From 058f98a63658dc1a2579826ba167fd61bed1e21f Mon Sep 17 00:00:00 2001 From: sanine Date: Fri, 4 Mar 2022 10:47:15 -0600 Subject: add assimp submodule --- .../assimp-master/tools/assimp_view/Shaders.cpp | 1397 ++++++++++++++++++++ 1 file changed, 1397 insertions(+) create mode 100644 src/mesh/assimp-master/tools/assimp_view/Shaders.cpp (limited to 'src/mesh/assimp-master/tools/assimp_view/Shaders.cpp') diff --git a/src/mesh/assimp-master/tools/assimp_view/Shaders.cpp b/src/mesh/assimp-master/tools/assimp_view/Shaders.cpp new file mode 100644 index 0000000..9fd05ca --- /dev/null +++ b/src/mesh/assimp-master/tools/assimp_view/Shaders.cpp @@ -0,0 +1,1397 @@ +/* +--------------------------------------------------------------------------- +Open Asset Import Library (assimp) +--------------------------------------------------------------------------- + +Copyright (c) 2006-2022, assimp team + +All rights reserved. + +Redistribution and use of this software in source and binary forms, +with or without modification, are permitted provided that the following +conditions are met: + +* Redistributions of source code must retain the above + copyright notice, this list of conditions and the + following disclaimer. + +* Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the + following disclaimer in the documentation and/or other + materials provided with the distribution. + +* Neither the name of the assimp team, nor the names of its + contributors may be used to endorse or promote products + derived from this software without specific prior + written permission of the assimp team. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +--------------------------------------------------------------------------- +*/ +#include "assimp_view.h" + +namespace AssimpView { + +// ------------------------------------------------------------------------------------------------ +std::string g_szNormalsShader = std::string( + + // World * View * Projection matrix\n" + // NOTE: Assume that the material uses a WorldViewProjection matrix\n" + "float4x4 WorldViewProjection : WORLDVIEWPROJECTION;\n" + "float4 OUTPUT_COLOR;\n" + + // Vertex shader input structure + "struct VS_INPUT\n" + "{\n" + "// Position\n" + "float3 Position : POSITION;\n" + "};\n" + + // Vertex shader output structure for pixel shader usage + "struct VS_OUTPUT\n" + "{\n" + "float4 Position : POSITION;\n" + "};\n" + + // Vertex shader output structure for FixedFunction usage + "struct VS_OUTPUT_FF\n" + "{\n" + "float4 Position : POSITION;\n" + "float4 Color : COLOR;\n" + "};\n" + + // Vertex shader for rendering normals using pixel shader + "VS_OUTPUT RenderNormalsVS(VS_INPUT IN)\n" + "{\n" + "// Initialize the output structure with zero\n" + "VS_OUTPUT Out = (VS_OUTPUT)0;\n" + + "// Multiply with the WorldViewProjection matrix\n" + "Out.Position = mul(float4(IN.Position,1.0f),WorldViewProjection);\n" + + "return Out;\n" + "}\n" + + // Vertex shader for rendering normals using fixed function pipeline + "VS_OUTPUT_FF RenderNormalsVS_FF(VS_INPUT IN)\n" + "{\n" + "VS_OUTPUT_FF Out;\n" + "Out.Position = mul(float4(IN.Position,1.0f),WorldViewProjection);\n" + "Out.Color = OUTPUT_COLOR;\n" + "return Out;\n" + "}\n" + + // Pixel shader + "float4 RenderNormalsPS() : COLOR\n" + "{\n" + "return OUTPUT_COLOR;\n" + "}\n" + + // Technique for the normal rendering effect (ps_2_0) + "technique RenderNormals\n" + "{\n" + "pass p0\n" + "{\n" + "CullMode=none;\n" + "PixelShader = compile ps_2_0 RenderNormalsPS();\n" + "VertexShader = compile vs_2_0 RenderNormalsVS();\n" + "}\n" + "};\n" + + // Technique for the normal rendering effect (fixed function) + "technique RenderNormals_FF\n" + "{\n" + "pass p0\n" + "{\n" + "CullMode=none;\n" + "VertexShader = compile vs_2_0 RenderNormalsVS_FF();\n" + "ColorOp[0] = SelectArg1;\n" + "ColorArg0[0] = Diffuse;\n" + "AlphaOp[0] = SelectArg1;\n" + "AlphaArg0[0] = Diffuse;\n" + "}\n" + "};\n"); + +// ------------------------------------------------------------------------------------------------ +std::string g_szSkyboxShader = std::string( + + // Sampler and texture for the skybox + "textureCUBE lw_tex_envmap;\n" + "samplerCUBE EnvironmentMapSampler = sampler_state\n" + "{\n" + "Texture = (lw_tex_envmap);\n" + "AddressU = CLAMP;\n" + "AddressV = CLAMP;\n" + "AddressW = CLAMP;\n" + + "MAGFILTER = linear;\n" + "MINFILTER = linear;\n" + "};\n" + + // World * View * Projection matrix\n" + // NOTE: Assume that the material uses a WorldViewProjection matrix\n" + "float4x4 WorldViewProjection : WORLDVIEWPROJECTION;\n" + + // Vertex shader input structure + "struct VS_INPUT\n" + "{\n" + "float3 Position : POSITION;\n" + "float3 Texture0 : TEXCOORD0;\n" + "};\n" + + // Vertex shader output structure + "struct VS_OUTPUT\n" + "{\n" + "float4 Position : POSITION;\n" + "float3 Texture0 : TEXCOORD0;\n" + "};\n" + + // Vertex shader + "VS_OUTPUT RenderSkyBoxVS(VS_INPUT IN)\n" + "{\n" + "VS_OUTPUT Out;\n" + + // Multiply with the WorldViewProjection matrix + "Out.Position = mul(float4(IN.Position,1.0f),WorldViewProjection);\n" + + // Set z to w to ensure z becomes 1.0 after the division through w occurs + "Out.Position.z = Out.Position.w;\n" + + // Simply pass through texture coordinates + "Out.Texture0 = IN.Texture0;\n" + + "return Out;\n" + "}\n" + + // Pixel shader + "float4 RenderSkyBoxPS(float3 Texture0 : TEXCOORD0) : COLOR\n" + "{\n" + // Lookup the skybox texture + "return texCUBE(EnvironmentMapSampler,Texture0) ;\n" + "}\n" + + // Technique for the skybox shader (ps_2_0) + "technique RenderSkyBox\n" + "{\n" + "pass