/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2020, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ #ifndef ASSIMP_BUILD_NO_OBJ_IMPORTER #include "ObjFileImporter.h" #include "ObjFileData.h" #include "ObjFileParser.h" #include #include #include #include #include #include #include #include #include static const aiImporterDesc desc = { "Wavefront Object Importer", "", "", "surfaces not supported", aiImporterFlags_SupportTextFlavour, 0, 0, 0, 0, "obj" }; static const unsigned int ObjMinSize = 16; namespace Assimp { using namespace std; // ------------------------------------------------------------------------------------------------ // Default constructor ObjFileImporter::ObjFileImporter() : m_Buffer(), m_pRootObject(nullptr), m_strAbsPath(std::string(1, DefaultIOSystem().getOsSeparator())) {} // ------------------------------------------------------------------------------------------------ // Destructor. ObjFileImporter::~ObjFileImporter() { delete m_pRootObject; m_pRootObject = nullptr; } // ------------------------------------------------------------------------------------------------ // Returns true if file is an obj file. bool ObjFileImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const { static const char *tokens[] = { "mtllib", "usemtl", "v ", "vt ", "vn ", "o ", "g ", "s ", "f " }; return BaseImporter::SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens), 200, false, true); } // ------------------------------------------------------------------------------------------------ const aiImporterDesc *ObjFileImporter::GetInfo() const { return &desc; } // ------------------------------------------------------------------------------------------------ // Obj-file import implementation void ObjFileImporter::InternReadFile(const std::string &file, aiScene *pScene, IOSystem *pIOHandler) { // Read file into memory static const std::string mode = "rb"; auto streamCloser = [&](IOStream *pStream) { pIOHandler->Close(pStream); }; std::unique_ptr fileStream(pIOHandler->Open(file, mode), streamCloser); if (!fileStream.get()) { throw DeadlyImportError("Failed to open file ", file, "."); } // Get the file-size and validate it, throwing an exception when fails size_t fileSize = fileStream->FileSize(); if (fileSize < ObjMinSize) { throw DeadlyImportError("OBJ-file is too small."); } IOStreamBuffer streamedBuffer; streamedBuffer.open(fileStream.get()); // Allocate buffer and read file into it //TextFileToBuffer( fileStream.get(),m_Buffer); // Get the model name std::string modelName, folderName; std::string::size_type pos = file.find_last_of("\\/"); if (pos != std::string::npos) { modelName = file.substr(pos + 1, file.size() - pos - 1); folderName = file.substr(0, pos); if (!folderName.empty()) { pIOHandler->PushDirectory(folderName); } } else { modelName = file; } // parse the file into a temporary representation ObjFileParser parser(streamedBuffer, modelName, pIOHandler, m_progress, file); // And create the proper return structures out of it CreateDataFromImport(parser.GetModel(), pScene); streamedBuffer.close(); // Clean up allocated storage for the next import m_Buffer.clear(); // Pop directory stack if (pIOHandler->StackSize() > 0) { pIOHandler->PopDirectory(); } } // ------------------------------------------------------------------------------------------------ // Create the data from parsed obj-file void ObjFileImporter::CreateDataFromImport(const