From 058f98a63658dc1a2579826ba167fd61bed1e21f Mon Sep 17 00:00:00 2001 From: sanine Date: Fri, 4 Mar 2022 10:47:15 -0600 Subject: add assimp submodule --- .../code/AssetLib/glTF2/glTF2Importer.cpp | 1637 ++++++++++++++++++++ 1 file changed, 1637 insertions(+) create mode 100644 src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Importer.cpp (limited to 'src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Importer.cpp') diff --git a/src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Importer.cpp b/src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Importer.cpp new file mode 100644 index 0000000..1f4cafd --- /dev/null +++ b/src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Importer.cpp @@ -0,0 +1,1637 @@ +/* +Open Asset Import Library (assimp) +---------------------------------------------------------------------- + +Copyright (c) 2006-2022, assimp team + +All rights reserved. + +Redistribution and use of this software in source and binary forms, +with or without modification, are permitted provided that the +following conditions are met: + +* Redistributions of source code must retain the above +copyright notice, this list of conditions and the +following disclaimer. + +* Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the +following disclaimer in the documentation and/or other +materials provided with the distribution. + +* Neither the name of the assimp team, nor the names of its +contributors may be used to endorse or promote products +derived from this software without specific prior +written permission of the assimp team. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +---------------------------------------------------------------------- +*/ + +#if !defined(ASSIMP_BUILD_NO_GLTF_IMPORTER) && !defined(ASSIMP_BUILD_NO_GLTF2_IMPORTER) + +#include "AssetLib/glTF2/glTF2Importer.h" +#include "PostProcessing/MakeVerboseFormat.h" +#include "AssetLib/glTF2/glTF2Asset.h" + +#if !defined(ASSIMP_BUILD_NO_EXPORT) +#include "AssetLib/glTF2/glTF2AssetWriter.h" +#endif + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include + +#include +#include + +using namespace Assimp; +using namespace glTF2; +using namespace glTFCommon; + +namespace { +// generate bi-tangents from normals and tangents according to spec +struct Tangent { + aiVector3D xyz; + ai_real w; +}; +} // namespace + +// +// glTF2Importer +// + +static const aiImporterDesc desc = { + "glTF2 Importer", + "", + "", + "", + aiImporterFlags_SupportTextFlavour | aiImporterFlags_SupportBinaryFlavour | aiImporterFlags_LimitedSupport | aiImporterFlags_Experimental, + 0, + 0, + 0, + 0, + "gltf glb" +}; + +glTF2Importer::glTF2Importer() : + BaseImporter(), + meshOffsets(), + mEmbeddedTexIdxs(), + mScene(nullptr) { + // empty +} + +glTF2Importer::~glTF2Importer() { + // empty +} + +const aiImporterDesc *glTF2Importer::GetInfo() const { + return &desc; +} + +bool glTF2Importer::CanRead(const std::string &filename, IOSystem *pIOHandler, bool checkSig ) const { + const std::string extension = GetExtension(filename); + if (!checkSig && (extension != "gltf") && (extension != "glb")) { + return false; + } + + if (pIOHandler) { + glTF2::Asset asset(pIOHandler); + return asset.CanRead(filename, extension == "glb"); + } + + return false; +} + +static inline aiTextureMapMode ConvertWrappingMode(SamplerWrap gltfWrapMode) { + switch (gltfWrapMode) { + case SamplerWrap::Mirrored_Repeat: + return aiTextureMapMode_Mirror; + + case SamplerWrap::Clamp_To_Edge: + return aiTextureMapMode_Clamp; + + case SamplerWrap::UNSET: + case SamplerWrap::Repeat: + default: + return aiTextureMapMode_Wrap; + } +} + +static inline void SetMaterialColorProperty(Asset & /*r*/, vec4 &prop, aiMaterial *mat, + const char *pKey, unsigned int type, unsigned int idx) { + aiColor4D col; + CopyValue(prop, col); + mat->AddProperty(&col, 1, pKey, type, idx); +} + +static inline void SetMaterialColorProperty(Asset & /*r*/, vec3 &prop, aiMaterial *mat, + const char *pKey, unsigned int type, unsigned int idx) { + aiColor4D col; + glTFCommon::CopyValue(prop, col); + mat->AddProperty(&col, 1, pKey, type, idx); +} + +static void SetMaterialTextureProperty(std::vector &embeddedTexIdxs, Asset & /*r*/, + glTF2::TextureInfo prop, aiMaterial *mat, aiTextureType texType, + unsigned int texSlot = 0) { + if (prop.texture && prop.texture->source) { + aiString uri(prop.texture->source->uri); + + int texIdx = embeddedTexIdxs[prop.texture->source.GetIndex()]; + if (texIdx != -1) { // embedded + // setup texture reference string (copied from ColladaLoader::FindFilenameForEffectTexture) + uri.data[0] = '*'; + uri.length = 1 + ASSIMP_itoa10(uri.data + 1, MAXLEN - 1, texIdx); + } + + mat->AddProperty(&uri, AI_MATKEY_TEXTURE(texType, texSlot)); + const int uvIndex = static_cast(prop.texCoord); + mat->AddProperty(&uvIndex, 1, AI_MATKEY_UVWSRC(texType, texSlot)); + + if (prop.textureTransformSupported) { + aiUVTransform transform; + transform.mScaling.x = prop.TextureTransformExt_t.scale[0]; + transform.mScaling.y = prop.TextureTransformExt_t.scale[1]; + transform.mRotation = -prop.TextureTransformExt_t.rotation; // must be negated + + // A change of coordinates is required to map glTF UV transformations into the space used by + // Assimp. In glTF all UV origins are at 0,1 (top left of texture) in Assimp space. In Assimp + // rotation occurs around the image center (0.5,0.5) where as in glTF rotation is around the + // texture origin. All three can be corrected for solely by a change of the translation since + // the transformations available are shape preserving. Note the importer already flips the V + // coordinate of the actual meshes during import. + const ai_real rcos(cos(-transform.mRotation)); + const ai_real rsin(sin(-transform.mRotation)); + transform.mTranslation.x = (static_cast( 0.5 ) * transform.mScaling.x) * (-rcos + rsin + 1) + prop.TextureTransformExt_t.offset[0]; + transform.mTranslation.y = ((static_cast( 0.5 ) * transform.mScaling.y) * (rsin + rcos - 1)) + 1 - transform.mScaling.y - prop.TextureTransformExt_t.offset[1];; + + mat->AddProperty(&transform, 1, _AI_MATKEY_UVTRANSFORM_BASE, texType, texSlot); + } + + if (prop.texture->sampler) { + Ref sampler = prop.texture->sampler; + + aiString name(sampler->name); + aiString id(sampler->id); + + mat->AddProperty(&name, AI_MATKEY_GLTF_MAPPINGNAME(texType, texSlot)); + mat->AddProperty(&id, AI_MATKEY_GLTF_MAPPINGID(texType, texSlot)); + + aiTextureMapMode wrapS = ConvertWrappingMode(sampler->wrapS); + aiTextureMapMode wrapT = ConvertWrappingMode(sampler->wrapT); + mat->AddProperty(&wrapS, 1, AI_MATKEY_MAPPINGMODE_U(texType, texSlot)); + mat->AddProperty(&wrapT, 1, AI_MATKEY_MAPPINGMODE_V(texType, texSlot)); + + if (sampler->magFilter != SamplerMagFilter::UNSET) { + mat->AddProperty(&sampler->magFilter, 1, AI_MATKEY_GLTF_MAPPINGFILTER_MAG(texType, texSlot)); + } + + if (sampler->minFilter != SamplerMinFilter::UNSET) { + mat->AddProperty(&sampler->minFilter, 