/* Open Asset Import Library (assimp) ---------------------------------------------------------------------- Copyright (c) 2006-2022, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ /// @file DeboneProcess.cpp /** Implementation of the DeboneProcess post processing step */ // internal headers of the post-processing framework #include "ProcessHelper.h" #include "DeboneProcess.h" #include <stdio.h> using namespace Assimp; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer DeboneProcess::DeboneProcess() { mNumBones = 0; mNumBonesCanDoWithout = 0; mThreshold = AI_DEBONE_THRESHOLD; mAllOrNone = false; } // ------------------------------------------------------------------------------------------------ // Destructor, private as well DeboneProcess::~DeboneProcess() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Returns whether the processing step is present in the given flag field. bool DeboneProcess::IsActive( unsigned int pFlags) const { return (pFlags & aiProcess_Debone) != 0; } // ------------------------------------------------------------------------------------------------ // Executes the post processing step on the given imported data. void DeboneProcess::SetupProperties(const Importer* pImp) { // get the current value of the property mAllOrNone = pImp->GetPropertyInteger(AI_CONFIG_PP_DB_ALL_OR_NONE,0)?true:false; mThreshold = pImp->GetPropertyFloat(AI_CONFIG_PP_DB_THRESHOLD,AI_DEBONE_THRESHOLD); } // ------------------------------------------------------------------------------------------------ // Executes the post processing step on the given imported data. void DeboneProcess::Execute( aiScene* pScene) { ASSIMP_LOG_DEBUG("DeboneProcess begin"); if(!pScene->mNumMeshes) { return; } std::vector<bool> splitList(pScene->mNumMeshes); for( unsigned int a = 0; a < pScene->mNumMeshes; a++) { splitList[a] = ConsiderMesh( pScene->mMeshes[a] ); } int numSplits = 0; if(!!mNumBonesCanDoWithout && (!mAllOrNone||mNumBonesCanDoWithout==mNumBones)) { for(unsigned int a = 0; a < pScene->mNumMeshes; a++) { if(splitList[a]) { numSplits++; } } } if(numSplits) { // we need to do something. Let's go. //mSubMeshIndices.clear(); // really needed? mSubMeshIndices.resize(pScene->mNumMeshes); // because we're doing it here anyway // build a new array of meshes for the scene std::vector<aiMesh*> meshes; for(unsigned int a=0;a<pScene->mNumMeshes;a++) { aiMesh* srcMesh = pScene->mMeshes[a]; std::vector<std::pair<aiMesh*,const aiBone*> > newMeshes; if(splitList[a]) { SplitMesh(srcMesh,newMeshes); } // mesh was split if(!newMeshes.empty()) { unsigned int out = 0, in = srcMesh->mNumBones; // store new meshes and indices of the new meshes for(unsigned int b=0;b<newMeshes.size();b++) { const aiString *find = newMeshes[b].second?&newMeshes[b].second->mName:0; aiNode *theNode = find?pScene->mRootNode->FindNode(*find):0; std::pair<unsigned int,aiNode*> push_pair(static_cast<unsigned int>(meshes.size()),theNode); mSubMeshIndices[a].push_back(push_pair); meshes.push_back(newMeshes[b].first); out+=newMeshes[b].first->mNumBones; } if(!DefaultLogger::isNullLogger()) { ASSIMP_LOG_INFO("Removed %u bones. Input bones:", in - out, ". Output bones: ", out); } // and destroy the source mesh. It should be completely contained inside the new submeshes delete srcMesh; } else { // Mesh is kept unchanged - store it's new place in the mesh array mSubMeshIndices[a].push_back(std::pair<unsigned int,aiNode*>(static_cast<unsigned int>(meshes.size()),(aiNode*)0)); meshes.push_back(srcMesh); } } // rebuild the scene's mesh array pScene->mNumMeshes = static_cast<unsigned int>(meshes.size()); delete [] pScene->mMeshes; pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]; std::copy( meshes.begin(), meshes.end(), pScene->mMeshes); // recurse