ObjFile::Model *pModel, aiScene *pScene) { if (nullptr == pModel) { return; } // Create the root node of the scene pScene->mRootNode = new aiNode; if (!pModel->m_ModelName.empty()) { // Set the name of the scene pScene->mRootNode->mName.Set(pModel->m_ModelName); } else { // This is a fatal error, so break down the application ai_assert(false); } if (!pModel->m_Objects.empty()) { unsigned int meshCount = 0; unsigned int childCount = 0; for (auto object : pModel->m_Objects) { if (object) { ++childCount; meshCount += (unsigned int)object->m_Meshes.size(); } } // Allocate space for the child nodes on the root node pScene->mRootNode->mChildren = new aiNode *[childCount]; // Create nodes for the whole scene std::vector MeshArray; MeshArray.reserve(meshCount); for (size_t index = 0; index < pModel->m_Objects.size(); ++index) { createNodes(pModel, pModel->m_Objects[index], pScene->mRootNode, pScene, MeshArray); } ai_assert(pScene->mRootNode->mNumChildren == childCount); // Create mesh pointer buffer for this scene if (pScene->mNumMeshes > 0) { pScene->mMeshes = new aiMesh *[MeshArray.size()]; for (size_t index = 0; index < MeshArray.size(); ++index) { pScene->mMeshes[index] = MeshArray[index]; } } // Create all materials createMaterials(pModel, pScene); } else { if (pModel->m_Vertices.empty()) { return; } std::unique_ptr mesh(new aiMesh); mesh->mPrimitiveTypes = aiPrimitiveType_POINT; unsigned int n = (unsigned int)pModel->m_Vertices.size(); mesh->mNumVertices = n; mesh->mVertices = new aiVector3D[n]; memcpy(mesh->mVertices, pModel->m_Vertices.data(), n * sizeof(aiVector3D)); if (!pModel->m_Normals.empty()) { mesh->mNormals = new aiVector3D[n]; if (pModel->m_Normals.size() < n) { throw DeadlyImportError("OBJ: vertex normal index out of range"); } memcpy(mesh->mNormals, pModel->m_Normals.data(), n * sizeof(aiVector3D)); } if (!pModel->m_VertexColors.empty()) { mesh->mColors[0] = new aiColor4D[mesh->mNumVertices]; for (unsigned int i = 0; i < n; ++i) { if (i < pModel->m_VertexColors.size()) { const aiVector3D &color = pModel->m_VertexColors[i]; mesh->mColors[0][i] = aiColor4D(color.x, color.y, color.z, 1.0); } else { throw DeadlyImportError("OBJ: vertex color index out of range"); } } } pScene->mRootNode->mNumMeshes = 1; pScene->mRootNode->mMeshes = new unsigned int[1]; pScene->mRootNode->mMeshes[0] = 0; pScene->mMeshes = new aiMesh *[1]; pScene->mNumMeshes = 1; pScene->mMeshes[0] = mesh.release(); } } // ------------------------------------------------------------------------------------------------ // Creates all nodes of the model aiNode *ObjFileImporter::createNodes(const ObjFile::Model *pModel, const ObjFile::Object *pObject, aiNode *pParent, aiScene *pScene, std::vector &MeshArray) { ai_assert(nullptr != pModel); if (nullptr == pObject) { return nullptr; } // Store older mesh size to be able to computes mesh offsets for new mesh instances const size_t oldMeshSize = MeshArray.size(); aiNode *pNode = new aiNode; pNode->mName = pObject->m_strObjName; // If we have a parent node, store it ai_assert(nullptr != pParent); appendChildToParentNode(pParent, pNode); for (size_t i = 0; i < pObject->m_Meshes.size(); ++i) { unsigned int meshId = pObject->m_Meshes[i]; aiMesh *pMesh = createTopology(pModel, pObject, meshId); if (pMesh) { if (pMesh->mNumFaces > 0) { MeshArray.push_back(pMesh); } else { delete pMesh; } } } // Create all nodes from the sub-objects stored