1, AI_MATKEY_GLTF_MAPPINGFILTER_MIN(texType, texSlot)); + } + } else { + // Use glTFv2 default sampler + const aiTextureMapMode default_wrap = aiTextureMapMode_Wrap; + mat->AddProperty(&default_wrap, 1, AI_MATKEY_MAPPINGMODE_U(texType, texSlot)); + mat->AddProperty(&default_wrap, 1, AI_MATKEY_MAPPINGMODE_V(texType, texSlot)); + } + } +} + +inline void SetMaterialTextureProperty(std::vector &embeddedTexIdxs, Asset &r, + NormalTextureInfo &prop, aiMaterial *mat, aiTextureType texType, + unsigned int texSlot = 0) { + SetMaterialTextureProperty(embeddedTexIdxs, r, (glTF2::TextureInfo)prop, mat, texType, texSlot); + + if (prop.texture && prop.texture->source) { + mat->AddProperty(&prop.scale, 1, AI_MATKEY_GLTF_TEXTURE_SCALE(texType, texSlot)); + } +} + +inline void SetMaterialTextureProperty(std::vector &embeddedTexIdxs, Asset &r, + OcclusionTextureInfo &prop, aiMaterial *mat, aiTextureType texType, + unsigned int texSlot = 0) { + SetMaterialTextureProperty(embeddedTexIdxs, r, (glTF2::TextureInfo)prop, mat, texType, texSlot); + + if (prop.texture && prop.texture->source) { + mat->AddProperty(&prop.strength, 1, AI_MATKEY_GLTF_TEXTURE_STRENGTH(texType, texSlot)); + } +} + +static aiMaterial *ImportMaterial(std::vector &embeddedTexIdxs, Asset &r, Material &mat) { + aiMaterial *aimat = new aiMaterial(); + + try { + if (!mat.name.empty()) { + aiString str(mat.name); + + aimat->AddProperty(&str, AI_MATKEY_NAME); + } + + // Set Assimp DIFFUSE and BASE COLOR to the pbrMetallicRoughness base color and texture for backwards compatibility + // Technically should not load any pbrMetallicRoughness if extensionsRequired contains KHR_materials_pbrSpecularGlossiness + SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_COLOR_DIFFUSE); + SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_BASE_COLOR); + + SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, aiTextureType_DIFFUSE); + SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, aiTextureType_BASE_COLOR); + + SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.metallicRoughnessTexture, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLICROUGHNESS_TEXTURE); + + aimat->AddProperty(&mat.pbrMetallicRoughness.metallicFactor, 1, AI_MATKEY_METALLIC_FACTOR); + aimat->AddProperty(&mat.pbrMetallicRoughness.roughnessFactor, 1, AI_MATKEY_ROUGHNESS_FACTOR); + + float roughnessAsShininess = 1 - mat.pbrMetallicRoughness.roughnessFactor; + roughnessAsShininess *= roughnessAsShininess * 1000; + aimat->AddProperty(&roughnessAsShininess, 1, AI_MATKEY_SHININESS); + + SetMaterialTextureProperty(embeddedTexIdxs, r, mat.normalTexture, aimat, aiTextureType_NORMALS); + SetMaterialTextureProperty(embeddedTexIdxs, r, mat.occlusionTexture, aimat, aiTextureType_LIGHTMAP); + SetMaterialTextureProperty(embeddedTexIdxs, r, mat.emissiveTexture, aimat, aiTextureType_EMISSIVE); + SetMaterialColorProperty(r, mat.emissiveFactor, aimat, AI_MATKEY_COLOR_EMISSIVE); + + aimat->AddProperty(&mat.doubleSided, 1, AI_MATKEY_TWOSIDED); + aimat->AddProperty(&mat.pbrMetallicRoughness.baseColorFactor[3], 1, AI_MATKEY_OPACITY); + + aiString alphaMode(mat.alphaMode); + aimat->AddProperty(&alphaMode, AI_MATKEY_GLTF_ALPHAMODE); + aimat->AddProperty(&mat.alphaCutoff, 1, AI_MATKEY_GLTF_ALPHACUTOFF); + + //pbrSpecularGlossiness + if (mat.pbrSpecularGlossiness.isPresent) { + PbrSpecularGlossiness &pbrSG = mat.pbrSpecularGlossiness.value; + + SetMaterialColorProperty(r, pbrSG.diffuseFactor, aimat, AI_MATKEY_COLOR_DIFFUSE); + SetMaterialColorProperty(r, pbrSG.specularFactor, aimat, AI_MATKEY_COLOR_SPECULAR); + + float glossinessAsShininess = pbrSG.glossinessFactor * 1000.0f; + aimat->AddProperty(&glossinessAsShininess, 1, AI_MATKEY_SHININESS); + aimat->AddProperty(&pbrSG.glossinessFactor, 1, AI_MATKEY_GLOSSINESS_FACTOR); + + SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.diffuseTexture, aimat, aiTextureType_DIFFUSE); + + SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.specularGlossinessTexture, aimat, aiTextureType_SPECULAR); + } + + // glTFv2 is either PBR or Unlit + aiShadingMode shadingMode = aiShadingMode_PBR_BRDF; + if (mat.unlit) { + aimat->AddProperty(&mat.unlit, 1, "$mat.gltf.unlit", 0, 0); // TODO: Remove this property, it is kept for backwards compatibility with assimp 5.0.1 + shadingMode = aiShadingMode_Unlit; + } + + aimat->AddProperty(&shadingMode, 1, AI_MATKEY_SHADING_MODEL); + + + // KHR_materials_sheen + if (mat.materialSheen.isPresent) { + MaterialSheen &sheen = mat.materialSheen.value; + // Default value {0,0,0} disables Sheen + if (std::memcmp(sheen.sheenColorFactor, defaultSheenFactor, sizeof(glTFCommon::vec3)) != 0) { + SetMaterialColorProperty(r, sheen.sheenColorFactor, aimat, AI_MATKEY_SHEEN_COLOR_FACTOR); + aimat->AddProperty(&sheen.sheenRoughnessFactor, 1, AI_MATKEY_SHEEN_ROUGHNESS_FACTOR); + SetMaterialTextureProperty(embeddedTexIdxs, r, sheen.sheenColorTexture, aimat, AI_MATKEY_SHEEN_COLOR_TEXTURE); + SetMaterialTextureProperty(embeddedTexIdxs, r, sheen.sheenRoughnessTexture, aimat, AI_MATKEY_SHEEN_ROUGHNESS_TEXTURE); + } + } + + // KHR_materials_clearcoat + if (mat.materialClearcoat.isPresent) { + MaterialClearcoat &clearcoat = mat.materialClearcoat.value; + // Default value 0.0 disables clearcoat + if (clearcoat.clearcoatFactor != 0.0f) { + aimat->AddProperty(&clearcoat.clearcoatFactor, 1, AI_MATKEY_CLEARCOAT_FACTOR); + aimat->AddProperty(&clearcoat.clearcoatRoughnessFactor, 1, AI_MATKEY_CLEARCOAT_ROUGHNESS_FACTOR); + SetMaterialTextureProperty(embeddedTexIdxs, r, clearcoat.clearcoatTexture, aimat, AI_MATKEY_CLEARCOAT_TEXTURE); + SetMaterialTextureProperty(embeddedTexIdxs, r, clearcoat.clearcoatRoughnessTexture, aimat, AI_MATKEY_CLEARCOAT_ROUGHNESS_TEXTURE); + SetMaterialTextureProperty(embeddedTexIdxs, r, clearcoat.clearcoatNormalTexture, aimat, AI_MATKEY_CLEARCOAT_NORMAL_TEXTURE); + } + } + + // KHR_materials_transmission + if (mat.materialTransmission.isPresent) { + MaterialTransmission &transmission = mat.materialTransmission.value; + + aimat->AddProperty(&transmission.transmissionFactor, 1, AI_MATKEY_TRANSMISSION_FACTOR); + SetMaterialTextureProperty(embeddedTexIdxs, r, transmission.transmissionTexture, aimat, AI_MATKEY_TRANSMISSION_TEXTURE); + } + + // KHR_materials_volume + if (mat.materialVolume.isPresent) { + MaterialVolume &volume = mat.materialVolume.value; + + aimat->AddProperty(&volume.thicknessFactor, 1, AI_MATKEY_VOLUME_THICKNESS_FACTOR); + SetMaterialTextureProperty(embeddedTexIdxs, r, volume.thicknessTexture, aimat, AI_MATKEY_VOLUME_THICKNESS_TEXTURE); + aimat->AddProperty(&volume.attenuationDistance, 1, AI_MATKEY_VOLUME_ATTENUATION_DISTANCE); + SetMaterialColorProperty(r, volume.attenuationColor, aimat, AI_MATKEY_VOLUME_ATTENUATION_COLOR); + } + + // KHR_materials_ior + if (mat.materialIOR.isPresent) { + MaterialIOR &ior = mat.materialIOR.value; + + aimat->AddProperty(&ior.ior, 1, AI_MATKEY_REFRACTI); + } + + return aimat; + } catch (...) { + delete aimat; + throw; + } +} + +void