through all nodes and translate the node's mesh indices to fit the new mesh array UpdateNode( pScene->mRootNode); } ASSIMP_LOG_DEBUG("DeboneProcess end"); } // ------------------------------------------------------------------------------------------------ // Counts bones total/removable in a given mesh. bool DeboneProcess::ConsiderMesh(const aiMesh* pMesh) { if(!pMesh->HasBones()) { return false; } bool split = false; //interstitial faces not permitted bool isInterstitialRequired = false; std::vector<bool> isBoneNecessary(pMesh->mNumBones,false); std::vector<unsigned int> vertexBones(pMesh->mNumVertices,UINT_MAX); const unsigned int cUnowned = UINT_MAX; const unsigned int cCoowned = UINT_MAX-1; for(unsigned int i=0;i<pMesh->mNumBones;i++) { for(unsigned int j=0;j<pMesh->mBones[i]->mNumWeights;j++) { float w = pMesh->mBones[i]->mWeights[j].mWeight; if(w==0.0f) { continue; } unsigned int vid = pMesh->mBones[i]->mWeights[j].mVertexId; if(w>=mThreshold) { if(vertexBones[vid]!=cUnowned) { if(vertexBones[vid]==i) //double entry { ASSIMP_LOG_WARN("Encountered double entry in bone weights"); } else //TODO: track attraction in order to break tie { vertexBones[vid] = cCoowned; } } else vertexBones[vid] = i; } if(!isBoneNecessary[i]) { isBoneNecessary[i] = w<mThreshold; } } if(!isBoneNecessary[i]) { isInterstitialRequired = true; } } if(isInterstitialRequired) { for(unsigned int i=0;i<pMesh->mNumFaces;i++) { unsigned int v = vertexBones[pMesh->mFaces[i].mIndices[0]]; for(unsigned int j=1;j<pMesh->mFaces[i].mNumIndices;j++) { unsigned int w = vertexBones[pMesh->mFaces[i].mIndices[j]]; if(v!=w) { if(v<pMesh->mNumBones) isBoneNecessary[v] = true; if(w<pMesh->mNumBones) isBoneNecessary[w] = true; } } } } for(unsigned int i=0;i<pMesh->mNumBones;i++) { if(!isBoneNecessary[i]) { mNumBonesCanDoWithout++; split = true; } mNumBones++; } return split; } // ------------------------------------------------------------------------------------------------ // Splits the given mesh by bone count. void DeboneProcess::SplitMesh( const aiMesh* pMesh, std::vector< std::pair< aiMesh*,const aiBone* > >& poNewMeshes) const { // same deal here as ConsiderMesh basically std::vector<bool> isBoneNecessary(pMesh->mNumBones,false); std::vector<unsigned int> vertexBones(pMesh->mNumVertices,UINT_MAX); const unsigned int cUnowned = UINT_MAX; const unsigned int cCoowned = UINT_MAX-1; for(unsigned int i=0;i<pMesh->mNumBones;i++) { for(unsigned int j=0;j<pMesh->mBones[i]->mNumWeights;j++) { float w = pMesh->mBones[i]->mWeights[j].mWeight; if(w==0.0f) { continue; } unsigned int vid = pMesh->mBones[i]->mWeights[j].mVertexId; if(w>=mThreshold) { if(vertexBones[vid]!=cUnowned) { if(vertexBones[vid]==i) //double entry { ASSIMP_LOG_WARN("Encountered double entry in bone weights"); } else //TODO: track attraction in order to break tie { vertexBones[vid] = cCoowned; } } else vertexBones[vid] = i; } if(!isBoneNecessary[i]) { isBoneNecessary[i] = w<mThreshold; } } } unsigned int nFacesUnowned = 0; std::vector<unsigned int> faceBones(pMesh->mNumFaces,UINT_MAX); std::vector<unsigned int> facesPerBone(pMesh->mNumBones,0); for(unsigned int i=0;i<pMesh->mNumFaces;i++) { unsigned int nInterstitial = 1; unsigned int v = vertexBones[pMesh->mFaces[i].mIndices[0]]; for(unsigned int j=1;j<pMesh->mFaces[i].mNumIndices;j++) { unsigned int w = vertexBones[pMesh->mFaces[i].mIndices[j]]; if(v!