p0\n" + "{\n" + "ZWriteEnable = FALSE;\n" + "FogEnable = FALSE;\n" + "CullMode = NONE;\n" + + "PixelShader = compile ps_2_0 RenderSkyBoxPS();\n" + "VertexShader = compile vs_2_0 RenderSkyBoxVS();\n" + "}\n" + "};\n" + + // -------------- same for static background image ----------------- + "texture TEXTURE_2D;\n" + "sampler TEXTURE_SAMPLER = sampler_state\n" + "{\n" + "Texture = (TEXTURE_2D);\n" + "};\n" + + "struct VS_OUTPUT2\n" + "{\n" + "float4 Position : POSITION;\n" + "float2 TexCoord0 : TEXCOORD0;\n" + "};\n" + + "VS_OUTPUT2 RenderImageVS(float4 INPosition : POSITION, float2 INTexCoord0 : TEXCOORD0 )\n" + "{\n" + "VS_OUTPUT2 Out;\n" + + "Out.Position.xy = INPosition.xy;\n" + "Out.Position.z = Out.Position.w = 1.0f;\n" + "Out.TexCoord0 = INTexCoord0;\n" + + "return Out;\n" + "}\n" + + "float4 RenderImagePS(float2 IN : TEXCOORD0) : COLOR\n" + "{\n" + "return tex2D(TEXTURE_SAMPLER,IN);\n" + "}\n" + + // Technique for the background image shader (ps_2_0) + "technique RenderImage2D\n" + "{\n" + "pass p0\n" + "{\n" + "ZWriteEnable = FALSE;\n" + "FogEnable = FALSE;\n" + "CullMode = NONE;\n" + + "PixelShader = compile ps_2_0 RenderImagePS();\n" + "VertexShader = compile vs_2_0 RenderImageVS();\n" + "}\n" + "};\n"); + +std::string g_szDefaultShader = std::string( + + // World * View * Projection matrix + // NOTE: Assume that the material uses a WorldViewProjection matrix + "float4x4 WorldViewProjection : WORLDVIEWPROJECTION;\n" + "float4x4 World : WORLD;\n" + "float4x3 WorldInverseTranspose : WORLDINVERSETRANSPOSE;\n" + + // light colors + "float3 afLightColor[5];\n" + // light direction + "float3 afLightDir[5];\n" + + // position of the camera in worldspace\n" + "float3 vCameraPos : CAMERAPOSITION;\n" + + // Bone matrices + // "#ifdef AV_SKINNING \n" + "float4x3 gBoneMatrix[60]; \n" + // "#endif // AV_SKINNING \n" + + // Vertex shader input structure + "struct VS_INPUT\n" + "{\n" + "float3 Position : POSITION;\n" + "float3 Normal : NORMAL;\n" + // "#ifdef AV_SKINNING \n" + "float4 BlendIndices : BLENDINDICES;\n" + "float4 BlendWeights : BLENDWEIGHT;\n" + // "#endif // AV_SKINNING \n" + "};\n" + + // Vertex shader output structure for pixel shader usage + "struct VS_OUTPUT\n" + "{\n" + "float4 Position : POSITION;\n" + "float3 ViewDir : TEXCOORD0;\n" + "float3 Normal : TEXCOORD1;\n" + "};\n" + + // Vertex shader output structure for fixed function + "struct VS_OUTPUT_FF\n" + "{\n" + "float4 Position : POSITION;\n" + "float4 Color : COLOR;\n" + "};\n" + + // Vertex shader for pixel shader usage + "VS_OUTPUT DefaultVShader(VS_INPUT IN)\n" + "{\n" + "VS_OUTPUT Out;\n" + + // "#ifdef AV_SKINNING \n" + "float4 weights = IN.BlendWeights; \n" + "weights.w = 1.0f - dot( weights.xyz, float3( 1, 1, 1)); \n" + "float4 localPos = float4( IN.Position, 1.0f); \n" + "float3 objPos = mul( localPos, gBoneMatrix[IN.BlendIndices.x]) * weights.x; \n" + "objPos += mul( localPos, gBoneMatrix[IN.BlendIndices.y]) * weights.y; \n" + "objPos += mul( localPos, gBoneMatrix[IN.BlendIndices.z]) * weights.z; \n" + "objPos += mul( localPos, gBoneMatrix[IN.BlendIndices.w]) * weights.w; \n" + // "#else \n" + // "float3 objPos = IN.Position; \n" + // "#endif // AV_SKINNING \n" + + // Multiply with the WorldViewProjection matrix + "Out.Position = mul( float4( objPos, 1.0f), WorldViewProjection);\n" + "float3 WorldPos = mul( float4( objPos, 1.0f), World);\n" + "Out.ViewDir = vCameraPos - WorldPos;\n" + "Out.Normal = mul(IN.Normal,WorldInverseTranspose);\n" + + "return Out;\n" + "}\n" + + // Vertex shader for fixed function pipeline + "VS_OUTPUT_FF DefaultVShader_FF(VS_INPUT IN)\n" + "{\n" + "VS_OUTPUT_FF Out;\n" + + // "#ifdef AV_SKINNING \n" + "float4 weights = IN.BlendWeights; \n" + "weights.w = 1.0f - dot( weights.xyz, float3( 1, 1, 1)); \n" + "float4 localPos = float4( IN.Position, 1.0f); \n" + "float3 objPos = mul( localPos, gBoneMatrix[IN.BlendIndices.x]) * weights.x; \n" + "objPos += mul( localPos, gBoneMatrix[IN.BlendIndices.y]) * weights.y; \n" + "objPos += mul( localPos, gBoneMatrix[IN.BlendIndices.z]) * weights.z; \n" + "objPos += mul( localPos, gBoneMatrix[IN.BlendIndices.w]) * weights.w; \n" + // "#else \n" + // "float3 objPos = IN.Position; \n" + // "#endif // AV_SKINNING \n" + + // Multiply with the WorldViewProjection matrix + "Out.Position = mul( float4( objPos, 1.0f), WorldViewProjection);\n" + + "float3 worldNormal = normalize( mul( IN.Normal, (float3x3) WorldInverseTranspose)); \n" + + // per-vertex lighting. We simply assume light colors of unused lights to be black + "Out.Color = float4( 0.2f, 0.2f, 0.2f, 1.0f); \n" + "for( int a = 0; a < 2; a++)\n" + " Out.Color.rgb += saturate( dot( afLightDir[a], worldNormal)) * afLightColor[a].rgb; \n" + "return Out;\n" + "}\n" + + // Pixel shader for one light + "float4 DefaultPShaderSpecular_D1(VS_OUTPUT IN) : COLOR\n" + "{\n" + "float4 OUT = float4(0.0f,0.0f,0.0f,1.0f);\n" + + "float3 Normal = normalize(IN.Normal);\n" + "float3 ViewDir = normalize(IN.ViewDir);\n" + + "{\n" + "float L1 = dot(Normal,afLightDir[0]) * 0.5f + 0.5f;\n" + "float3 Reflect = reflect (Normal,afLightDir[0]);\n" + "float fHalfLambert = L1*L1;\n" + "OUT.rgb += afLightColor[0] * (fHalfLambert +\n" + "saturate(fHalfLambert * 4.0f) * pow(dot(Reflect,ViewDir),9));\n" + "}\n" + "return OUT;\n" + "}\n" + + // Pixel shader for two lights + "float4 DefaultPShaderSpecular_D2(VS_OUTPUT IN) : COLOR\n" + "{\n" + "float4 OUT = float4(0.0f,0.0f,0.0f,1.0f);\n" + + "float3 Normal = normalize(IN.Normal);\n" + "float3 ViewDir = normalize(IN.ViewDir);\n" + + "{\n" + "float L1 = dot(Normal,afLightDir[0]) * 