glTF2Importer::ImportMaterials(Asset &r) { + const unsigned int numImportedMaterials = unsigned(r.materials.Size()); + ASSIMP_LOG_DEBUG("Importing ", numImportedMaterials, " materials"); + Material defaultMaterial; + + mScene->mNumMaterials = numImportedMaterials + 1; + mScene->mMaterials = new aiMaterial *[mScene->mNumMaterials]; + std::fill(mScene->mMaterials, mScene->mMaterials + mScene->mNumMaterials, nullptr); + mScene->mMaterials[numImportedMaterials] = ImportMaterial(mEmbeddedTexIdxs, r, defaultMaterial); + + for (unsigned int i = 0; i < numImportedMaterials; ++i) { + mScene->mMaterials[i] = ImportMaterial(mEmbeddedTexIdxs, r, r.materials[i]); + } +} + +static inline void SetFaceAndAdvance1(aiFace*& face, unsigned int numVertices, unsigned int a) { + if (a >= numVertices) { + return; + } + face->mNumIndices = 1; + face->mIndices = new unsigned int[1]; + face->mIndices[0] = a; + ++face; +} + +static inline void SetFaceAndAdvance2(aiFace*& face, unsigned int numVertices, + unsigned int a, unsigned int b) { + if ((a >= numVertices) || (b >= numVertices)) { + return; + } + face->mNumIndices = 2; + face->mIndices = new unsigned int[2]; + face->mIndices[0] = a; + face->mIndices[1] = b; + ++face; +} + +static inline void SetFaceAndAdvance3(aiFace*& face, unsigned int numVertices, unsigned int a, + unsigned int b, unsigned int c) { + if ((a >= numVertices) || (b >= numVertices) || (c >= numVertices)) { + return; + } + face->mNumIndices = 3; + face->mIndices = new unsigned int[3]; + face->mIndices[0] = a; + face->mIndices[1] = b; + face->mIndices[2] = c; + ++face; +} + +#ifdef ASSIMP_BUILD_DEBUG +static inline bool CheckValidFacesIndices(aiFace *faces, unsigned nFaces, unsigned nVerts) { + for (unsigned i = 0; i < nFaces; ++i) { + for (unsigned j = 0; j < faces[i].mNumIndices; ++j) { + unsigned idx = faces[i].mIndices[j]; + if (idx >= nVerts) { + return false; + } + } + } + return true; +} +#endif // ASSIMP_BUILD_DEBUG + +template +aiColor4D* GetVertexColorsForType(Ref input) { + constexpr float max = std::numeric_limits::max(); + aiColor4t* colors; + input->ExtractData(colors); + auto output = new aiColor4D[input->count]; + for (size_t i = 0; i < input->count; i++) { + output[i] = aiColor4D( + colors[i].r / max, colors[i].g / max, + colors[i].b / max, colors[i].a / max + ); + } + delete[] colors; + return output; +} + +void glTF2Importer::ImportMeshes(glTF2::Asset &r) { + ASSIMP_LOG_DEBUG("Importing ", r.meshes.Size(), " meshes"); + std::vector> meshes; + + unsigned int k = 0; + meshOffsets.clear(); + + for (unsigned int m = 0; m < r.meshes.Size(); ++m) { + Mesh &mesh = r.meshes[m]; + + meshOffsets.push_back(k); + k += unsigned(mesh.primitives.size()); + + for (unsigned int p = 0; p < mesh.primitives.size(); ++p) { + Mesh::Primitive &prim = mesh.primitives[p]; + + aiMesh *aim = new aiMesh(); + meshes.push_back(std::unique_ptr(aim)); + + aim->mName = mesh.name.empty() ? mesh.id : mesh.name; + + if (mesh.primitives.size() > 1) { + ai_uint32 &len = aim->mName.length; + aim->mName.data[len] = '-'; + len += 1 + ASSIMP_itoa10(aim->mName.data + len + 1, unsigned(MAXLEN - len - 1), p); + } + + switch (prim.mode) { + case PrimitiveMode_POINTS: + aim->mPrimitiveTypes |= aiPrimitiveType_POINT; + break; + + case PrimitiveMode_LINES: + case PrimitiveMode_LINE_LOOP: + case PrimitiveMode_LINE_STRIP: + aim->mPrimitiveTypes |= aiPrimitiveType_LINE; + break; + + case PrimitiveMode_TRIANGLES: + case PrimitiveMode_TRIANGLE_STRIP: + case PrimitiveMode_TRIANGLE_FAN: + aim->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE; + break; + } + + Mesh::Primitive::Attributes &attr = prim.attributes; + + if (!attr.position.empty() && attr.position[0]) { + aim->mNumVertices = static_cast(attr.position[0]->count); + attr.position[0]->ExtractData(aim->mVertices); + } + + if (!attr.normal.empty() && attr.normal[0]) { + if (attr.normal[0]->count != aim->mNumVertices) { + DefaultLogger::get()->warn("Normal count in mesh \"", mesh.name, "\" does not match the vertex count, normals ignored."); + } else { + attr.normal[0]->ExtractData(aim->mNormals); + + // only extract tangents if normals are present + if (!attr.tangent.empty() && attr.tangent[0]) { + if (attr.tangent[0]->count != aim->mNumVertices) { + DefaultLogger::get()->warn("Tangent count in mesh \"", mesh.name, "\" does not match the vertex count, tangents ignored."); + } else { + // generate bitangents from normals and tangents according to spec + Tangent *tangents = nullptr; + + attr.tangent[0]->ExtractData(tangents); + + aim->mTangents = new aiVector3D[aim->mNumVertices]; + aim->mBitangents = new aiVector3D[aim->mNumVertices]; + + for (unsigned int i = 0; i < aim->mNumVertices; ++i) { + aim->mTangents[i] = tangents[i].xyz; + aim->mBitangents[i] = (aim->mNormals[i] ^ tangents[i].xyz) * tangents[i].w; + } + + delete[] tangents; + } + } + } + } + + for (size_t c = 0; c < attr.color.size() && c < AI_MAX_NUMBER_OF_COLOR_SETS; ++c) { + if (attr.color[c]->count != aim->mNumVertices) { + DefaultLogger::get()->warn("Color stream size in mesh \"", mesh.name, + "\" does not match the vertex count"); + continue; + } + + auto componentType = attr.color[c]->componentType; + if (componentType == glTF2::ComponentType_FLOAT) { + attr.color[c]->ExtractData(aim->mColors[c]); + } else { + if (componentType == glTF2::ComponentType_UNSIGNED_BYTE) { + aim->mColors[c] = GetVertexColorsForType(attr.color[c]); + } else if (componentType == glTF2::ComponentType_UNSIGNED_SHORT) { + aim->mColors[c] = GetVertexColorsForType(attr.color[c]); + } + } + } + for (size_t tc = 0; tc < attr.texcoord.size() && tc < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++tc) { + if (!attr.texcoord[tc]) { + DefaultLogger::get()->warn("Texture coordinate accessor not found or non-contiguous texture coordinate sets."); + continue; + } + + if (attr.texcoord[tc]->count != aim->mNumVertices) { + DefaultLogger::get()->warn("Texcoord stream size in mesh \"", mesh.name, + "\" does not match the vertex count"); + continue; + } + + attr.texcoord[tc]->ExtractData(aim->mTextureCoords[tc]); + aim->mNumUVComponents[tc] = attr.texcoord[tc]->GetNumComponents(); + + aiVector3D *values = aim->mTextureCoords[tc]; + for (unsigned int i = 0; i < aim->mNumVertices; ++i) { + values[i].y = 1 - values[i].y; // Flip Y coords + } + } + + std::vector &targets = prim.targets; + if (!targets.empty()) { + aim->mNumAnimMeshes = (unsigned int)targets.size(); + aim->mAnimMeshes = new aiAnimMesh *[aim->mNumAnimMeshes]; + std::fill(aim->mAnimMeshes, aim->mAnimMeshes + aim->mNumAnimMeshes, nullptr); + for (size_t i = 0; i < targets.size(); i++) { + bool needPositions = targets[i].position.size() > 0; + bool needNormals = (targets[i].normal.size() > 0) && aim->HasNormals(); + bool needTangents = (targets[i].tangent.size() > 0) && aim->HasTangentsAndBitangents(); + // GLTF morph does not support colors and texCoords + aim->mAnimMeshes[i] = aiCreateAnimMesh(aim, + needPositions, needNormals, needTangents, false, false); + aiAnimMesh &aiAnimMesh = *(aim->mAnimMeshes[i]); + Mesh::Primitive::Target &target = targets[i]; + + if (needPositions) { + if (target.position[0]->count != aim->mNumVertices) { + ASSIMP_LOG_WARN("Positions of target ", i, " in mesh \"", mesh.name, "\" does not match the vertex count"); + } else { + aiVector3D *positionDiff = nullptr; + target.position[0]->ExtractData(positionDiff); + for (unsigned int vertexId = 0; vertexId < aim->mNumVertices; vertexId++) { + aiAnimMesh.mVertices[vertexId] += positionDiff[vertexId]; + } + delete[] positionDiff; + } + } + if (needNormals) { + if (target.normal[0]->count != aim->mNumVertices) { + ASSIMP_LOG_WARN("Normals of target ", i, " in mesh \"", mesh.name, "\" does not match the vertex count"); + } else { + aiVector3D *normalDiff = nullptr; + target.normal[0]->ExtractData(normalDiff); + for (unsigned int vertexId = 0; vertexId < aim->mNumVertices; vertexId++) { + aiAnimMesh.mNormals[vertexId] += normalDiff[vertexId]; + } + delete[] normalDiff; + } + } + if (needTangents) { + if (target.tangent[0]->count != aim->mNumVertices) { + ASSIMP_LOG_WARN("Tangents of target ", i, " in mesh \"", mesh.name, "\" does not match the vertex count"); + } else { + Tangent *tangent = nullptr; + attr.tangent[0]->ExtractData(tangent); + + aiVector3D *tangentDiff = nullptr; + target.tangent[0]->ExtractData(tangentDiff); + + for (unsigned int vertexId = 0; vertexId < aim->mNumVertices; ++vertexId) { + tangent[vertexId].xyz += tangentDiff[vertexId]; + aiAnimMesh.mTangents[vertexId] = tangent[vertexId].xyz; + aiAnimMesh.mBitangents[vertexId] = (aiAnimMesh.mNormals[vertexId] ^ tangent[vertexId].xyz) * tangent[vertexId].w; + } + delete[] tangent; + delete[] tangentDiff; + } + } + if (mesh.weights.size() > i) { + aiAnimMesh.mWeight = mesh.weights[i]; + } + if (mesh.targetNames.size() > i) { + aiAnimMesh.mName = mesh.targetNames[i]; + } + } + } + + aiFace *faces = nullptr; + aiFace *facePtr = nullptr; + size_t nFaces = 0; + + if (prim.indices) { + size_t count = prim.indices->count; + + Accessor::Indexer data = prim.indices->GetIndexer(); + if (!data.IsValid()) { + throw DeadlyImportError("GLTF: Invalid accessor without data in mesh ", getContextForErrorMessages(mesh.id, mesh.name)); + } + + switch (prim.mode) { + case PrimitiveMode_POINTS: { + nFaces = count; + facePtr = faces = new aiFace[nFaces]; + for (unsigned int i = 0; i < count; ++i) { + SetFaceAndAdvance1(facePtr, aim->mNumVertices, data.GetUInt(i)); + } + break; + } + + case PrimitiveMode_LINES: { + nFaces = count / 2; + if (nFaces * 2 != count) { + ASSIMP_LOG_WARN("The number of vertices was not compatible with the LINES mode. Some vertices were dropped."); + count = nFaces * 2; + } + facePtr = faces = new aiFace[nFaces]; + for (unsigned int i = 0; i < count; i += 2) { + SetFaceAndAdvance2(facePtr, aim->mNumVertices, data.GetUInt(i), data.GetUInt(i + 1)); + } + break; + } + + case PrimitiveMode_LINE_LOOP: + case PrimitiveMode_LINE_STRIP: { + nFaces = count - ((prim.mode == PrimitiveMode_LINE_STRIP) ? 1 : 0); + facePtr = faces = new aiFace[nFaces]; + SetFaceAndAdvance2(facePtr, aim->mNumVertices, data.GetUInt(0), data.GetUInt(1)); + for (unsigned int i = 2; i < count; ++i) { + SetFaceAndAdvance2(facePtr, aim->mNumVertices, data.GetUInt(i - 1), data.GetUInt(i)); + } + if (prim.mode == PrimitiveMode_LINE_LOOP) { // close the loop + SetFaceAndAdvance2(facePtr, aim->mNumVertices, data.GetUInt(static_cast(count) - 1), faces[0].mIndices[0]); + } + break; + } + + case PrimitiveMode_TRIANGLES: { + nFaces = count / 3; + if (nFaces * 3 != count) { + ASSIMP_LOG_WARN("The number of vertices was not compatible with the TRIANGLES mode. Some vertices were dropped."); + count = nFaces * 3; + } + facePtr = faces = new aiFace[nFaces]; + for (unsigned int i = 0; i < count; i += 3) { + SetFaceAndAdvance3(facePtr, aim->mNumVertices, data.GetUInt(i), data.GetUInt(i + 1), data.GetUInt(i + 2)); + } + break; + } + case PrimitiveMode_TRIANGLE_STRIP: { + nFaces = count - 2; + facePtr = faces = new aiFace[nFaces]; + for (unsigned int i = 0; i < nFaces; ++i) { + //The ordering is to ensure that the triangles are all drawn with the same orientation + if ((i + 1) % 2 == 0) { + //For even n, vertices n + 1, n, and n + 2 define triangle n + SetFaceAndAdvance3(facePtr, aim->mNumVertices, data.GetUInt(i + 1), data.GetUInt(i), data.GetUInt(i + 2)); + } else { + //For odd n, vertices n, n+1, and n+2 define triangle n + SetFaceAndAdvance3(facePtr, aim->mNumVertices, data.GetUInt(i), data.GetUInt(i + 1), data.GetUInt(i + 2)); + } + } + break; + } + case PrimitiveMode_TRIANGLE_FAN: + nFaces = count - 2; + facePtr = faces = new aiFace[nFaces]; + SetFaceAndAdvance3(facePtr, aim->mNumVertices, data.GetUInt(0), data.GetUInt(1), data.GetUInt(2)); + for (unsigned int i = 1; i < nFaces; ++i) { + SetFaceAndAdvance3(facePtr, aim->mNumVertices, data.GetUInt(0), data.GetUInt(i + 1), data.GetUInt(i + 2)); + } + break; + } + } else { // no indices provided so directly generate from counts + + // use the already determined count as it includes checks + unsigned int count = aim->mNumVertices; + + switch (prim.mode) { + case PrimitiveMode_POINTS: { + nFaces = count; + facePtr = faces = new aiFace[nFaces]; + for (unsigned int i = 0; i < count; ++i) { + SetFaceAndAdvance1(facePtr, aim->mNumVertices, i); + } + break; + } + + case PrimitiveMode_LINES: { + nFaces = count / 2; + if (nFaces * 2 != count) { + ASSIMP_LOG_WARN("The number of vertices was not compatible with the LINES mode. Some vertices were dropped."); + count = (unsigned int)nFaces * 2; + } + facePtr = faces = new aiFace[nFaces]; + for (unsigned int i = 0; i < count; i += 2) { + SetFaceAndAdvance2(facePtr, aim->mNumVertices, i, i + 1); + } + break; + } + + case PrimitiveMode_LINE_LOOP: + case PrimitiveMode_LINE_STRIP: { + nFaces = count - ((prim.mode == PrimitiveMode_LINE_STRIP) ? 1 : 0); + facePtr = faces = new aiFace[nFaces]; + SetFaceAndAdvance2(facePtr, aim->mNumVertices, 0, 1); + for (unsigned int i = 2; i < count; ++i) { + SetFaceAndAdvance2(facePtr, aim->mNumVertices, i - 1, i); + } + if (prim.mode == PrimitiveMode_LINE_LOOP) { // close the loop + SetFaceAndAdvance2(facePtr, aim->mNumVertices, count - 1, 0); + } + break; + } + + case PrimitiveMode_TRIANGLES: { + nFaces = count / 3; + if (nFaces * 3 != count) { + ASSIMP_LOG_WARN("The number of vertices was not compatible with the TRIANGLES mode. Some vertices were dropped."); + count = (unsigned int)nFaces * 3; + } + facePtr = faces = new aiFace[nFaces]; + for (unsigned int i = 0; i < count; i += 3) { + SetFaceAndAdvance3(facePtr, aim->mNumVertices, i, i + 1, i + 2); + } + break; + } + case PrimitiveMode_TRIANGLE_STRIP: { + nFaces = count - 2; + facePtr = faces = new aiFace[nFaces]; + for (unsigned int i = 0; i < nFaces; ++i) { + //The ordering is to ensure that the triangles are all drawn with the same orientation + if ((i + 1) % 2 == 0) { + //For even n, vertices n + 1, n, and