in the current object if (!pObject->m_SubObjects.empty()) { size_t numChilds = pObject->m_SubObjects.size(); pNode->mNumChildren = static_cast(numChilds); pNode->mChildren = new aiNode *[numChilds]; pNode->mNumMeshes = 1; pNode->mMeshes = new unsigned int[1]; } // Set mesh instances into scene- and node-instances const size_t meshSizeDiff = MeshArray.size() - oldMeshSize; if (meshSizeDiff > 0) { pNode->mMeshes = new unsigned int[meshSizeDiff]; pNode->mNumMeshes = static_cast(meshSizeDiff); size_t index = 0; for (size_t i = oldMeshSize; i < MeshArray.size(); ++i) { pNode->mMeshes[index] = pScene->mNumMeshes; pScene->mNumMeshes++; ++index; } } return pNode; } // ------------------------------------------------------------------------------------------------ // Create topology data aiMesh *ObjFileImporter::createTopology(const ObjFile::Model *pModel, const ObjFile::Object *pData, unsigned int meshIndex) { // Checking preconditions ai_assert(nullptr != pModel); if (nullptr == pData) { return nullptr; } // Create faces ObjFile::Mesh *pObjMesh = pModel->m_Meshes[meshIndex]; if (!pObjMesh) { return nullptr; } if (pObjMesh->m_Faces.empty()) { return nullptr; } std::unique_ptr pMesh(new aiMesh); if (!pObjMesh->m_name.empty()) { pMesh->mName.Set(pObjMesh->m_name); } for (size_t index = 0; index < pObjMesh->m_Faces.size(); index++) { ObjFile::Face *const inp = pObjMesh->m_Faces[index]; ai_assert(nullptr != inp); if (inp->m_PrimitiveType == aiPrimitiveType_LINE) { pMesh->mNumFaces += static_cast(inp->m_vertices.size() - 1); pMesh->mPrimitiveTypes |= aiPrimitiveType_LINE; } else if (inp->m_PrimitiveType == aiPrimitiveType_POINT) { pMesh->mNumFaces += static_cast(inp->m_vertices.size()); pMesh->mPrimitiveTypes |= aiPrimitiveType_POINT; } else { ++pMesh->mNumFaces; if (inp->m_vertices.size() > 3) { pMesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON; } else { pMesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE; } } } unsigned int uiIdxCount(0u); if (pMesh->mNumFaces > 0) { pMesh->mFaces = new aiFace[pMesh->mNumFaces]; if (pObjMesh->m_uiMaterialIndex != ObjFile::Mesh::NoMaterial) { pMesh->mMaterialIndex = pObjMesh->m_uiMaterialIndex; } unsigned int outIndex(0); // Copy all data from all stored meshes for (auto &face : pObjMesh->m_Faces) { ObjFile::Face *const inp = face; if (inp->m_PrimitiveType == aiPrimitiveType_LINE) { for (size_t i = 0; i < inp->m_vertices.size() - 1; ++i) { aiFace &f = pMesh->mFaces[outIndex++]; uiIdxCount += f.mNumIndices = 2; f.mIndices = new unsigned int[2]; } continue; } else if (inp->m_PrimitiveType == aiPrimitiveType_POINT) { for (size_t i = 0; i < inp->m_vertices.size(); ++i) { aiFace &f = pMesh->mFaces[outIndex++]; uiIdxCount += f.mNumIndices = 1; f.mIndices = new unsigned int[1]; } continue; } aiFace *pFace = &pMesh->mFaces[outIndex++]; const unsigned int uiNumIndices = (unsigned int)face->m_vertices.size(); uiIdxCount += pFace->mNumIndices = (unsigned int)uiNumIndices; if (pFace->mNumIndices > 0) { pFace->mIndices = new unsigned int[uiNumIndices]; } } } // Create mesh vertices createVertexArray(pModel, pData, meshIndex, pMesh.get(), uiIdxCount); return pMesh.release(); } // ------------------------------------------------------------------------------------------------ // Creates a vertex array void ObjFileImporter::createVertexArray(const ObjFile::Model *pModel, const ObjFile::Object *pCurrentObject, unsigned int