0.5f + 0.5f;\n" + "float3 Reflect = reflect (ViewDir,Normal);\n" + "float fHalfLambert = L1*L1;\n" + "OUT.rgb += afLightColor[0] * (fHalfLambert +\n" + "saturate(fHalfLambert * 4.0f) * pow(dot(Reflect,afLightDir[0]),9));\n" + "}\n" + "{\n" + "float L1 = dot(Normal,afLightDir[1]) * 0.5f + 0.5f;\n" + "float3 Reflect = reflect (ViewDir,Normal);\n" + "float fHalfLambert = L1*L1;\n" + "OUT.rgb += afLightColor[1] * (fHalfLambert +\n" + "saturate(fHalfLambert * 4.0f) * pow(dot(Reflect,afLightDir[1]),9));\n" + "}\n" + "return OUT;\n" + "}\n" + // ---------------------------------------------------------------------------- + "float4 DefaultPShaderSpecular_PS20_D1(VS_OUTPUT IN) : COLOR\n" + "{\n" + "float4 OUT = float4(0.0f,0.0f,0.0f,1.0f);\n" + + "float3 Normal = normalize(IN.Normal);\n" + "float3 ViewDir = normalize(IN.ViewDir);\n" + + "{\n" + "float L1 = dot(Normal,afLightDir[0]);\n" + "float3 Reflect = reflect (Normal,afLightDir[0]);\n" + "OUT.rgb += afLightColor[0] * ((L1) +\n" + "pow(dot(Reflect,ViewDir),9));\n" + "}\n" + + "return OUT;\n" + "}\n" + // ---------------------------------------------------------------------------- + "float4 DefaultPShaderSpecular_PS20_D2(VS_OUTPUT IN) : COLOR\n" + "{\n" + "float4 OUT = float4(0.0f,0.0f,0.0f,1.0f);\n" + + "float3 Normal = normalize(IN.Normal);\n" + "float3 ViewDir = normalize(IN.ViewDir);\n" + + "{\n" + "float L1 = dot(Normal,afLightDir[0]);\n" + "float3 Reflect = reflect (Normal,afLightDir[0]);\n" + "OUT.rgb += afLightColor[0] * ((L1) +\n" + "pow(dot(Reflect,ViewDir),9));\n" + "}\n" + "{\n" + "float L1 = dot(Normal,afLightDir[1]);\n" + "float3 Reflect = reflect (Normal,afLightDir[1]);\n" + "OUT.rgb += afLightColor[1] * ((L1) +\n" + "pow(dot(Reflect,ViewDir),9));\n" + "}\n" + "return OUT;\n" + "}\n" + + // Technique for the default effect + "technique DefaultFXSpecular_D1\n" + "{\n" + "pass p0\n" + "{\n" + "CullMode=none;\n" + "PixelShader = compile ps_3_0 DefaultPShaderSpecular_D1();\n" + "VertexShader = compile vs_3_0 DefaultVShader();\n" + "}\n" + "};\n" + "technique DefaultFXSpecular_D2\n" + "{\n" + "pass p0\n" + "{\n" + "CullMode=none;\n" + "PixelShader = compile ps_3_0 DefaultPShaderSpecular_D2();\n" + "VertexShader = compile vs_3_0 DefaultVShader();\n" + "}\n" + "};\n" + + // Technique for the default effect (ps_2_0) + "technique DefaultFXSpecular_PS20_D1\n" + "{\n" + "pass p0\n" + "{\n" + "CullMode=none;\n" + "PixelShader = compile ps_2_0 DefaultPShaderSpecular_PS20_D1();\n" + "VertexShader = compile vs_2_0 DefaultVShader();\n" + "}\n" + "};\n" + "technique DefaultFXSpecular_PS20_D2\n" + "{\n" + "pass p0\n" + "{\n" + "CullMode=none;\n" + "PixelShader = compile ps_2_0 DefaultPShaderSpecular_PS20_D2();\n" + "VertexShader = compile vs_2_0 DefaultVShader();\n" + "}\n" + "};\n" + + // Technique for the default effect using the fixed function pixel pipeline + "technique DefaultFXSpecular_FF\n" + "{\n" + "pass p0\n" + "{\n" + "CullMode=none;\n" + "VertexShader = compile vs_2_0 DefaultVShader_FF();\n" + "ColorOp[0] = SelectArg1;\n" + "ColorArg0[0] = Diffuse;\n" + "AlphaOp[0] = SelectArg1;\n" + "AlphaArg0[0] = Diffuse;\n" + "}\n" + "};\n"); + +std::string g_szMaterialShader = std::string( + + // World * View * Projection matrix + // NOTE: Assume that the material uses a WorldViewProjection matrix + "float4x4 WorldViewProjection : WORLDVIEWPROJECTION;\n" + "float4x4 World : WORLD;\n" + "float4x3 WorldInverseTranspose : WORLDINVERSETRANSPOSE;\n" + + "#ifndef AV_DISABLESSS\n" + "float4x3 ViewProj;\n" + "float4x3 InvViewProj;\n" + "#endif\n" + + "float4 DIFFUSE_COLOR;\n" + "float4 SPECULAR_COLOR;\n" + "float4 AMBIENT_COLOR;\n" + "float4 EMISSIVE_COLOR;\n" + + "#ifdef AV_SPECULAR_COMPONENT\n" + "float SPECULARITY;\n" + "float SPECULAR_STRENGTH;\n" + "#endif\n" + "#ifdef AV_OPACITY\n" + "float TRANSPARENCY;\n" + "#endif\n" + + // light colors (diffuse and specular) + "float4 afLightColor[5];\n" + "float4 afLightColorAmbient[5];\n" + + // light direction + "float3 afLightDir[5];\n" + + // position of the camera in worldspace + "float3 vCameraPos : CAMERAPOSITION;\n" + + // Bone matrices + "#ifdef AV_SKINNING \n" + "float4x3 gBoneMatrix[60]; \n" + "#endif // AV_SKINNING \n" + + "#ifdef AV_DIFFUSE_TEXTURE\n" + "texture DIFFUSE_TEXTURE;\n" + "sampler DIFFUSE_SAMPLER\n" + "{\n" + "Texture = ;\n" + "#ifdef AV_WRAPU\n" + "AddressU = WRAP;\n" + "#endif\n" + "#ifdef AV_MIRRORU\n" + "AddressU = MIRROR;\n" + "#endif\n" + "#ifdef AV_CLAMPU\n" + "AddressU = CLAMP;\n" + "#endif\n" + "#ifdef AV_WRAPV\n" + "AddressV = WRAP;\n" + "#endif\n" + "#ifdef AV_MIRRORV\n" + "AddressV = MIRROR;\n" + "#endif\n" + "#ifdef AV_CLAMPV\n" + "AddressV = CLAMP;\n" + "#endif\n" + "};\n" + "#endif // AV_DIFFUSE_TEXTUR\n" + + "#ifdef AV_DIFFUSE_TEXTURE2\n" + "texture DIFFUSE_TEXTURE2;\n" + "sampler DIFFUSE_SAMPLER2\n" + "{\n" + "Texture = ;\n" + "};\n" + "#endif // AV_DIFFUSE_TEXTUR2\n" + + "#ifdef AV_SPECULAR_TEXTURE\n" + "texture SPECULAR_TEXTURE;\n" + "sampler SPECULAR_SAMPLER\n" + "{\n" + "Texture = ;\n" + "};\n" + "#endif // AV_SPECULAR_TEXTUR\n" + + "#ifdef AV_AMBIENT_TEXTURE\n" + "texture AMBIENT_TEXTURE;\n" + "sampler AMBIENT_SAMPLER\n" + "{\n" + "Texture = ;\n" + "};\n" + "#endif // AV_AMBIENT_TEXTUR\n" + + "#ifdef AV_LIGHTMAP_TEXTURE\n" + "texture LIGHTMAP_TEXTURE;\n" + "sampler LIGHTMAP_SAMPLER\n" + "{\n" + "Texture = ;\n" + "};\n" + "#endif // AV_LIGHTMAP_TEXTURE\n" + + "#ifdef AV_OPACITY_TEXTURE\n" + "texture OPACITY_TEXTURE;\n" + "sampler OPACITY_SAMPLER\n" + "{\n" + "Texture = ;\n" + "};\n" + "#endif // AV_OPACITY_TEXTURE\n" + + "#ifdef AV_EMISSIVE_TEXTURE\n" + "texture