + + // copy normals to mesh + pMesh.mNormals = new aiVector3D[pMesh.mNumVertices]; + for (size_t i = 0; (i < pMesh.mNumVertices) && (i < tind.size()); i++) { + if (tind[i] >= norm_arr_copy.size()) + throw DeadlyImportError("MeshGeometry_AddNormal. Normal index(" + ai_to_string(tind[i]) + + ") is out of range. Normals count: " + ai_to_string(norm_arr_copy.size()) + "."); + + pMesh.mNormals[i] = norm_arr_copy[tind[i]]; + } + } else { + if (pNormals.size() != pMesh.mNumVertices) throw DeadlyImportError("MeshGeometry_AddNormal. Normals and vertices count must be equal."); + + // copy normals to mesh + pMesh.mNormals = new aiVector3D[pMesh.mNumVertices]; + std::list::const_iterator norm_it = pNormals.begin(); + for (size_t i = 0; i < pMesh.mNumVertices; i++) + pMesh.mNormals[i] = *norm_it++; + } + } // if(pNormalPerVertex) + else { + if (pNormalIdx.size() > 0) { + if (pMesh.mNumFaces != pNormalIdx.size()) throw DeadlyImportError("Normals faces count must be equal to mesh faces count."); + + std::vector::const_iterator normidx_it = pNormalIdx.begin(); + + tind.reserve(pNormalIdx.size()); + for (size_t i = 0, i_e = pNormalIdx.size(); i < i_e; i++) + tind.push_back(*normidx_it++); + + } else { + tind.reserve(pMesh.mNumFaces); + for (size_t i = 0; i < pMesh.mNumFaces; i++) + tind.push_back(i); + } + + // copy normals to mesh + pMesh.mNormals = new aiVector3D[pMesh.mNumVertices]; + for (size_t fi = 0; fi < pMesh.mNumFaces; fi++) { + aiVector3D tnorm; + + tnorm = norm_arr_copy[tind[fi]]; + for (size_t vi = 0, vi_e = pMesh.mFaces[fi].mNumIndices; vi < vi_e; vi++) + pMesh.mNormals[pMesh.mFaces[fi].mIndices[vi]] = tnorm; + } + } // if(pNormalPerVertex) else +} + +void X3DGeoHelper::add_normal(aiMesh &pMesh, const std::list &pNormals, const bool pNormalPerVertex) { + std::list::const_iterator norm_it = pNormals.begin(); + + if (pNormalPerVertex) { + if (pNormals.size() != pMesh.mNumVertices) throw DeadlyImportError("MeshGeometry_AddNormal. Normals and vertices count must be equal."); + + // copy normals to mesh + pMesh.mNormals = new aiVector3D[pMesh.mNumVertices]; + for (size_t i = 0; i < pMesh.mNumVertices; i++) + pMesh.mNormals[i] = *norm_it++; + } // if(pNormalPerVertex) + else { + if (pNormals.size() != pMesh.mNumFaces) throw DeadlyImportError("MeshGeometry_AddNormal. Normals and faces count must be equal."); + + // copy normals to mesh + pMesh.mNormals = new aiVector3D[pMesh.mNumVertices]; + for (size_t fi = 0; fi < pMesh.mNumFaces; fi++) { + // apply color to all vertices of face + for (size_t vi = 0, vi_e = pMesh.mFaces[fi].mNumIndices; vi < vi_e; vi++) + pMesh.mNormals[pMesh.mFaces[fi].mIndices[vi]] = *norm_it; + + ++norm_it; + } + } // if(pNormalPerVertex) else +} + +void X3DGeoHelper::add_tex_coord(aiMesh &pMesh, const std::vector &pCoordIdx, const std::vector &pTexCoordIdx, + const std::list &pTexCoords) { + std::vector texcoord_arr_copy; + std::vector faces; + unsigned int prim_type; + + // copy list to array because we are need indexed access to normals. + texcoord_arr_copy.reserve(pTexCoords.size()); + for (std::list::const_iterator