uiMeshIndex, aiMesh *pMesh, unsigned int numIndices) { // Checking preconditions ai_assert(nullptr != pCurrentObject); // Break, if no faces are stored in object if (pCurrentObject->m_Meshes.empty()) return; // Get current mesh ObjFile::Mesh *pObjMesh = pModel->m_Meshes[uiMeshIndex]; if (nullptr == pObjMesh || pObjMesh->m_uiNumIndices < 1) { return; } // Copy vertices of this mesh instance pMesh->mNumVertices = numIndices; if (pMesh->mNumVertices == 0) { throw DeadlyImportError("OBJ: no vertices"); } else if (pMesh->mNumVertices > AI_MAX_VERTICES) { throw DeadlyImportError("OBJ: Too many vertices"); } pMesh->mVertices = new aiVector3D[pMesh->mNumVertices]; // Allocate buffer for normal vectors if (!pModel->m_Normals.empty() && pObjMesh->m_hasNormals) pMesh->mNormals = new aiVector3D[pMesh->mNumVertices]; // Allocate buffer for vertex-color vectors if (!pModel->m_VertexColors.empty()) pMesh->mColors[0] = new aiColor4D[pMesh->mNumVertices]; // Allocate buffer for texture coordinates if (!pModel->m_TextureCoord.empty() && pObjMesh->m_uiUVCoordinates[0]) { pMesh->mNumUVComponents[0] = pModel->m_TextureCoordDim; pMesh->mTextureCoords[0] = new aiVector3D[pMesh->mNumVertices]; } // Copy vertices, normals and textures into aiMesh instance bool normalsok = true, uvok = true; unsigned int newIndex = 0, outIndex = 0; for (auto sourceFace : pObjMesh->m_Faces) { // Copy all index arrays for (size_t vertexIndex = 0, outVertexIndex = 0; vertexIndex < sourceFace->m_vertices.size(); vertexIndex++) { const unsigned int vertex = sourceFace->m_vertices.at(vertexIndex); if (vertex >= pModel->m_Vertices.size()) { throw DeadlyImportError("OBJ: vertex index out of range"); } if (pMesh->mNumVertices <= newIndex) { throw DeadlyImportError("OBJ: bad vertex index"); } pMesh->mVertices[newIndex] = pModel->m_Vertices[vertex]; // Copy all normals if (normalsok && !pModel->m_Normals.empty() && vertexIndex < sourceFace->m_normals.size()) { const unsigned int normal = sourceFace->m_normals.at(vertexIndex); if (normal >= pModel->m_Normals.size()) { normalsok = false; } else { pMesh->mNormals[newIndex] = pModel->m_Normals[normal]; } } // Copy all vertex colors if (vertex < pModel->m_VertexColors.size()) { const aiVector3D &color = pModel->m_VertexColors[vertex]; pMesh->mColors[0][newIndex] = aiColor4D(color.x, color.y, color.z, 1.0); } // Copy all texture coordinates if (uvok && !pModel->m_TextureCoord.empty() && vertexIndex < sourceFace->m_texturCoords.size()) { const unsigned int tex = sourceFace->m_texturCoords.at(vertexIndex); if (tex >= pModel->m_TextureCoord.size()) { uvok = false; } else { const aiVector3D &coord3d = pModel->m_TextureCoord[tex]; pMesh->mTextureCoords[0][newIndex] = aiVector3D(coord3d.x, coord3d.y, coord3d.z); } } // Get destination face aiFace *pDestFace = &pMesh->mFaces[outIndex]; const bool last = (vertexIndex == sourceFace->m_vertices.size() - 1); if (sourceFace->m_PrimitiveType != aiPrimitiveType_LINE || !last) { pDestFace->mIndices[outVertexIndex] = newIndex; outVertexIndex++; } if (sourceFace->m_PrimitiveType == aiPrimitiveType_POINT) { outIndex++; outVertexIndex = 0; } else if (sourceFace->m_PrimitiveType == aiPrimitiveType_LINE) { outVertexIndex = 0; if (!last) outIndex++; if (vertexIndex) { if (!last) { pMesh->mVertices[newIndex + 1] = pMesh->mVertices[newIndex]; if (!sourceFace->m_normals.empty() && !pModel->m_Normals.empty()) { pMesh->mNormals[newIndex + 