EMISSIVE_TEXTURE;\n" + "sampler EMISSIVE_SAMPLER\n" + "{\n" + "Texture = ;\n" + "};\n" + "#endif // AV_EMISSIVE_TEXTUR\n" + + "#ifdef AV_NORMAL_TEXTURE\n" + "texture NORMAL_TEXTURE;\n" + "sampler NORMAL_SAMPLER\n" + "{\n" + "Texture = ;\n" + "};\n" + "#endif // AV_NORMAL_TEXTURE\n" + + "#ifdef AV_SKYBOX_LOOKUP\n" + "textureCUBE lw_tex_envmap;\n" + "samplerCUBE EnvironmentMapSampler = sampler_state\n" + "{\n" + "Texture = (lw_tex_envmap);\n" + "AddressU = CLAMP;\n" + "AddressV = CLAMP;\n" + "AddressW = CLAMP;\n" + + "MAGFILTER = linear;\n" + "MINFILTER = linear;\n" + "};\n" + "#endif // AV_SKYBOX_LOOKUP\n" + + // Vertex shader input structure + "struct VS_INPUT\n" + "{\n" + "float3 Position : POSITION;\n" + "float3 Normal : NORMAL;\n" + "float4 Color : COLOR0;\n" + "float3 Tangent : TANGENT;\n" + "float3 Bitangent : BINORMAL;\n" + "float2 TexCoord0 : TEXCOORD0;\n" + "#ifdef AV_TWO_UV \n" + "float2 TexCoord1 : TEXCOORD1;\n" + "#endif \n" + "#ifdef AV_SKINNING \n" + "float4 BlendIndices : BLENDINDICES;\n" + "float4 BlendWeights : BLENDWEIGHT;\n" + "#endif // AV_SKINNING \n" + "};\n" + + // Vertex shader output structure for pixel shader usage + "struct VS_OUTPUT\n" + "{\n" + "float4 Position : POSITION;\n" + "float3 ViewDir : TEXCOORD0;\n" + + "float4 Color : COLOR0;\n" + + "#ifndef AV_NORMAL_TEXTURE\n" + "float3 Normal : TEXCOORD1;\n" + "#endif\n" + + "float2 TexCoord0 : TEXCOORD2;\n" + "#ifdef AV_TWO_UV \n" + "float2 TexCoord1 : TEXCOORD3;\n" + "#endif \n" + + "#ifdef AV_NORMAL_TEXTURE\n" + "float3 Light0 : TEXCOORD3;\n" + "float3 Light1 : TEXCOORD4;\n" + "#endif\n" + "};\n" + + // Vertex shader output structure for fixed function pixel pipeline + "struct VS_OUTPUT_FF\n" + "{\n" + "float4 Position : POSITION;\n" + "float4 DiffuseColor : COLOR0;\n" + "float4 SpecularColor : COLOR1;\n" + "float2 TexCoord0 : TEXCOORD0;\n" + "};\n" + + // Selective SuperSampling in screenspace for reflection lookups + "#define GetSSSCubeMap(_refl) (texCUBElod(EnvironmentMapSampler,float4(_refl,0.0f)).rgb) \n" + + // Vertex shader for pixel shader usage and one light + "VS_OUTPUT MaterialVShader_D1(VS_INPUT IN)\n" + "{\n" + "VS_OUTPUT Out = (VS_OUTPUT)0;\n" + + "#ifdef AV_SKINNING \n" + "float4 weights = IN.BlendWeights; \n" + "weights.w = 1.0f - dot( weights.xyz, float3( 1, 1, 1)); \n" + "float4 localPos = float4( IN.Position, 1.0f); \n" + "float3 objPos = mul( localPos, gBoneMatrix[IN.BlendIndices.x]) * weights.x; \n" + "objPos += mul( localPos, gBoneMatrix[IN.BlendIndices.y]) * weights.y; \n" + "objPos += mul( localPos, gBoneMatrix[IN.BlendIndices.z]) * weights.z; \n" + "objPos += mul( localPos, gBoneMatrix[IN.BlendIndices.w]) * weights.w; \n" + "#else \n" + "float3 objPos = IN.Position; \n" + "#endif // AV_SKINNING \n" + + // Multiply with the WorldViewProjection matrix + "Out.Position = mul( float4( objPos, 1.0f), WorldViewProjection);\n" + "float3 WorldPos = mul( float4( objPos, 1.0f), World);\n" + "Out.TexCoord0 = IN.TexCoord0;\n" + "#ifdef AV_TWO_UV \n" + "Out.TexCoord1 = IN.TexCoord1;\n" + "#endif\n" + "Out.Color = IN.Color;\n" + + "#ifndef AV_NORMAL_TEXTURE\n" + "Out.ViewDir = vCameraPos - WorldPos;\n" + "Out.Normal = mul(IN.Normal,WorldInverseTranspose);\n" + "#endif\n" + + "#ifdef AV_NORMAL_TEXTURE\n" + "float3x3 TBNMatrix = float3x3(IN.Tangent, IN.Bitangent, IN.Normal);\n" + "float3x3 WTTS = mul(TBNMatrix, (float3x3)WorldInverseTranspose);\n" + "Out.Light0 = normalize(mul(WTTS, afLightDir[0] ));\n" + "Out.ViewDir = normalize(mul(WTTS, (vCameraPos - WorldPos)));\n" + "#endif\n" + "return Out;\n" + "}\n" + + // Vertex shader for pixel shader usage and two lights + "VS_OUTPUT MaterialVShader_D2(VS_INPUT IN)\n" + "{\n" + "VS_OUTPUT Out = (VS_OUTPUT)0;\n" + + "#ifdef AV_SKINNING \n" + "float4 weights = IN.BlendWeights; \n" + "weights.w = 1.0f - dot( weights.xyz, float3( 1, 1, 1)); \n" + "float4 localPos = float4( IN.Position, 1.0f); \n" + "float3 objPos = mul( localPos, gBoneMatrix[IN.BlendIndices.x]) * weights.x; \n" + "objPos += mul( localPos, gBoneMatrix[IN.BlendIndices.y]) * weights.y; \n" + "objPos += mul( localPos, gBoneMatrix[IN.BlendIndices.z]) * weights.z; \n" + "objPos += mul( localPos, gBoneMatrix[IN.BlendIndices.w]) * weights.w; \n" + "#else \n" + "float3 objPos = IN.Position; \n" + "#endif // AV_SKINNING \n" + + // Multiply with the WorldViewProjection matrix + "Out.Position = mul( float4( objPos, 1.0f), WorldViewProjection);\n" + "float3 WorldPos = mul( float4( objPos, 1.0f), World);\n" + "Out.TexCoord0 = IN.TexCoord0;\n" + "#ifdef AV_TWO_UV \n" + "Out.TexCoord1 = IN.TexCoord1;\n" + "#endif\n" + "Out.Color = IN.Color;\n" + + "#ifndef AV_NORMAL_TEXTURE\n" + "Out.ViewDir = vCameraPos - WorldPos;\n" + "Out.Normal = mul(IN.Normal,WorldInverseTranspose);\n" + "#endif\n" + + "#ifdef AV_NORMAL_TEXTURE\n" + "float3x3 TBNMatrix = float3x3(IN.Tangent, IN.Bitangent, IN.Normal);\n" + "float3x3 WTTS = mul(TBNMatrix, (float3x3)WorldInverseTranspose);\n" + "Out.Light0 = normalize(mul(WTTS, afLightDir[0] ));\n" + "Out.Light1 = normalize(mul(WTTS, afLightDir[1] ));\n" + "Out.ViewDir = normalize(mul(WTTS, (vCameraPos - WorldPos)));\n" + "#endif\n" + "return Out;\n" + "}\n" + + // Vertex shader for zero to five lights using the fixed function pixel pipeline + "VS_OUTPUT_FF MaterialVShader_FF(VS_INPUT IN)\n" + "{\n" + "VS_OUTPUT_FF Out = (VS_OUTPUT_FF)0;\n" + + "#ifdef AV_SKINNING \n" + "float4 weights = IN.BlendWeights; \n" + "weights.w = 1.0f - dot( weights.xyz, float3( 1, 1, 1)); \n" + "float4 localPos = float4( IN.Position, 1.0f); \n" + "float3 objPos = mul( localPos, gBoneMatrix[IN.BlendIndices.x]) * weights.x; \n" + "objPos += mul( localPos, gBoneMatrix[IN.BlendIndices.y]) * weights.y; \n" + "objPos += mul( localPos, gBoneMatrix[IN.BlendIndices.z]) * weights.z; \n" + "objPos += mul( localPos, gBoneMatrix[IN.BlendIndices.w]) * weights.w; \n" + "#else \n" + "float3 objPos = IN.Position; \n" + "#endif // AV_SKINNING \n" + + // Multiply with the WorldViewProjection matrix + "Out.Position = mul( float4( objPos, 1.0f), WorldViewProjection);\n" + "float3 worldPos = mul( float4( objPos, 1.0f), World);\n" + "float3 worldNormal = normalize( mul( IN.Normal, (float3x3) WorldInverseTranspose)); \n" + "Out.TexCoord0 = IN.TexCoord0;\n" + + // calculate per-vertex diffuse lighting including ambient part + "float4 diffuseColor = float4( 0.0f, 0.0f, 0.0f, 1.0f); \n" + "for( int a = 0; a < 2; a++) \n" + " diffuseColor.rgb += saturate( dot( afLightDir[a], worldNormal)) * afLightColor[a].rgb; \n" + // factor in material properties and a bit of ambient lighting + "Out.DiffuseColor = diffuseColor * DIFFUSE_COLOR + float4( 0.2f, 0.2f, 0.2f, 1.0f) * AMBIENT_COLOR; ; \n" + + // and specular including emissive part + "float4 specularColor = float4( 0.0f, 0.0f, 0.0f, 1.0f); \n" + "#ifdef AV_SPECULAR_COMPONENT\n" + "float3 viewDir = normalize( worldPos - vCameraPos); \n" + "for( int a = 0; a < 2; a++) \n" + "{ \n" + " float3 reflDir = reflect( afLightDir[a], worldNormal); \n" + " float specIntensity = pow( saturate( dot( reflDir, viewDir)), SPECULARITY) * SPECULAR_STRENGTH; \n" + " specularColor.rgb += afLightColor[a] * specIntensity; \n" + "} \n" + "#endif // AV_SPECULAR_COMPONENT\n" + // factor in material properties and the emissive part + "Out.SpecularColor = specularColor * SPECULAR_COLOR + EMISSIVE_COLOR; \n" + + "return Out;\n" + "}\n" + + // Pixel shader - one light + "float4 MaterialPShaderSpecular_D1(VS_OUTPUT IN) : COLOR\n" + "{\n" + "float4 OUT = float4(0.0f,0.0f,0.0f,1.0f);\n" + + "#ifdef AV_NORMAL_TEXTURE\n" + "float3 IN_Light0 = normalize(IN.Light0);\n" + "float3 Normal = normalize(2.0f * tex2D(NORMAL_SAMPLER, IN.TexCoord0).rgb - 1.0f);\n" + "#else\n" + "float3 Normal = normalize(IN.Normal);\n" + "#endif \n" + "float3 ViewDir = normalize(IN.ViewDir);\n" + "#ifdef AV_SPECULAR_COMPONENT\n" + "float3 Reflect = normalize(reflect (-ViewDir,Normal));\n" + "#endif // !AV_SPECULAR_COMPONENT\n" + + "{\n" + "#ifdef AV_NORMAL_TEXTURE\n" + "float L1 = dot(Normal,IN_Light0) * 0.5f + 0.5f;\n" + "#define AV_LIGHT_0 IN_Light0\n" + // would need to convert the reflection vector into world space .... + // simply let it ... + "#else\n" + "float L1 = dot(Normal,afLightDir[0]) * 0.5f + 0.5f;\n" + "#define AV_LIGHT_0 afLightDir[0]\n" + "#endif\n" + "#ifdef AV_DIFFUSE_TEXTURE2\n" + "float fHalfLambert = 1.f;\n" + "#else\n" + "float fHalfLambert = L1*L1;\n" + "#endif \n" + "#ifdef AV_DIFFUSE_TEXTURE\n" + "OUT.rgb += afLightColor[0].rgb * DIFFUSE_COLOR.rgb * tex2D(DIFFUSE_SAMPLER,IN.TexCoord0).rgb * fHalfLambert * IN.Color.rgb +\n" + "#else\n" + "OUT.rgb += afLightColor[0].rgb * DIFFUSE_COLOR.rgb * fHalfLambert * IN.Color.rgb +\n" + "#endif // !AV_DIFFUSE_TEXTURE\n" + + "#ifdef AV_SPECULAR_COMPONENT\n" + "#ifndef AV_SKYBOX_LOOKUP\n" + "#ifdef AV_SPECULAR_TEXTURE\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[0].rgb * tex2D(SPECULAR_SAMPLER,IN.TexCoord0).rgb * (saturate(fHalfLambert * 2.0f) * pow(dot(Reflect,AV_LIGHT_0),SPECULARITY)) + \n" + "#else\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[0].rgb * (saturate(fHalfLambert * 2.0f) * pow(dot(Reflect,AV_LIGHT_0),SPECULARITY)) + \n" + "#endif // !AV_SPECULAR_TEXTURE\n" + "#else\n" + "#ifdef AV_SPECULAR_TEXTURE\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[0].rgb * GetSSSCubeMap(Reflect) * tex2D(SPECULAR_SAMPLER,IN.TexCoord0).rgb * (saturate(fHalfLambert * 2.0f) * pow(dot(Reflect,AV_LIGHT_0),SPECULARITY)) + \n" + "#else\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[0].rgb * GetSSSCubeMap(Reflect) * (saturate(fHalfLambert * 2.0f) * pow(dot(Reflect,AV_LIGHT_0),SPECULARITY)) + \n" + "#endif // !AV_SPECULAR_TEXTURE\n" + "#endif // !AV_SKYBOX_LOOKUP\n" + "#endif // !AV_SPECULAR_COMPONENT\n" + + "#ifdef AV_AMBIENT_TEXTURE\n" + "AMBIENT_COLOR.rgb * afLightColorAmbient[0].rgb * tex2D(AMBIENT_SAMPLER,IN.TexCoord0).rgb +\n" + "#else\n" + "AMBIENT_COLOR.rgb * afLightColorAmbient[0].rgb + \n" + "#endif // !AV_AMBIENT_TEXTURE\n" + "#ifdef AV_EMISSIVE_TEXTURE\n" + "EMISSIVE_COLOR.rgb * tex2D(EMISSIVE_SAMPLER,IN.TexCoord0).rgb;\n" + "#else \n" + "EMISSIVE_COLOR.rgb;\n" + "#endif // !AV_EMISSIVE_TEXTURE\n" + "}\n" + "#ifdef AV_OPACITY\n" + "OUT.a = TRANSPARENCY;\n" + "#endif\n" + "#ifdef AV_LIGHTMAP_TEXTURE\n" + "OUT.rgb *= tex2D(LIGHTMAP_SAMPLER,AV_LIGHTMAP_TEXTURE_UV_COORD).rgb*LM_STRENGTH;\n" + "#endif\n" + "#ifdef AV_OPACITY_TEXTURE\n" + "OUT.a *= tex2D(OPACITY_SAMPLER,IN.TexCoord0). AV_OPACITY_TEXTURE_REGISTER_MASK;\n" + "#endif\n" + "return OUT;\n" + + "#undef AV_LIGHT_0\n" + "}\n" + + // Pixel shader - two lights + "float4 MaterialPShaderSpecular_D2(VS_OUTPUT IN) : COLOR\n" + "{\n" + "float4 OUT = float4(0.0f,0.0f,0.0f,1.0f);\n" + + "#ifdef AV_NORMAL_TEXTURE\n" + "float3 IN_Light0 = normalize(IN.Light0);\n" + "float3 IN_Light1 = normalize(IN.Light1);\n" + "float3 Normal = normalize(2.0f * tex2D(NORMAL_SAMPLER, IN.TexCoord0).rgb - 1.0f);\n" + "#else\n" + "float3 Normal = normalize(IN.Normal);\n" + "#endif \n" + "float3 ViewDir = normalize(IN.ViewDir);\n" + "#ifdef AV_SPECULAR_COMPONENT\n" + "float3 Reflect = -normalize(reflect (ViewDir,Normal));\n" + "#endif // !AV_SPECULAR_COMPONENT\n" + + "{\n" + + "#ifdef