n + 2 define triangle n + SetFaceAndAdvance3(facePtr, aim->mNumVertices, i + 1, i, i + 2); + } else { + //For odd n, vertices n, n+1, and n+2 define triangle n + SetFaceAndAdvance3(facePtr, aim->mNumVertices, i, i + 1, i + 2); + } + } + break; + } + case PrimitiveMode_TRIANGLE_FAN: + nFaces = count - 2; + facePtr = faces = new aiFace[nFaces]; + SetFaceAndAdvance3(facePtr, aim->mNumVertices, 0, 1, 2); + for (unsigned int i = 1; i < nFaces; ++i) { + SetFaceAndAdvance3(facePtr, aim->mNumVertices, 0, i + 1, i + 2); + } + break; + } + } + + if (faces) { + aim->mFaces = faces; + const unsigned int actualNumFaces = static_cast(facePtr - faces); + if (actualNumFaces < nFaces) { + ASSIMP_LOG_WARN("Some faces had out-of-range indices. Those faces were dropped."); + } + if (actualNumFaces == 0) { + throw DeadlyImportError("Mesh \"", aim->mName.C_Str(), "\" has no faces"); + } + aim->mNumFaces = actualNumFaces; + ai_assert(CheckValidFacesIndices(faces, actualNumFaces, aim->mNumVertices)); + } + + if (prim.material) { + aim->mMaterialIndex = prim.material.GetIndex(); + } else { + aim->mMaterialIndex = mScene->mNumMaterials - 1; + } + } + } + + meshOffsets.push_back(k); + + CopyVector(meshes, mScene->mMeshes, mScene->mNumMeshes); +} + +void glTF2Importer::ImportCameras(glTF2::Asset &r) { + if (!r.cameras.Size()) { + return; + } + + const unsigned int numCameras = r.cameras.Size(); + ASSIMP_LOG_DEBUG("Importing ", numCameras, " cameras"); + mScene->mNumCameras = numCameras; + mScene->mCameras = new aiCamera *[numCameras]; + std::fill(mScene->mCameras, mScene->mCameras + numCameras, nullptr); + + for (size_t i = 0; i < numCameras; ++i) { + Camera &cam = r.cameras[i]; + + aiCamera *aicam = mScene->mCameras[i] = new aiCamera(); + + // cameras point in -Z by default, rest is specified in node transform + aicam->mLookAt = aiVector3D(0.f, 0.f, -1.f); + + if (cam.type == Camera::Perspective) { + aicam->mAspect = cam.cameraProperties.perspective.aspectRatio; + aicam->mHorizontalFOV = cam.cameraProperties.perspective.yfov * ((aicam->mAspect == 0.f) ? 1.f : aicam->mAspect); + aicam->mClipPlaneFar = cam.cameraProperties.perspective.zfar; + aicam->mClipPlaneNear = cam.cameraProperties.perspective.znear; + } else { + aicam->mClipPlaneFar = cam.cameraProperties.ortographic.zfar; + aicam->mClipPlaneNear = cam.cameraProperties.ortographic.znear; + aicam->mHorizontalFOV = 0.0; + aicam->mOrthographicWidth = cam.cameraProperties.ortographic.xmag; + aicam->mAspect = 1.0f; + if (0.f != cam.cameraProperties.ortographic.ymag) { + aicam->mAspect = cam.cameraProperties.ortographic.xmag / cam.cameraProperties.ortographic.ymag; + } + } + } +} + +void glTF2Importer::ImportLights(glTF2::Asset &r) { + if (!r.lights.Size()) { + return; + } + + const unsigned int numLights = r.lights.Size(); + ASSIMP_LOG_DEBUG("Importing ", numLights, " lights"); + mScene->mNumLights = numLights; + mScene->mLights = new aiLight *[numLights]; + std::fill(mScene->mLights, mScene->mLights + numLights, nullptr); + + for (size_t i = 0; i < numLights; ++i) { + Light &light = r.lights[i]; + + aiLight *ail = mScene->mLights[i] = new aiLight(); + + switch (light.type) { + case Light::Directional: + ail->mType = aiLightSource_DIRECTIONAL; + break; + case Light::Point: + ail->mType = aiLightSource_POINT; + break; + case Light::Spot: + ail->mType = aiLightSource_SPOT; + break; + } + + if (ail->mType != aiLightSource_POINT) { + ail->mDirection = aiVector3D(0.0f, 0.0f, -1.0f); + ail->mUp = aiVector3D(0.0f, 1.0f, 0.0f); + } + + vec3 colorWithIntensity = { light.color[0] * light.intensity, light.color[1] * light.intensity, light.color[2] * light.intensity }; + CopyValue(colorWithIntensity, ail->mColorAmbient); + CopyValue(colorWithIntensity, ail->mColorDiffuse); + CopyValue(colorWithIntensity, ail->mColorSpecular); + + if (ail->mType == aiLightSource_DIRECTIONAL) { + ail->mAttenuationConstant = 1.0; + ail->mAttenuationLinear = 0.0; + ail->mAttenuationQuadratic = 0.0; + } else { + //in PBR attenuation is calculated using inverse square law which can be expressed + //using assimps equation: 1/(att0 + att1 * d + att2 * d*d) with the following parameters + //this is correct equation for the case when range (see + //https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual) + //is not present. When range is not present it is assumed that it is infinite and so numerator is 1. + //When range is present then numerator might be any value in range [0,1] and then assimps equation + //will not suffice. In this case range is added into metadata in ImportNode function + //and its up to implementation to read it when it wants to + ail->mAttenuationConstant = 0.0; + ail->mAttenuationLinear = 0.0; + ail->mAttenuationQuadratic = 1.0; + } + + if (ail->mType == aiLightSource_SPOT) { + ail->mAngleInnerCone = light.innerConeAngle; + ail->mAngleOuterCone = light.outerConeAngle; + } + } +} + +static void GetNodeTransform(aiMatrix4x4 &matrix, const glTF2::Node &node) { + if (node.matrix.isPresent) { + CopyValue(node.matrix.value, matrix); + return; + } + + if (node.translation.isPresent) { + aiVector3D trans; + CopyValue(node.translation.value, trans); + aiMatrix4x4 t; + aiMatrix4x4::Translation(trans, t); + matrix = matrix * t; + } + + if (node.rotation.isPresent) { + aiQuaternion rot; + CopyValue(node.rotation.value, rot); + matrix = matrix * aiMatrix4x4(rot.GetMatrix()); + } + + if (node.scale.isPresent) { + aiVector3D scal(1.f); + CopyValue(node.scale.value, scal); + aiMatrix4x4 s; + aiMatrix4x4::Scaling(scal, s); + matrix = matrix * s; + } +} + +static void BuildVertexWeightMapping(Mesh::Primitive &primitive, std::vector> &map) { + Mesh::Primitive::Attributes &attr = primitive.attributes; + if (attr.weight.empty() || attr.joint.empty()) { + return; + } + if (attr.weight[0]->count != attr.joint[0]->count) { + return; + } + + size_t num_vertices = attr.weight[0]->count; + + struct Weights { + float values[4]; + }; + Weights *weights = nullptr; + attr.weight[0]->ExtractData(weights); + + struct Indices8 { + uint8_t values[4]; + }; + struct Indices16 { + uint16_t values[4]; + }; + Indices8 *indices8 = nullptr; + Indices16 *indices16 = nullptr; + if (attr.joint[0]->GetElementSize() == 4) { + attr.joint[0]->ExtractData(indices8); + } else { + attr.joint[0]->ExtractData(indices16); + } + // + if (nullptr == indices8 && nullptr == indices16) { + // Something went completely wrong! + ai_assert(false); + return; + } + + for (size_t i = 0; i < num_vertices; ++i) { + for (int j = 0; j < 4; ++j) { + const unsigned int bone = (indices8 != nullptr) ? indices8[i].values[j] : indices16[i].values[j]; + const float weight = weights[i].values[j]; + if (weight > 0 && bone < map.size()) { + map[bone].reserve(8); + map[bone].emplace_back(static_cast(i), weight); + } + } + } + + delete[] weights; + delete[] indices8; + delete[] indices16; +} + +static std::string GetNodeName(const Node &node) { + return node.name.empty() ? node.id : node.name; +} + +void