it = pTexCoords.begin(); it != pTexCoords.end(); ++it) { + texcoord_arr_copy.push_back(aiVector3D((*it).x, (*it).y, 0)); + } + + if (pTexCoordIdx.size() > 0) { + coordIdx_str2faces_arr(pTexCoordIdx, faces, prim_type); + if (faces.empty()) { + throw DeadlyImportError("Failed to add texture coordinates to mesh, faces list is empty."); + } + if (faces.size() != pMesh.mNumFaces) { + throw DeadlyImportError("Texture coordinates faces count must be equal to mesh faces count."); + } + } else { + coordIdx_str2faces_arr(pCoordIdx, faces, prim_type); + } + + pMesh.mTextureCoords[0] = new aiVector3D[pMesh.mNumVertices]; + pMesh.mNumUVComponents[0] = 2; + for (size_t fi = 0, fi_e = faces.size(); fi < fi_e; fi++) { + if (pMesh.mFaces[fi].mNumIndices != faces.at(fi).mNumIndices) + throw DeadlyImportError("Number of indices in texture face and mesh face must be equal. Invalid face index: " + ai_to_string(fi) + "."); + + for (size_t ii = 0; ii < pMesh.mFaces[fi].mNumIndices; ii++) { + size_t vert_idx = pMesh.mFaces[fi].mIndices[ii]; + size_t tc_idx = faces.at(fi).mIndices[ii]; + + pMesh.mTextureCoords[0][vert_idx] = texcoord_arr_copy.at(tc_idx); + } + } // for(size_t fi = 0, fi_e = faces.size(); fi < fi_e; fi++) +} + +void X3DGeoHelper::add_tex_coord(aiMesh &pMesh, const std::list &pTexCoords) { + std::vector tc_arr_copy; + + if (pTexCoords.size() != pMesh.mNumVertices) { + throw DeadlyImportError("MeshGeometry_AddTexCoord. Texture coordinates and vertices count must be equal."); + } + + // copy list to array because we are need convert aiVector2D to aiVector3D and also get indexed access as a bonus. + tc_arr_copy.reserve(pTexCoords.size()); + for (std::list::const_iterator it = pTexCoords.begin(); it != pTexCoords.end(); ++it) { + tc_arr_copy.push_back(aiVector3D((*it).x, (*it).y, 0)); + } + + // copy texture coordinates to mesh + pMesh.mTextureCoords[0] = new aiVector3D[pMesh.mNumVertices]; + pMesh.mNumUVComponents[0] = 2; + for (size_t i = 0; i < pMesh.mNumVertices; i++) { + pMesh.mTextureCoords[0][i] = tc_arr_copy[i]; + } +} + +aiMesh *X3DGeoHelper::make_mesh(const std::vector &pCoordIdx, const std::list &pVertices) { + std::vector faces; + unsigned int prim_type = 0; + + // create faces array from input string with vertices indices. + X3DGeoHelper::coordIdx_str2faces_arr(pCoordIdx, faces, prim_type); + if (!faces.size()) { + throw DeadlyImportError("Failed to create mesh, faces list is empty."); + } + + // + // Create new mesh and copy geometry data. + // + aiMesh *tmesh = new aiMesh; + size_t ts = faces.size(); + // faces + tmesh->mFaces = new aiFace[ts]; + tmesh->mNumFaces = static_cast(ts); + for (size_t i = 0; i < ts; i++) + tmesh->mFaces[i] = faces.at(i); + + // vertices + std::list::const_iterator vit = pVertices.begin(); + + ts = pVertices.size(); + tmesh->mVertices = new aiVector3D[ts]; + tmesh->mNumVertices = static_cast(ts); + for (size_t i = 0; i < ts; i++) { + tmesh->mVertices[i] = *vit++; + } + + // set primitives type and return result. + tmesh->mPrimitiveTypes = prim_type; + + return tmesh; +} + +} // namespace Assimp -- cgit v1.2.1