AV_NORMAL_TEXTURE\n" + "float L1 = dot(Normal,IN_Light0) * 0.5f + 0.5f;\n" + "#define AV_LIGHT_0 IN_Light0\n" + "#else\n" + "float L1 = dot(Normal,afLightDir[0]) * 0.5f + 0.5f;\n" + "#define AV_LIGHT_0 afLightDir[0]\n" + "#endif\n" + "float fHalfLambert = L1*L1;\n" + + "#ifdef AV_DIFFUSE_TEXTURE\n" + "OUT.rgb += afLightColor[0].rgb * DIFFUSE_COLOR.rgb * tex2D(DIFFUSE_SAMPLER,IN.TexCoord0).rgb * fHalfLambert * IN.Color.rgb +\n" + "#else\n" + "OUT.rgb += afLightColor[0].rgb * DIFFUSE_COLOR.rgb * fHalfLambert * IN.Color.rgb +\n" + "#endif // !AV_DIFFUSE_TEXTURE\n" + + "#ifdef AV_SPECULAR_COMPONENT\n" + "#ifndef AV_SKYBOX_LOOKUP\n" + "#ifdef AV_SPECULAR_TEXTURE\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[0].rgb * tex2D(SPECULAR_SAMPLER,IN.TexCoord0).rgb * (saturate(fHalfLambert * 2.0f) * pow(dot(Reflect,AV_LIGHT_0),SPECULARITY)) + \n" + "#else\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[0].rgb * (saturate(fHalfLambert * 2.0f) * pow(dot(Reflect,AV_LIGHT_0),SPECULARITY)) + \n" + "#endif // !AV_SPECULAR_TEXTURE\n" + "#else\n" + "#ifdef AV_SPECULAR_TEXTURE\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[0].rgb * GetSSSCubeMap(Reflect) * tex2D(SPECULAR_SAMPLER,IN.TexCoord0).rgb * (saturate(fHalfLambert * 2.0f) * pow(dot(Reflect,AV_LIGHT_0),SPECULARITY)) + \n" + "#else\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[0].rgb * GetSSSCubeMap(Reflect) * (saturate(fHalfLambert * 2.0f) * pow(dot(Reflect,AV_LIGHT_0),SPECULARITY)) + \n" + "#endif // !AV_SPECULAR_TEXTURE\n" + "#endif // !AV_SKYBOX_LOOKUP\n" + "#endif // !AV_SPECULAR_COMPONENT\n" + "#ifdef AV_AMBIENT_TEXTURE\n" + "AMBIENT_COLOR.rgb * afLightColorAmbient[0].rgb * tex2D(AMBIENT_SAMPLER,IN.TexCoord0).rgb + \n" + "#else\n" + "AMBIENT_COLOR.rgb * afLightColorAmbient[0].rgb + \n" + "#endif // !AV_AMBIENT_TEXTURE\n" + "#ifdef AV_EMISSIVE_TEXTURE\n" + "EMISSIVE_COLOR.rgb * tex2D(EMISSIVE_SAMPLER,IN.TexCoord0).rgb;\n" + "#else \n" + "EMISSIVE_COLOR.rgb;\n" + "#endif // !AV_EMISSIVE_TEXTURE\n" + "}\n" + "{\n" + "#ifdef AV_NORMAL_TEXTURE\n" + "float L1 = dot(Normal,IN_Light1) * 0.5f + 0.5f;\n" + "#define AV_LIGHT_1 IN_Light1\n" + "#else\n" + "float L1 = dot(Normal,afLightDir[1]) * 0.5f + 0.5f;\n" + "#define AV_LIGHT_1 afLightDir[1]\n" + "#endif\n" + "float fHalfLambert = L1*L1;\n" + "#ifdef AV_DIFFUSE_TEXTURE\n" + "OUT.rgb += afLightColor[1].rgb * DIFFUSE_COLOR.rgb * tex2D(DIFFUSE_SAMPLER,IN.TexCoord0).rgb * fHalfLambert * IN.Color.rgb +\n" + "#else\n" + "OUT.rgb += afLightColor[1].rgb * DIFFUSE_COLOR.rgb * fHalfLambert * IN.Color.rgb +\n" + "#endif // !AV_DIFFUSE_TEXTURE\n" + + "#ifdef AV_SPECULAR_COMPONENT\n" + "#ifndef AV_SKYBOX_LOOKUP\n" + "#ifdef AV_SPECULAR_TEXTURE\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[1].rgb * tex2D(SPECULAR_SAMPLER,IN.TexCoord0).rgb * (saturate(fHalfLambert * 2.0f) * pow(dot(Reflect,AV_LIGHT_1),SPECULARITY)) + \n" + "#else\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[1].rgb * (saturate(fHalfLambert * 2.0f) * pow(dot(Reflect,AV_LIGHT_1),SPECULARITY)) + \n" + "#endif // !AV_SPECULAR_TEXTURE\n" + "#else\n" + "#ifdef AV_SPECULAR_TEXTURE\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[1].rgb * GetSSSCubeMap(Reflect) * tex2D(SPECULAR_SAMPLER,IN.TexCoord0).rgb * (saturate(fHalfLambert * 2.0f) * pow(dot(Reflect,AV_LIGHT_1),SPECULARITY)) + \n" + "#else\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[1].rgb * GetSSSCubeMap(Reflect) * (saturate(fHalfLambert * 2.0f) * pow(dot(Reflect,AV_LIGHT_1),SPECULARITY)) + \n" + "#endif // !AV_SPECULAR_TEXTURE\n" + "#endif // !AV_SKYBOX_LOOKUP\n" + "#endif // !AV_SPECULAR_COMPONENT\n" + "#ifdef AV_AMBIENT_TEXTURE\n" + "AMBIENT_COLOR.rgb * afLightColorAmbient[1].rgb * tex2D(AMBIENT_SAMPLER,IN.TexCoord0).rgb + \n" + "#else\n" + "AMBIENT_COLOR.rgb * afLightColorAmbient[1].rgb + \n" + "#endif // !AV_AMBIENT_TEXTURE\n" + "#ifdef AV_EMISSIVE_TEXTURE\n" + "EMISSIVE_COLOR.rgb * tex2D(EMISSIVE_SAMPLER,IN.TexCoord0).rgb;\n" + "#else \n" + "EMISSIVE_COLOR.rgb;\n" + "#endif // !AV_EMISSIVE_TEXTURE\n" + "}\n" + "#ifdef AV_OPACITY\n" + "OUT.a = TRANSPARENCY;\n" + "#endif\n" + "#ifdef AV_LIGHTMAP_TEXTURE\n" + "OUT.rgb *= tex2D(LIGHTMAP_SAMPLER,AV_LIGHTMAP_TEXTURE_UV_COORD).rgb*LM_STRENGTH;\n" + "#endif\n" + "#ifdef AV_OPACITY_TEXTURE\n" + "OUT.a *= tex2D(OPACITY_SAMPLER,IN.TexCoord0). AV_OPACITY_TEXTURE_REGISTER_MASK;\n" + "#endif\n" + "return OUT;\n" + + "#undef AV_LIGHT_0\n" + "#undef AV_LIGHT_1\n" + "}\n" + + // Same pixel shader again, one light + "float4 MaterialPShaderSpecular_PS20_D1(VS_OUTPUT IN) : COLOR\n" + "{\n" + "float4 OUT = float4(0.0f,0.0f,0.0f,1.0f);\n" + + "#ifdef AV_NORMAL_TEXTURE\n" + "float3 IN_Light0 = normalize(IN.Light0);\n" + "float3 Normal = normalize(2.0f * tex2D(NORMAL_SAMPLER, IN.TexCoord0).rgb - 1.0f);\n" + "#else\n" + "float3 Normal = normalize(IN.Normal);\n" + "#endif \n" + "float3 ViewDir = normalize(IN.ViewDir);\n" + + "{\n" + "#ifdef AV_NORMAL_TEXTURE\n" + "float L1 = dot(Normal,IN_Light0) * 0.5f + 0.5f;\n" + "float3 Reflect = reflect (Normal,IN_Light0);\n" + "#else\n" + "float L1 = dot(Normal,afLightDir[0]) * 0.5f + 0.5f;\n" + "float3 Reflect = reflect (Normal,afLightDir[0]);\n" + "#endif\n" + "#ifdef AV_DIFFUSE_TEXTURE\n" + "OUT.rgb += afLightColor[0].rgb * DIFFUSE_COLOR.rgb * tex2D(DIFFUSE_SAMPLER,IN.TexCoord0).rgb * L1 +\n" + "#else\n" + "OUT.rgb += afLightColor[0].rgb * DIFFUSE_COLOR.rgb * L1 +\n" + "#endif // !AV_DIFFUSE_TEXTURE\n" + + "#ifdef AV_SPECULAR_COMPONENT\n" + "#ifdef AV_SPECULAR_TEXTURE\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[0].rgb * tex2D(SPECULAR_SAMPLER,IN.TexCoord0).rgb * (saturate(L1 * 4.0f) * pow(dot(Reflect,ViewDir),SPECULARITY)) + \n" + "#else\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[0].rgb * (saturate(L1 * 4.0f) * pow(dot(Reflect,ViewDir),SPECULARITY)) + \n" + "#endif // !AV_SPECULAR_TEXTURE\n" + "#endif // !AV_SPECULAR_COMPONENT\n" + "#ifdef AV_AMBIENT_TEXTURE\n" + "AMBIENT_COLOR.rgb * afLightColorAmbient[0].rgb * tex2D(AMBIENT_SAMPLER,IN.TexCoord0).rgb +\n" + "#else\n" + "AMBIENT_COLOR.rgb * afLightColorAmbient[0].rgb +\n" + "#endif // !AV_AMBIENT_TEXTURE\n" + "#ifdef AV_EMISSIVE_TEXTURE\n" + "EMISSIVE_COLOR.rgb * tex2D(EMISSIVE_SAMPLER,IN.TexCoord0).rgb;\n" + "#else \n" + "EMISSIVE_COLOR.rgb;\n" + "#endif // !AV_EMISSIVE_TEXTURE\n" + "}\n" + + "#ifdef AV_OPACITY\n" + "OUT.a = TRANSPARENCY;\n" + "#endif\n" + "#ifdef AV_OPACITY_TEXTURE\n" + "OUT.a *= tex2D(OPACITY_SAMPLER,IN.TexCoord0). AV_OPACITY_TEXTURE_REGISTER_MASK;\n" + "#endif\n" + "return OUT;\n" + "}\n" + + // Same pixel shader again, two lights + "float4 MaterialPShaderSpecular_PS20_D2(VS_OUTPUT IN) : COLOR\n" + "{\n" + "float4 OUT = float4(0.0f,0.0f,0.0f,1.0f);\n" + + "#ifdef AV_NORMAL_TEXTURE\n" + "float3 IN_Light0 = normalize(IN.Light0);\n" + "float3 IN_Light1 = normalize(IN.Light1);\n" + "float3 Normal = normalize(2.0f * tex2D(NORMAL_SAMPLER, IN.TexCoord0) - 1.0f);\n" + "#else\n" + "float3 Normal = normalize(IN.Normal);\n" + "#endif \n" + "float3 ViewDir = normalize(IN.ViewDir);\n" + + "{\n" + "#ifdef AV_NORMAL_TEXTURE\n" + "float L1 = dot(Normal,IN_Light0) * 0.5f + 0.5f;\n" + "float3 Reflect = reflect (Normal,IN_Light0);\n" + "#else\n" + "float L1 = dot(Normal,afLightDir[0]) * 0.5f + 0.5f;\n" + "float3 Reflect = reflect (Normal,afLightDir[0]);\n" + "#endif\n" + "#ifdef AV_DIFFUSE_TEXTURE\n" + "OUT.rgb += afLightColor[0].rgb * DIFFUSE_COLOR.rgb * tex2D(DIFFUSE_SAMPLER,IN.TexCoord0).rgb * L1 +\n" + "#else\n" + "OUT.rgb += afLightColor[0].rgb * DIFFUSE_COLOR.rgb * L1 +\n" + "#endif // !AV_DIFFUSE_TEXTURE\n" + + "#ifdef AV_SPECULAR_COMPONENT\n" + "#ifdef AV_SPECULAR_TEXTURE\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[0].rgb * tex2D(SPECULAR_SAMPLER,IN.TexCoord0).rgb * (saturate(L1 * 4.0f) * pow(dot(Reflect,ViewDir),SPECULARITY)) + \n" + "#else\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[0].rgb * (saturate(L1 * 4.0f) * pow(dot(Reflect,ViewDir),SPECULARITY)) + \n" + "#endif // !AV_SPECULAR_TEXTURE\n" + "#endif // !AV_SPECULAR_COMPONENT\n" + "#ifdef AV_AMBIENT_TEXTURE\n" + "AMBIENT_COLOR.rgb * afLightColorAmbient[0].rgb * tex2D(AMBIENT_SAMPLER,IN.TexCoord0).rgb +\n" + "#else\n" + "AMBIENT_COLOR.rgb * afLightColorAmbient[0].rgb +\n" + "#endif // !AV_AMBIENT_TEXTURE\n" + "#ifdef AV_EMISSIVE_TEXTURE\n" + "EMISSIVE_COLOR.rgb * tex2D(EMISSIVE_SAMPLER,IN.TexCoord0).rgb;\n" + "#else \n" + "EMISSIVE_COLOR.rgb;\n" + "#endif // !AV_EMISSIVE_TEXTURE\n" + "}\n" + "{\n" + "#ifdef AV_NORMAL_TEXTURE\n" + "float L1 = dot(Normal,IN_Light1) * 0.5f + 0.5f;\n" + "float3 Reflect = reflect (Normal,IN_Light1);\n" + "#else\n" + "float L1 = dot(Normal,afLightDir[1]) * 0.5f + 0.5f;\n" + "float3 Reflect = reflect (Normal,afLightDir[1]);\n" + "#endif\n" + "#ifdef AV_DIFFUSE_TEXTURE\n" + "OUT.rgb += afLightColor[1].rgb * DIFFUSE_COLOR.rgb * tex2D(DIFFUSE_SAMPLER,IN.TexCoord0).rgb * L1 +\n" + "#else\n" + "OUT.rgb += afLightColor[1].rgb * DIFFUSE_COLOR.rgb * L1 +\n" + "#endif // !AV_DIFFUSE_TEXTURE\n" + + "#ifdef AV_SPECULAR_COMPONENT\n" + "#ifdef AV_SPECULAR_TEXTURE\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[1].rgb * tex2D(SPECULAR_SAMPLER,IN.TexCoord0).rgb * (saturate(L1 * 4.0f) * pow(dot(Reflect,ViewDir),SPECULARITY)) + \n" + "#else\n" + "SPECULAR_COLOR.rgb * SPECULAR_STRENGTH * afLightColor[1].rgb * (saturate(L1 * 4.0f) * pow(dot(Reflect,ViewDir),SPECULARITY)) + \n" + "#endif // !AV_SPECULAR_TEXTURE\n" + "#endif // !AV_SPECULAR_COMPONENT\n" + "#ifdef AV_AMBIENT_TEXTURE\n" + "AMBIENT_COLOR.rgb * afLightColorAmbient[1].rgb * tex2D(AMBIENT_SAMPLER,IN.TexCoord0).rgb +\n" + "#else\n" + "AMBIENT_COLOR.rgb * afLightColorAmbient[1].rgb + \n" + "#endif // !AV_AMBIENT_TEXTURE\n" + "#ifdef AV_EMISSIVE_TEXTURE\n" + "EMISSIVE_COLOR.rgb * tex2D(EMISSIVE_SAMPLER,IN.TexCoord0).rgb;\n" + "#else \n" + "EMISSIVE_COLOR.rgb;\n" + "#endif // !AV_EMISSIVE_TEXTURE\n" + "}\n" + + "#ifdef AV_OPACITY\n" + "OUT.a = TRANSPARENCY;\n" + "#endif\n" + "#ifdef AV_OPACITY_TEXTURE\n" + "OUT.a *= tex2D(OPACITY_SAMPLER,IN.TexCoord0). AV_OPACITY_TEXTURE_REGISTER_MASK;\n" + "#endif\n" + "return OUT;\n" + "}\n" + + // Technique for the material effect + "technique MaterialFXSpecular_D1\n" + "{\n" + "pass p0\n" + "{\n" + "#ifdef AV_OPACITY_TEXTURE\n" + "AlphaBlendEnable=TRUE;" + "SrcBlend = srcalpha;\n" + "DestBlend = invsrcalpha;\n" + "#else\n" + "#ifdef AV_OPACITY\n" + "AlphaBlendEnable=TRUE;" + "SrcBlend = srcalpha;\n" + "DestBlend = invsrcalpha;\n" + "#endif \n" + "#endif\n" + + "PixelShader = compile ps_3_0 MaterialPShaderSpecular_D1();\n" + "VertexShader = compile vs_3_0 MaterialVShader_D1();\n" + "}\n" + "};\n" + "technique MaterialFXSpecular_D2\n" + "{\n" + "pass p0\n" + "{\n" + "#ifdef AV_OPACITY_TEXTURE\n" + "AlphaBlendEnable=TRUE;" + "SrcBlend = srcalpha;\n" + "DestBlend = invsrcalpha;\n" + "#else\n" + "#ifdef AV_OPACITY\n" + "AlphaBlendEnable=TRUE;" + "SrcBlend = srcalpha;\n" + "DestBlend = invsrcalpha;\n" + "#endif \n" + "#endif\n" + + "PixelShader = compile ps_3_0 MaterialPShaderSpecular_D2();\n" + "VertexShader = compile vs_3_0 MaterialVShader_D2();\n" + "}\n" + "};\n" + + // Technique for the material effect (ps_2_0) + "technique MaterialFXSpecular_PS20_D1\n" + "{\n" + "pass