ParseExtensions(aiMetadata *metadata, const CustomExtension &extension) { + if (extension.mStringValue.isPresent) { + metadata->Add(extension.name, aiString(extension.mStringValue.value)); + } else if (extension.mDoubleValue.isPresent) { + metadata->Add(extension.name, extension.mDoubleValue.value); + } else if (extension.mUint64Value.isPresent) { + metadata->Add(extension.name, extension.mUint64Value.value); + } else if (extension.mInt64Value.isPresent) { + metadata->Add(extension.name, static_cast(extension.mInt64Value.value)); + } else if (extension.mBoolValue.isPresent) { + metadata->Add(extension.name, extension.mBoolValue.value); + } else if (extension.mValues.isPresent) { + aiMetadata val; + for (auto const & subExtension : extension.mValues.value) { + ParseExtensions(&val, subExtension); + } + metadata->Add(extension.name, val); + } +} + +void ParseExtras(aiMetadata *metadata, const CustomExtension &extension) { + if (extension.mValues.isPresent) { + for (auto const & subExtension : extension.mValues.value) { + ParseExtensions(metadata, subExtension); + } + } +} + +aiNode *ImportNode(aiScene *pScene, glTF2::Asset &r, std::vector &meshOffsets, glTF2::Ref &ptr) { + Node &node = *ptr; + + aiNode *ainode = new aiNode(GetNodeName(node)); + + try { + if (!node.children.empty()) { + ainode->mNumChildren = unsigned(node.children.size()); + ainode->mChildren = new aiNode *[ainode->mNumChildren]; + std::fill(ainode->mChildren, ainode->mChildren + ainode->mNumChildren, nullptr); + + for (unsigned int i = 0; i < ainode->mNumChildren; ++i) { + aiNode *child = ImportNode(pScene, r, meshOffsets, node.children[i]); + child->mParent = ainode; + ainode->mChildren[i] = child; + } + } + + if (node.customExtensions || node.extras) { + ainode->mMetaData = new aiMetadata; + if (node.customExtensions) { + ParseExtensions(ainode->mMetaData, node.customExtensions); + } + if (node.extras) { + ParseExtras(ainode->mMetaData, node.extras); + } + } + + GetNodeTransform(ainode->mTransformation, node); + + if (!node.meshes.empty()) { + // GLTF files contain at most 1 mesh per node. + if (node.meshes.size() > 1) + { + throw DeadlyImportError("GLTF: Invalid input, found ", node.meshes.size(), + " meshes in ", getContextForErrorMessages(node.id, node.name), + ", but only 1 mesh per node allowed."); + } + int mesh_idx = node.meshes[0].GetIndex(); + int count = meshOffsets[mesh_idx + 1] - meshOffsets[mesh_idx]; + + ainode->mNumMeshes = count; + ainode->mMeshes = new unsigned int[count]; + + if (node.skin) { + for (int primitiveNo = 0; primitiveNo < count; ++primitiveNo) { + aiMesh *mesh = pScene->mMeshes[meshOffsets[mesh_idx] + primitiveNo]; + unsigned int numBones =static_cast(node.skin->jointNames.size()); + + std::vector> weighting(numBones); + BuildVertexWeightMapping(node.meshes[0]->primitives[primitiveNo], weighting); + + mesh->mNumBones = static_cast(numBones); + mesh->mBones = new aiBone *[mesh->mNumBones]; + std::fill(mesh->mBones, mesh->mBones + mesh->mNumBones, nullptr); + + // GLTF and Assimp choose to store bone weights differently. + // GLTF has each vertex specify which bones influence the vertex. + // Assimp has each bone specify which vertices it has influence over. + // To convert this data, we first read over the vertex data and pull + // out the bone-to-vertex mapping. Then, when creating the aiBones, + // we copy the bone-to-vertex mapping into the bone. This is unfortunate + // both because it's somewhat slow and because, for many applications, + // we then need to reconvert the data back into the vertex-to-bone + // mapping which makes things doubly-slow. + + mat4 *pbindMatrices = nullptr; + node.skin->inverseBindMatrices->ExtractData(pbindMatrices); + + for (uint32_t i = 0; i < numBones; ++i) { + const std::vector &weights = weighting[i]; + aiBone *bone = new aiBone(); + + Ref joint = node.skin->jointNames[i]; + if (!joint->name.empty()) { + bone->mName = joint->name; + } else { + // Assimp expects each bone to have a unique name. + static const std::string kDefaultName = "bone_"; + char postfix[10] = { 0 }; + ASSIMP_itoa10(postfix, i); + bone->mName = (kDefaultName + postfix); + } + GetNodeTransform(bone->mOffsetMatrix, *joint); + CopyValue(pbindMatrices[i], bone->mOffsetMatrix); + bone->mNumWeights = static_cast(weights.size()); + + if (bone->mNumWeights > 0) { + bone->mWeights = new aiVertexWeight[bone->mNumWeights]; + memcpy(bone->mWeights, weights.data(), bone->mNumWeights * sizeof(aiVertexWeight)); + } else { + // Assimp expects all bones to have at least 1 weight. + bone->mWeights = new aiVertexWeight[1]; + bone->mNumWeights = 1; + bone->mWeights->mVertexId = 0; + bone->mWeights->mWeight = 0.f; + } + mesh->mBones[i] = bone; + } + + if (pbindMatrices) { + delete[] pbindMatrices; + } + } + } + + int k = 0; + for (unsigned int j = meshOffsets[mesh_idx]; j < meshOffsets[mesh_idx + 1]; ++j, ++k) { + ainode->mMeshes[k] = j; + } + } + + if (node.camera) { + pScene->mCameras[node.camera.GetIndex()]->mName = ainode->mName; + if (node.translation.isPresent) { + aiVector3D trans; + CopyValue(node.translation.value, trans); + pScene->mCameras[node.camera.GetIndex()]->mPosition = trans; + } + } + + if (node.light) { + pScene->mLights[node.light.GetIndex()]->mName = ainode->mName; + + //range is optional - see https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual + //it is added to meta data of parent node, because there is no other place to put it + if (node.light->range.isPresent) { + if (!ainode->mMetaData) { + ainode->mMetaData = aiMetadata::Alloc(1); + ainode->mMetaData->Set(0, "PBR_LightRange", node.light->range.value); + } else { + ainode->mMetaData->Add("PBR_LightRange", node.light->range.value); + } + } + } + + return ainode; + } catch (...) { + delete ainode; + throw; + } +} + +void glTF2Importer::ImportNodes(glTF2::Asset &r) { + if (!r.scene) { + throw DeadlyImportError("GLTF: No scene"); + } + ASSIMP_LOG_DEBUG("Importing nodes"); + + std::vector> rootNodes = r.scene->nodes; + + // The root nodes + unsigned int numRootNodes = unsigned(rootNodes.size()); + if (numRootNodes == 1) { // a single root node: use it + mScene->mRootNode = ImportNode(mScene, r, meshOffsets, rootNodes[0]); + } else if (numRootNodes > 1) { // more than one root node: create a fake root + aiNode *root = mScene->mRootNode = new aiNode("ROOT"); + + root->mChildren = new aiNode *[numRootNodes]; + std::fill(root->mChildren, root->mChildren + numRootNodes, nullptr); + + for (unsigned int i = 0; i < numRootNodes; ++i) { + aiNode *node = ImportNode(mScene, r, meshOffsets, rootNodes[i]); + node->mParent = root; + root->mChildren[root->mNumChildren++] = node; + } + } else { + mScene->mRootNode = new aiNode("ROOT"); + } +} + +struct AnimationSamplers { + AnimationSamplers() : + translation(nullptr), + rotation(nullptr), + scale(nullptr), + weight(nullptr) { + // empty + } + + Animation::Sampler *translation; + Animation::Sampler *rotation; + Animation::Sampler *scale; + Animation::Sampler *weight; +}; + +aiNodeAnim *CreateNodeAnim(glTF2::Asset&, Node &node, AnimationSamplers &samplers) { + aiNodeAnim *anim = new aiNodeAnim(); + + try { + anim->mNodeName = GetNodeName(node); + + static const float kMillisecondsFromSeconds = 1000.f; + + if (samplers.translation && samplers.translation->input && samplers.translation->output) { + float *times = nullptr; + samplers.translation->input->ExtractData(times); + aiVector3D *values = nullptr; + samplers.translation->output->ExtractData(values); + anim->mNumPositionKeys = static_cast(samplers.translation->input->count); + anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys]; + unsigned int ii = (samplers.translation->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0; + for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) { + anim->mPositionKeys[i].mTime = times[i] * kMillisecondsFromSeconds; + anim->mPositionKeys[i].mValue = values[ii]; + ii += (samplers.translation->interpolation == Interpolation_CUBICSPLINE) ? 