1] = pMesh->mNormals[newIndex]; } if (!pModel->m_TextureCoord.empty()) { for (size_t i = 0; i < pMesh->GetNumUVChannels(); i++) { pMesh->mTextureCoords[i][newIndex + 1] = pMesh->mTextureCoords[i][newIndex]; } } ++newIndex; } pDestFace[-1].mIndices[1] = newIndex; } } else if (last) { outIndex++; } ++newIndex; } } if (!normalsok) { delete[] pMesh->mNormals; pMesh->mNormals = nullptr; } if (!uvok) { delete[] pMesh->mTextureCoords[0]; pMesh->mTextureCoords[0] = nullptr; } } // ------------------------------------------------------------------------------------------------ // Counts all stored meshes void ObjFileImporter::countObjects(const std::vector &rObjects, int &iNumMeshes) { iNumMeshes = 0; if (rObjects.empty()) return; iNumMeshes += static_cast(rObjects.size()); for (auto object : rObjects) { if (!object->m_SubObjects.empty()) { countObjects(object->m_SubObjects, iNumMeshes); } } } // ------------------------------------------------------------------------------------------------ // Add clamp mode property to material if necessary void ObjFileImporter::addTextureMappingModeProperty(aiMaterial *mat, aiTextureType type, int clampMode, int index) { if (nullptr == mat) { return; } mat->AddProperty(&clampMode, 1, AI_MATKEY_MAPPINGMODE_U(type, index)); mat->AddProperty(&clampMode, 1, AI_MATKEY_MAPPINGMODE_V(type, index)); } // ------------------------------------------------------------------------------------------------ // Creates the material void ObjFileImporter::createMaterials(const ObjFile::Model *pModel, aiScene *pScene) { if (nullptr == pScene) { return; } const unsigned int numMaterials = (unsigned int)pModel->m_MaterialLib.size(); pScene->mNumMaterials = 0; if (pModel->m_MaterialLib.empty()) { ASSIMP_LOG_DEBUG("OBJ: no materials specified"); return; } pScene->mMaterials = new aiMaterial *[numMaterials]; for (unsigned int matIndex = 0; matIndex < numMaterials; matIndex++) { // Store material name std::map::const_iterator it; it = pModel->m_MaterialMap.find(pModel->m_MaterialLib[matIndex]); // No material found, use the default material if (pModel->m_MaterialMap.end() == it) continue; aiMaterial *mat = new aiMaterial; ObjFile::Material *pCurrentMaterial = (*it).second; mat->AddProperty(&pCurrentMaterial->MaterialName, AI_MATKEY_NAME); // convert illumination model int sm = 0; switch (pCurrentMaterial->illumination_model) { case 0: sm = aiShadingMode_NoShading; break; case 1: sm = aiShadingMode_Gouraud; break; case 2: sm = aiShadingMode_Phong; break; default: sm = aiShadingMode_Gouraud; ASSIMP_LOG_ERROR("OBJ: unexpected illumination model (0-2 recognized)"); } mat->AddProperty(&sm, 1, AI_MATKEY_SHADING_MODEL); // Preserve the original illum value mat->AddProperty(&pCurrentMaterial->illumination_model, 1, AI_MATKEY_OBJ_ILLUM); // Adding material colors mat->AddProperty(&pCurrentMaterial->ambient, 1, AI_MATKEY_COLOR_AMBIENT); mat->AddProperty(&pCurrentMaterial->diffuse, 1, AI_MATKEY_COLOR_DIFFUSE); mat->AddProperty(&pCurrentMaterial->specular, 1, AI_MATKEY_COLOR_SPECULAR); mat->AddProperty(&pCurrentMaterial->emissive, 1, AI_MATKEY_COLOR_EMISSIVE); mat->AddProperty(&pCurrentMaterial->shineness, 1, AI_MATKEY_SHININESS); mat->AddProperty(&pCurrentMaterial->alpha, 1, AI_MATKEY_OPACITY); mat->AddProperty(&pCurrentMaterial->transparent, 1, AI_MATKEY_COLOR_TRANSPARENT); mat->AddProperty(&pCurrentMaterial->roughness, 1, AI_MATKEY_ROUGHNESS_FACTOR); mat->AddProperty(&pCurrentMaterial->metallic, 