=w) { if(v<pMesh->mNumBones) isBoneNecessary[v] = true; if(w<pMesh->mNumBones) isBoneNecessary[w] = true; } else nInterstitial++; } if(v<pMesh->mNumBones &&nInterstitial==pMesh->mFaces[i].mNumIndices) { faceBones[i] = v; //primitive belongs to bone #v facesPerBone[v]++; } else nFacesUnowned++; } // invalidate any "cojoined" faces for(unsigned int i=0;i<pMesh->mNumFaces;i++) { if(faceBones[i]<pMesh->mNumBones&&isBoneNecessary[faceBones[i]]) { ai_assert(facesPerBone[faceBones[i]]>0); facesPerBone[faceBones[i]]--; nFacesUnowned++; faceBones[i] = cUnowned; } } if(nFacesUnowned) { std::vector<unsigned int> subFaces; for(unsigned int i=0;i<pMesh->mNumFaces;i++) { if(faceBones[i]==cUnowned) { subFaces.push_back(i); } } aiMesh *baseMesh = MakeSubmesh(pMesh,subFaces,0); std::pair<aiMesh*,const aiBone*> push_pair(baseMesh,(const aiBone*)0); poNewMeshes.push_back(push_pair); } for(unsigned int i=0;i<pMesh->mNumBones;i++) { if(!isBoneNecessary[i]&&facesPerBone[i]>0) { std::vector<unsigned int> subFaces; for(unsigned int j=0;j<pMesh->mNumFaces;j++) { if(faceBones[j]==i) { subFaces.push_back(j); } } unsigned int f = AI_SUBMESH_FLAGS_SANS_BONES; aiMesh *subMesh =MakeSubmesh(pMesh,subFaces,f); //Lifted from PretransformVertices.cpp ApplyTransform(subMesh,pMesh->mBones[i]->mOffsetMatrix); std::pair<aiMesh*,const aiBone*> push_pair(subMesh,pMesh->mBones[i]); poNewMeshes.push_back(push_pair); } } } // ------------------------------------------------------------------------------------------------ // Recursively updates the node's mesh list to account for the changed mesh list void DeboneProcess::UpdateNode(aiNode* pNode) const { // rebuild the node's mesh index list std::vector<unsigned int> newMeshList; // this will require two passes unsigned int m = static_cast<unsigned int>(pNode->mNumMeshes), n = static_cast<unsigned int>(mSubMeshIndices.size()); // first pass, look for meshes which have not moved for(unsigned int a=0;a<m;a++) { unsigned int srcIndex = pNode->mMeshes[a]; const std::vector< std::pair< unsigned int,aiNode* > > &subMeshes = mSubMeshIndices[srcIndex]; unsigned int nSubmeshes = static_cast<unsigned int>(subMeshes.size()); for(unsigned int b=0;b<nSubmeshes;b++) { if(!subMeshes[b].second) { newMeshList.push_back(subMeshes[b].first); } } } // second pass, collect deboned meshes for(unsigned int a=0;a<n;a++) { const std::vector< std::pair< unsigned int,aiNode* > > &subMeshes = mSubMeshIndices[a]; unsigned int nSubmeshes = static_cast<unsigned int>(subMeshes.size()); for(unsigned int b=0;b<nSubmeshes;b++) { if(subMeshes[b].second == pNode) { newMeshList.push_back(subMeshes[b].first); } } } if( pNode->mNumMeshes > 0 ) { delete[] pNode->mMeshes; pNode->mMeshes = nullptr; } pNode->mNumMeshes = static_cast<unsigned int>(newMeshList.size()); if(pNode->mNumMeshes) { pNode->mMeshes = new unsigned int[pNode->mNumMeshes]; std::copy( newMeshList.begin(), newMeshList.end(), pNode->mMeshes); } // do that also recursively for all children for( unsigned int a = 0; a < pNode->mNumChildren; ++a ) { UpdateNode( pNode->mChildren[a]); } } // ------------------------------------------------------------------------------------------------ // Apply the node transformation to a mesh void DeboneProcess::ApplyTransform(aiMesh* mesh, const aiMatrix4x4& mat)const { // Check whether we need to transform the coordinates at all if (!mat.IsIdentity()) { if (mesh->HasPositions()) { for (unsigned int i = 0; i < mesh->mNumVertices; ++i) { mesh->mVertices[i] = mat * mesh->mVertices[i]; } } if (mesh->HasNormals() || mesh->HasTangentsAndBitangents()) { aiMatrix4x4 mWorldIT = mat; mWorldIT.Inverse().Transpose(); // TODO: implement Inverse() for aiMatrix3x3 aiMatrix3x3 m = aiMatrix3x3(mWorldIT); if (mesh->HasNormals()) { for (unsigned int i = 0; i < mesh->mNumVertices; ++i) { mesh->mNormals[i] = (m * mesh->mNormals[i]).Normalize(); } } if (mesh->HasTangentsAndBitangents()) { for (unsigned int i = 0; i < mesh->mNumVertices; ++i) { mesh->mTangents[i] = (m * mesh->mTangents[i]).Normalize(); mesh->mBitangents[i] = (m * mesh->mBitangents[i]).Normalize(); } } } } }