3 : 1; + } + delete[] times; + delete[] values; + } else if (node.translation.isPresent) { + anim->mNumPositionKeys = 1; + anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys]; + anim->mPositionKeys->mTime = 0.f; + anim->mPositionKeys->mValue.x = node.translation.value[0]; + anim->mPositionKeys->mValue.y = node.translation.value[1]; + anim->mPositionKeys->mValue.z = node.translation.value[2]; + } + + if (samplers.rotation && samplers.rotation->input && samplers.rotation->output) { + float *times = nullptr; + samplers.rotation->input->ExtractData(times); + aiQuaternion *values = nullptr; + samplers.rotation->output->ExtractData(values); + anim->mNumRotationKeys = static_cast(samplers.rotation->input->count); + anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys]; + unsigned int ii = (samplers.rotation->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0; + for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) { + anim->mRotationKeys[i].mTime = times[i] * kMillisecondsFromSeconds; + anim->mRotationKeys[i].mValue.x = values[ii].w; + anim->mRotationKeys[i].mValue.y = values[ii].x; + anim->mRotationKeys[i].mValue.z = values[ii].y; + anim->mRotationKeys[i].mValue.w = values[ii].z; + ii += (samplers.rotation->interpolation == Interpolation_CUBICSPLINE) ? 3 : 1; + } + delete[] times; + delete[] values; + } else if (node.rotation.isPresent) { + anim->mNumRotationKeys = 1; + anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys]; + anim->mRotationKeys->mTime = 0.f; + anim->mRotationKeys->mValue.x = node.rotation.value[0]; + anim->mRotationKeys->mValue.y = node.rotation.value[1]; + anim->mRotationKeys->mValue.z = node.rotation.value[2]; + anim->mRotationKeys->mValue.w = node.rotation.value[3]; + } + + if (samplers.scale && samplers.scale->input && samplers.scale->output) { + float *times = nullptr; + samplers.scale->input->ExtractData(times); + aiVector3D *values = nullptr; + samplers.scale->output->ExtractData(values); + anim->mNumScalingKeys = static_cast(samplers.scale->input->count); + anim->mScalingKeys = new aiVectorKey[anim->mNumScalingKeys]; + unsigned int ii = (samplers.scale->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0; + for (unsigned int i = 0; i < anim->mNumScalingKeys; ++i) { + anim->mScalingKeys[i].mTime = times[i] * kMillisecondsFromSeconds; + anim->mScalingKeys[i].mValue = values[ii]; + ii += (samplers.scale->interpolation == Interpolation_CUBICSPLINE) ? 3 : 1; + } + delete[] times; + delete[] values; + } else if (node.scale.isPresent) { + anim->mNumScalingKeys = 1; + anim->mScalingKeys = new aiVectorKey[anim->mNumScalingKeys]; + anim->mScalingKeys->mTime = 0.f; + anim->mScalingKeys->mValue.x = node.scale.value[0]; + anim->mScalingKeys->mValue.y = node.scale.value[1]; + anim->mScalingKeys->mValue.z = node.scale.value[2]; + } + + return anim; + } catch (...) { + delete anim; + throw; + } +} + +aiMeshMorphAnim *CreateMeshMorphAnim(glTF2::Asset&, Node &node, AnimationSamplers &samplers) { + auto *anim = new aiMeshMorphAnim(); + + try { + anim->mName = GetNodeName(node); + + static const float kMillisecondsFromSeconds = 1000.f; + + if (samplers.weight && samplers.weight->input && samplers.weight->output) { + float *times = nullptr; + samplers.weight->input->ExtractData(times); + float *values = nullptr; + samplers.weight->output->ExtractData(values); + anim->mNumKeys = static_cast(samplers.weight->input->count); + + // for Interpolation_CUBICSPLINE can have more outputs + const unsigned int weightStride = (unsigned int)samplers.weight->output->count / anim->mNumKeys; + const unsigned int numMorphs = (samplers.weight->interpolation == Interpolation_CUBICSPLINE) ? weightStride - 2 : weightStride; + + anim->mKeys = new aiMeshMorphKey[anim->mNumKeys]; + unsigned int ii = (samplers.weight->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0; + for (unsigned int i = 0u; i < anim->mNumKeys; ++i) { + unsigned int k = weightStride * i + ii; + anim->mKeys[i].mTime = times[i] * kMillisecondsFromSeconds; + anim->mKeys[i].mNumValuesAndWeights = numMorphs; + anim->mKeys[i].mValues = new unsigned int[numMorphs]; + anim->mKeys[i].mWeights = new double[numMorphs]; + + for (unsigned int j = 0u; j < numMorphs; ++j, ++k) { + anim->mKeys[i].mValues[j] = j; + anim->mKeys[i].mWeights[j] = (0.f > values[k]) ? 0.f : values[k]; + } + } + + delete[] times; + delete[] values; + } + + return anim; + } catch (...) { + delete anim; + throw; + } +} + +std::unordered_map GatherSamplers(Animation &anim) { + std::unordered_map samplers; + for (unsigned int c = 0; c < anim.channels.size(); ++c) { + Animation::Channel &channel = anim.channels[c]; + if (channel.sampler < 0 || channel.sampler >= static_cast(anim.samplers.size())) { + continue; + } + + auto& animsampler = anim.samplers[channel.sampler]; + + if (!animsampler.input) { + ASSIMP_LOG_WARN("Animation ", anim.name, ": Missing sampler input. Skipping."); + continue; + } + + if (!animsampler.output) { + ASSIMP_LOG_WARN("Animation ", anim.name, ": Missing sampler output. Skipping."); + continue; + } + + if (animsampler.input->count > animsampler.output->count) { + ASSIMP_LOG_WARN("Animation ", anim.name, ": Number of keyframes in sampler input ", animsampler.input->count, " exceeds number of keyframes in sampler output ", animsampler.output->count); + continue; + } + + const unsigned int node_index = channel.target.node.GetIndex(); + + AnimationSamplers &sampler = samplers[node_index]; + if (channel.target.path == AnimationPath_TRANSLATION) { + sampler.translation = &anim.samplers[channel.sampler]; + } else if (channel.target.path == AnimationPath_ROTATION) { + sampler.rotation = &anim.samplers[channel.sampler]; + } else if (channel.target.path == AnimationPath_SCALE) { + sampler.scale = &anim.samplers[channel.sampler]; + } else if (channel.target.path == AnimationPath_WEIGHTS) { + sampler.weight = &anim.samplers[channel.sampler]; + } + } + + return samplers; +} + +void