p0\n" + "{\n" + "#ifdef AV_OPACITY_TEXTURE\n" + "AlphaBlendEnable=TRUE;" + "SrcBlend = srcalpha;\n" + "DestBlend = invsrcalpha;\n" + "#else\n" + "#ifdef AV_OPACITY\n" + "AlphaBlendEnable=TRUE;" + "SrcBlend = srcalpha;\n" + "DestBlend = invsrcalpha;\n" + "#endif \n" + "#endif\n" + + "PixelShader = compile ps_2_0 MaterialPShaderSpecular_PS20_D1();\n" + "VertexShader = compile vs_2_0 MaterialVShader_D1();\n" + "}\n" + "};\n" + + "technique MaterialFXSpecular_PS20_D2\n" + "{\n" + "pass p0\n" + "{\n" + "//CullMode=none;\n" + + "#ifdef AV_OPACITY_TEXTURE\n" + "AlphaBlendEnable=TRUE;" + "SrcBlend = srcalpha;\n" + "DestBlend = invsrcalpha;\n" + "#else\n" + "#ifdef AV_OPACITY\n" + "AlphaBlendEnable=TRUE;" + "SrcBlend = srcalpha;\n" + "DestBlend = invsrcalpha;\n" + "#endif \n" + "#endif\n" + + "PixelShader = compile ps_2_0 MaterialPShaderSpecular_PS20_D2();\n" + "VertexShader = compile vs_2_0 MaterialVShader_D2();\n" + "}\n" + "};\n" + + // Technique for the material effect using fixed function pixel pipeline + "technique MaterialFX_FF\n" + "{\n" + "pass p0\n" + "{\n" + "//CullMode=none;\n" + "SpecularEnable = true; \n" + "VertexShader = compile vs_2_0 MaterialVShader_FF();\n" + "ColorOp[0] = Modulate;\n" + "ColorArg0[0] = Texture;\n" + "ColorArg1[0] = Diffuse;\n" + "AlphaOp[0] = Modulate;\n" + "AlphaArg0[0] = Texture;\n" + "AlphaArg1[0] = Diffuse;\n" + "}\n" + "};\n"); + +std::string g_szPassThroughShader = std::string( + "texture TEXTURE_2D;\n" + "sampler TEXTURE_SAMPLER = sampler_state\n" + "{\n" + "Texture = (TEXTURE_2D);\n" + "MinFilter = POINT;\n" + "MagFilter = POINT;\n" + "};\n" + + // Vertex Shader output for pixel shader usage + "struct VS_OUTPUT\n" + "{\n" + "float4 Position : POSITION;\n" + "float2 TexCoord0 : TEXCOORD0;\n" + "};\n" + + // vertex shader for pixel shader usage + "VS_OUTPUT DefaultVShader(float4 INPosition : POSITION, float2 INTexCoord0 : TEXCOORD0 )\n" + "{\n" + "VS_OUTPUT Out;\n" + + "Out.Position = INPosition;\n" + "Out.TexCoord0 = INTexCoord0;\n" + + "return Out;\n" + "}\n" + + // simply lookup a texture + "float4 PassThrough_PS(float2 IN : TEXCOORD0) : COLOR\n" + "{\n" + " return tex2D(TEXTURE_SAMPLER,IN);\n" + "}\n" + + // visualize the alpha channel (in black) -> use a + "float4 PassThroughAlphaA_PS(float2 IN : TEXCOORD0) : COLOR\n" + "{\n" + " return float4(0.0f,0.0f,0.0f,tex2D(TEXTURE_SAMPLER,IN).a);\n" + "}\n" + + // visualize the alpha channel (in black) -> use r + "float4 PassThroughAlphaR_PS(float2 IN : TEXCOORD0) : COLOR\n" + "{\n" + " return float4(0.0f,0.0f,0.0f,tex2D(TEXTURE_SAMPLER,IN).r);\n" + "}\n" + + // Simple pass-through technique + "technique PassThrough\n" + "{\n" + "pass p0\n" + "{\n" + "FillMode=Solid;\n" + "ZEnable = FALSE;\n" + "CullMode = none;\n" + "AlphaBlendEnable = TRUE;\n" + "SrcBlend =srcalpha;\n" + "DestBlend =invsrcalpha;\n" + "PixelShader = compile ps_2_0 PassThrough_PS();\n" + "VertexShader = compile vs_2_0 DefaultVShader();\n" + "}\n" + "};\n" + + // Pass-through technique which visualizes the texture's alpha channel + "technique PassThroughAlphaFromA\n" + "{\n" + "pass p0\n" + "{\n" + "FillMode=Solid;\n" + "ZEnable = FALSE;\n" + "CullMode = none;\n" + "AlphaBlendEnable = TRUE;\n" + "SrcBlend =srcalpha;\n" + "DestBlend =invsrcalpha;\n" + "PixelShader = compile ps_2_0 PassThroughAlphaA_PS();\n" + "VertexShader = compile vs_2_0 DefaultVShader();\n" + "}\n" + "};\n" + + // Pass-through technique which visualizes the texture's red channel + "technique PassThroughAlphaFromR\n" + "{\n" + "pass p0\n" + "{\n" + "FillMode=Solid;\n" + "ZEnable = FALSE;\n" + "CullMode = none;\n" + "AlphaBlendEnable = TRUE;\n" + "SrcBlend =srcalpha;\n" + "DestBlend =invsrcalpha;\n" + "PixelShader = compile ps_2_0 PassThroughAlphaR_PS();\n" + "VertexShader = compile vs_2_0 DefaultVShader();\n" + "}\n" + "};\n" + + // technique for fixed function pixel pipeline + "technique PassThrough_FF\n" + "{\n" + "pass p0\n" + "{\n" + "ZEnable = FALSE;\n" + "CullMode = none;\n" + "AlphaBlendEnable = TRUE;\n" + "SrcBlend =srcalpha;\n" + "DestBlend =invsrcalpha;\n" + "VertexShader = compile vs_2_0 DefaultVShader();\n" + "ColorOp[0] = SelectArg1;\n" + "ColorArg0[0] = Texture;\n" + "AlphaOp[0] = SelectArg1;\n" + "AlphaArg0[0] = Texture;\n" + "}\n" + "};\n"); + +std::string g_szCheckerBackgroundShader = std::string( + + // the two colors used to draw the checker pattern + "float3 COLOR_ONE = float3(0.4f,0.4f,0.4f);\n" + "float3 COLOR_TWO = float3(0.6f,0.6f,0.6f);\n" + + // size of a square in both x and y direction + "float SQUARE_SIZE = 10.0f;\n" + + // vertex shader output structure + "struct VS_OUTPUT\n" + "{\n" + "float4 Position : POSITION;\n" + "};\n" + + // vertex shader + "VS_OUTPUT DefaultVShader(float4 INPosition : POSITION, float2 INTexCoord0 : TEXCOORD0 )\n" + "{\n" + "VS_OUTPUT Out;\n" + + "Out.Position = INPosition;\n" + "return Out;\n" + "}\n" + + // pixel shader + "float4 MakePattern_PS(float2 IN : VPOS) : COLOR\n" + "{\n" + "float2 fDiv = IN / SQUARE_SIZE;\n" + "float3 fColor = COLOR_ONE;\n" + "if (0 == round(fmod(round(fDiv.x),2)))\n" + "{\n" + " if (0 == round(fmod(round(fDiv.y),2))) fColor = COLOR_TWO;\n" + "}\n" + "else if (0 != round(fmod(round(fDiv.y),2)))fColor = COLOR_TWO;\n" + "return float4(fColor,1.0f);" + "}\n" + + // technique to generate a pattern + "technique MakePattern\n" + "{\n" + "pass p0\n" + "{\n" + "FillMode=Solid;\n" + "ZEnable = FALSE;\n" + "CullMode = none;\n" + "PixelShader = compile ps_3_0 MakePattern_PS();\n" + "VertexShader = compile vs_3_0 DefaultVShader();\n" + "}\n" + "};\n"); +} // namespace AssimpView -- cgit v1.2.1