1, AI_MATKEY_METALLIC_FACTOR); mat->AddProperty(&pCurrentMaterial->sheen, 1, AI_MATKEY_SHEEN_COLOR_FACTOR); mat->AddProperty(&pCurrentMaterial->clearcoat_thickness, 1, AI_MATKEY_CLEARCOAT_FACTOR); mat->AddProperty(&pCurrentMaterial->clearcoat_roughness, 1, AI_MATKEY_CLEARCOAT_ROUGHNESS_FACTOR); mat->AddProperty(&pCurrentMaterial->anisotropy, 1, AI_MATKEY_ANISOTROPY_FACTOR); // Adding refraction index mat->AddProperty(&pCurrentMaterial->ior, 1, AI_MATKEY_REFRACTI); // Adding textures const int uvwIndex = 0; if (0 != pCurrentMaterial->texture.length) { mat->AddProperty(&pCurrentMaterial->texture, AI_MATKEY_TEXTURE_DIFFUSE(0)); mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_DIFFUSE(0)); if (pCurrentMaterial->clamp[ObjFile::Material::TextureDiffuseType]) { addTextureMappingModeProperty(mat, aiTextureType_DIFFUSE); } } if (0 != pCurrentMaterial->textureAmbient.length) { mat->AddProperty(&pCurrentMaterial->textureAmbient, AI_MATKEY_TEXTURE_AMBIENT(0)); mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_AMBIENT(0)); if (pCurrentMaterial->clamp[ObjFile::Material::TextureAmbientType]) { addTextureMappingModeProperty(mat, aiTextureType_AMBIENT); } } if (0 != pCurrentMaterial->textureEmissive.length) { mat->AddProperty(&pCurrentMaterial->textureEmissive, AI_MATKEY_TEXTURE_EMISSIVE(0)); mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_EMISSIVE(0)); } if (0 != pCurrentMaterial->textureSpecular.length) { mat->AddProperty(&pCurrentMaterial->textureSpecular, AI_MATKEY_TEXTURE_SPECULAR(0)); mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_SPECULAR(0)); if (pCurrentMaterial->clamp[ObjFile::Material::TextureSpecularType]) { addTextureMappingModeProperty(mat, aiTextureType_SPECULAR); } } if (0 != pCurrentMaterial->textureBump.length) { mat->AddProperty(&pCurrentMaterial->textureBump, AI_MATKEY_TEXTURE_HEIGHT(0)); mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_HEIGHT(0)); if (pCurrentMaterial->bump_multiplier != 1.0) { mat->AddProperty(&pCurrentMaterial->bump_multiplier, 1, AI_MATKEY_OBJ_BUMPMULT_HEIGHT(0)); } if (pCurrentMaterial->clamp[ObjFile::Material::TextureBumpType]) { addTextureMappingModeProperty(mat, aiTextureType_HEIGHT); } } if (0 != pCurrentMaterial->textureNormal.length) { mat->AddProperty(&pCurrentMaterial->textureNormal, AI_MATKEY_TEXTURE_NORMALS(0)); mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_NORMALS(0)); if (pCurrentMaterial->bump_multiplier != 1.0) { mat->AddProperty(&pCurrentMaterial->bump_multiplier, 1, AI_MATKEY_OBJ_BUMPMULT_NORMALS(0)); } if (pCurrentMaterial->clamp[ObjFile::Material::TextureNormalType]) { addTextureMappingModeProperty(mat, aiTextureType_NORMALS); } } if (0 != pCurrentMaterial->textureReflection[0].length) { ObjFile::Material::TextureType type = 0 != pCurrentMaterial->textureReflection[1].length ? ObjFile::Material::TextureReflectionCubeTopType : ObjFile::Material::TextureReflectionSphereType; unsigned count = type == ObjFile::Material::TextureReflectionSphereType ? 