glTF2Importer::ImportAnimations(glTF2::Asset &r) { + if (!r.scene) return; + + const unsigned numAnimations = r.animations.Size(); + ASSIMP_LOG_DEBUG("Importing ", numAnimations, " animations"); + mScene->mNumAnimations = numAnimations; + if (mScene->mNumAnimations == 0) { + return; + } + + mScene->mAnimations = new aiAnimation *[numAnimations]; + std::fill(mScene->mAnimations, mScene->mAnimations + numAnimations, nullptr); + + for (unsigned int i = 0; i < numAnimations; ++i) { + aiAnimation *ai_anim = mScene->mAnimations[i] = new aiAnimation(); + + Animation &anim = r.animations[i]; + + ai_anim->mName = anim.name; + ai_anim->mDuration = 0; + ai_anim->mTicksPerSecond = 0; + + std::unordered_map samplers = GatherSamplers(anim); + + uint32_t numChannels = 0u; + uint32_t numMorphMeshChannels = 0u; + + for (auto &iter : samplers) { + if ((nullptr != iter.second.rotation) || (nullptr != iter.second.scale) || (nullptr != iter.second.translation)) { + ++numChannels; + } + if (nullptr != iter.second.weight) { + ++numMorphMeshChannels; + } + } + + ai_anim->mNumChannels = numChannels; + if (ai_anim->mNumChannels > 0) { + ai_anim->mChannels = new aiNodeAnim *[ai_anim->mNumChannels]; + std::fill(ai_anim->mChannels, ai_anim->mChannels + ai_anim->mNumChannels, nullptr); + int j = 0; + for (auto &iter : samplers) { + if ((nullptr != iter.second.rotation) || (nullptr != iter.second.scale) || (nullptr != iter.second.translation)) { + ai_anim->mChannels[j] = CreateNodeAnim(r, r.nodes[iter.first], iter.second); + ++j; + } + } + } + + ai_anim->mNumMorphMeshChannels = numMorphMeshChannels; + if (ai_anim->mNumMorphMeshChannels > 0) { + ai_anim->mMorphMeshChannels = new aiMeshMorphAnim *[ai_anim->mNumMorphMeshChannels]; + std::fill(ai_anim->mMorphMeshChannels, ai_anim->mMorphMeshChannels + ai_anim->mNumMorphMeshChannels, nullptr); + int j = 0; + for (auto &iter : samplers) { + if (nullptr != iter.second.weight) { + ai_anim->mMorphMeshChannels[j] = CreateMeshMorphAnim(r, r.nodes[iter.first], iter.second); + ++j; + } + } + } + + // Use the latest key-frame for the duration of the animation + double maxDuration = 0; + unsigned int maxNumberOfKeys = 0; + for (unsigned int j = 0; j < ai_anim->mNumChannels; ++j) { + auto chan = ai_anim->mChannels[j]; + if (chan->mNumPositionKeys) { + auto lastPosKey = chan->mPositionKeys[chan->mNumPositionKeys - 1]; + if (lastPosKey.mTime > maxDuration) { + maxDuration = lastPosKey.mTime; + } + maxNumberOfKeys = std::max(maxNumberOfKeys, chan->mNumPositionKeys); + } + if (chan->mNumRotationKeys) { + auto lastRotKey = chan->mRotationKeys[chan->mNumRotationKeys - 1]; + if (lastRotKey.mTime > maxDuration) { + maxDuration = lastRotKey.mTime; + } + maxNumberOfKeys = std::max(maxNumberOfKeys, chan->mNumRotationKeys); + } + if (chan->mNumScalingKeys) { + auto lastScaleKey = chan->mScalingKeys[chan->mNumScalingKeys - 1]; + if (lastScaleKey.mTime > maxDuration) { + maxDuration = lastScaleKey.mTime; + } + maxNumberOfKeys = std::max(maxNumberOfKeys, chan->mNumScalingKeys); + } + } + + for (unsigned int j = 0; j < ai_anim->mNumMorphMeshChannels; ++j) { + const auto *const chan = ai_anim->mMorphMeshChannels[j]; + + if (0u != chan->mNumKeys) { + const auto &lastKey = chan->mKeys[chan->mNumKeys - 1u]; + if (lastKey.mTime > maxDuration) { + maxDuration = lastKey.mTime; + } + maxNumberOfKeys = std::max(maxNumberOfKeys, chan->mNumKeys); + } + } + + ai_anim->mDuration = maxDuration; + ai_anim->mTicksPerSecond = 1000.0; + } +} + +static unsigned int countEmbeddedTextures(glTF2::Asset &r) { + unsigned int numEmbeddedTexs = 0; + for (size_t i = 0; i < r.images.Size(); ++i) { + if (r.images[i].HasData()) { + numEmbeddedTexs += 1; + } + } + + return numEmbeddedTexs; +} + +void glTF2Importer::ImportEmbeddedTextures(glTF2::Asset &r) { + mEmbeddedTexIdxs.resize(r.images.Size(), -1); + const unsigned int numEmbeddedTexs = countEmbeddedTextures(r); + if (numEmbeddedTexs == 0) { + return; + } + + ASSIMP_LOG_DEBUG("Importing ", numEmbeddedTexs, " embedded textures"); + + mScene->mTextures = new aiTexture *[numEmbeddedTexs]; + std::fill(mScene->mTextures, mScene->mTextures + numEmbeddedTexs, nullptr); + + // Add the embedded textures + for (size_t i = 0; i < r.images.Size(); ++i) { + Image &img = r.images[i]; + if (!img.HasData()) { + continue; + } + + int idx = mScene->mNumTextures++; + mEmbeddedTexIdxs[i] = idx; + + aiTexture *tex = mScene->mTextures[idx] = new aiTexture(); + + size_t length = img.GetDataLength(); + void *data = img.StealData(); + + tex->mFilename = img.name; + tex->mWidth = static_cast(length); + tex->mHeight = 0; + tex->pcData = reinterpret_cast(data); + + if (!img.mimeType.empty()) { + const char *ext = strchr(img.mimeType.c_str(), '/') + 1; + if (ext) { + if (strcmp(ext, "jpeg") == 0) { + ext = "jpg"; + } else if(strcmp(ext, "ktx2") == 0) { //basisu: ktx remains + ext = "kx2"; + } else if(strcmp(ext, "basis") == 0) { //basisu + ext = "bu"; + } + + size_t len = strlen(ext); + if (len <= 3) { + strcpy(tex->achFormatHint, ext); + } + } + } + } +} + +void glTF2Importer::ImportCommonMetadata(glTF2::Asset& a) { + ASSIMP_LOG_DEBUG("Importing metadata"); + ai_assert(mScene->mMetaData == nullptr); + const bool hasVersion = !a.asset.version.empty(); + const bool hasGenerator = !a.asset.generator.empty(); + const bool hasCopyright = !a.asset.copyright.empty(); + const bool hasSceneMetadata = a.scene->customExtensions; + if (hasVersion || hasGenerator || hasCopyright || hasSceneMetadata) { + mScene->mMetaData = new aiMetadata; + if (hasVersion) { + mScene->mMetaData->Add(AI_METADATA_SOURCE_FORMAT_VERSION, aiString(a.asset.version)); + } + if (hasGenerator) { + mScene->mMetaData->Add(AI_METADATA_SOURCE_GENERATOR, aiString(a.asset.generator)); + } + if (hasCopyright) { + mScene->mMetaData->Add(AI_METADATA_SOURCE_COPYRIGHT, aiString(a.asset.copyright)); + } + if (hasSceneMetadata) { + ParseExtensions(mScene->mMetaData, a.scene->customExtensions); + } + } +} + +void glTF2Importer::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) { + ASSIMP_LOG_DEBUG("Reading GLTF2 file"); + + // clean all member arrays + meshOffsets.clear(); + mEmbeddedTexIdxs.clear(); + + this->mScene = pScene; + + // read the asset file + glTF2::Asset asset(pIOHandler, static_cast(mSchemaDocumentProvider)); + asset.Load(pFile, GetExtension(pFile) == "glb"); + if (asset.scene) { + pScene->mName = asset.scene->name; + } + + // Copy the data out + ImportEmbeddedTextures(asset); + ImportMaterials(asset); + + ImportMeshes(asset); + + ImportCameras(asset); + ImportLights(asset); + + ImportNodes(asset); + + ImportAnimations(asset); + + ImportCommonMetadata(asset); + + if (pScene->mNumMeshes == 0) { + pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE; + } +} + +void glTF2Importer::SetupProperties(const Importer *pImp) { + mSchemaDocumentProvider = static_cast(pImp->GetPropertyPointer(AI_CONFIG_IMPORT_SCHEMA_DOCUMENT_PROVIDER)); +} + +#endif // ASSIMP_BUILD_NO_GLTF_IMPORTER -- cgit v1.2.1