1 : 6; for (unsigned i = 0; i < count; i++) { mat->AddProperty(&pCurrentMaterial->textureReflection[i], AI_MATKEY_TEXTURE_REFLECTION(i)); mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_REFLECTION(i)); if (pCurrentMaterial->clamp[type]) addTextureMappingModeProperty(mat, aiTextureType_REFLECTION, 1, i); } } if (0 != pCurrentMaterial->textureDisp.length) { mat->AddProperty(&pCurrentMaterial->textureDisp, AI_MATKEY_TEXTURE_DISPLACEMENT(0)); mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_DISPLACEMENT(0)); if (pCurrentMaterial->clamp[ObjFile::Material::TextureDispType]) { addTextureMappingModeProperty(mat, aiTextureType_DISPLACEMENT); } } if (0 != pCurrentMaterial->textureOpacity.length) { mat->AddProperty(&pCurrentMaterial->textureOpacity, AI_MATKEY_TEXTURE_OPACITY(0)); mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_OPACITY(0)); if (pCurrentMaterial->clamp[ObjFile::Material::TextureOpacityType]) { addTextureMappingModeProperty(mat, aiTextureType_OPACITY); } } if (0 != pCurrentMaterial->textureSpecularity.length) { mat->AddProperty(&pCurrentMaterial->textureSpecularity, AI_MATKEY_TEXTURE_SHININESS(0)); mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_SHININESS(0)); if (pCurrentMaterial->clamp[ObjFile::Material::TextureSpecularityType]) { addTextureMappingModeProperty(mat, aiTextureType_SHININESS); } } if (0 != pCurrentMaterial->textureRoughness.length) { mat->AddProperty(&pCurrentMaterial->textureRoughness, _AI_MATKEY_TEXTURE_BASE, aiTextureType_DIFFUSE_ROUGHNESS, 0); mat->AddProperty(&uvwIndex, 1, _AI_MATKEY_UVWSRC_BASE, aiTextureType_DIFFUSE_ROUGHNESS, 0 ); if (pCurrentMaterial->clamp[ObjFile::Material::TextureRoughnessType]) { addTextureMappingModeProperty(mat, aiTextureType_DIFFUSE_ROUGHNESS); } } if (0 != pCurrentMaterial->textureMetallic.length) { mat->AddProperty(&pCurrentMaterial->textureMetallic, _AI_MATKEY_TEXTURE_BASE, aiTextureType_METALNESS, 0); mat->AddProperty(&uvwIndex, 1, _AI_MATKEY_UVWSRC_BASE, aiTextureType_METALNESS, 0 ); if (pCurrentMaterial->clamp[ObjFile::Material::TextureMetallicType]) { addTextureMappingModeProperty(mat, aiTextureType_METALNESS); } } if (0 != pCurrentMaterial->textureSheen.length) { mat->AddProperty(&pCurrentMaterial->textureSheen, _AI_MATKEY_TEXTURE_BASE, aiTextureType_SHEEN, 0); mat->AddProperty(&uvwIndex, 1, _AI_MATKEY_UVWSRC_BASE, aiTextureType_SHEEN, 0 ); if (pCurrentMaterial->clamp[ObjFile::Material::TextureSheenType]) { addTextureMappingModeProperty(mat, aiTextureType_SHEEN); } } if (0 != pCurrentMaterial->textureRMA.length) { // NOTE: glTF importer places Rough/Metal/AO texture in Unknown so doing the same here for consistency. mat->AddProperty(&pCurrentMaterial->textureRMA, _AI_MATKEY_TEXTURE_BASE, aiTextureType_UNKNOWN, 0); mat->AddProperty(&uvwIndex, 1, _AI_MATKEY_UVWSRC_BASE, aiTextureType_UNKNOWN, 0 ); if (pCurrentMaterial->clamp[ObjFile::Material::TextureRMAType]) { addTextureMappingModeProperty(mat, aiTextureType_UNKNOWN); } } // Store material property info in material array in scene pScene->mMaterials[pScene->mNumMaterials] = mat; pScene->mNumMaterials++; } // Test number of created materials. ai_assert(pScene->mNumMaterials == numMaterials); } // ------------------------------------------------------------------------------------------------ // Appends this node to the parent node void ObjFileImporter::appendChildToParentNode(aiNode *pParent, aiNode *pChild) { // Checking preconditions ai_assert(nullptr != pParent); ai_assert(nullptr != pChild); // Assign parent to child pChild->mParent = pParent; // Copy node instances into parent node pParent->mNumChildren++; pParent->mChildren[pParent->mNumChildren - 1] = pChild; } // ------------------------------------------------------------------------------------------------ } // Namespace Assimp #endif // !! ASSIMP_BUILD_NO_OBJ_IMPORTER