/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2022, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ #include "AnimEvaluator.h" #include <assimp/anim.h> #include <assimp/ai_assert.h> using namespace AssimpView; // ------------------------------------------------------------------------------------------------ // Constructor on a given animation. AnimEvaluator::AnimEvaluator(const aiAnimation *pAnim) : mAnim(pAnim), mLastTime(0.0) { ai_assert(nullptr != pAnim); mLastPositions.resize(pAnim->mNumChannels, std::make_tuple(0, 0, 0)); } // ------------------------------------------------------------------------------------------------ // Destructor. AnimEvaluator::~AnimEvaluator() { // empty } // ------------------------------------------------------------------------------------------------ // Evaluates the animation tracks for a given time stamp. void AnimEvaluator::Evaluate(double pTime) { // extract ticks per second. Assume default value if not given double ticksPerSecond = mAnim->mTicksPerSecond != 0.0 ? mAnim->mTicksPerSecond : 25.0; // every following time calculation happens in ticks pTime *= ticksPerSecond; // map into anim's duration double time = 0.0f; if (mAnim->mDuration > 0.0) { time = fmod(pTime, mAnim->mDuration); } if (mTransforms.size() != mAnim->mNumChannels) { mTransforms.resize(mAnim->mNumChannels); } // calculate the transformations for each animation channel for (unsigned int a = 0; a < mAnim->mNumChannels; ++a) { const aiNodeAnim *channel = mAnim->mChannels[a]; // ******** Position ***** aiVector3D presentPosition(0, 0, 0); if (channel->mNumPositionKeys > 0) { // Look for present frame number. Search from last position if time is after the last time, else from beginning // Should be much quicker than always looking from start for the average use case. unsigned int frame = (time >= mLastTime) ? std::get<0>(mLastPositions[a]) : 0; while (frame < channel->mNumPositionKeys - 1) { if (time < channel->mPositionKeys[frame + 1].mTime) { break; } ++frame; } // interpolate between this frame's value and next frame's value unsigned int nextFrame = (frame + 1) % channel->mNumPositionKeys; const aiVectorKey &key = channel->mPositionKeys[frame]; const aiVectorKey &nextKey = channel->mPositionKeys[nextFrame]; double diffTime = nextKey.mTime - key.mTime; if (diffTime < 0.0) { diffTime += mAnim->mDuration; } if (diffTime > 0) { float factor = float((time - key.mTime) / diffTime); presentPosition = key.mValue + (nextKey.mValue - key.mValue) * factor; } else { presentPosition = key.mValue; } std::get<0>(mLastPositions[a]) = frame; } // ******** Rotation ********* aiQuaternion presentRotation(1, 0, 0, 0); if (channel->mNumRotationKeys > 0) { unsigned int frame = (time >= mLastTime) ? std::get<1>(mLastPositions[a]) : 0; while (frame < channel->mNumRotationKeys - 1) { if (time < channel->mRotationKeys[frame + 1].mTime) { break; } ++frame; } // interpolate between this frame's value and next frame's value unsigned int nextFrame = (frame + 1) % channel->mNumRotationKeys; const aiQuatKey &key = channel->mRotationKeys[frame]; const aiQuatKey &nextKey = channel->mRotationKeys[nextFrame]; double diffTime = nextKey.mTime - key.mTime; if (diffTime < 0.0) { diffTime += mAnim->mDuration; } if (diffTime > 0) { float factor = float((time - key.mTime) / diffTime); aiQuaternion::Interpolate(presentRotation, key.mValue, nextKey.mValue, factor); } else { presentRotation = key.mValue; } std::get<1>(mLastPositions[a]) = frame; } // ******** Scaling ********** aiVector3D presentScaling(1, 1, 1); if (channel->mNumScalingKeys > 0) { unsigned int frame = (time >= mLastTime) ? std::get<2>(mLastPositions[a]) : 0; while (frame < channel->mNumScalingKeys - 1) { if (time < channel->mScalingKeys[frame + 1].mTime) { break; } ++frame; } // TODO: (thom) interpolation maybe? This time maybe even logarithmic, not linear presentScaling = channel->mScalingKeys[frame].mValue; std::get<2>(mLastPositions[a]) = frame; } // build a transformation matrix from it aiMatrix4x4 &mat = mTransforms[a]; mat = aiMatrix4x4(presentRotation.GetMatrix()); mat.a1 *= presentScaling.x; mat.b1 *= presentScaling.x; mat.c1 *= presentScaling.x; mat.a2 *= presentScaling.y; mat.b2 *= presentScaling.y; mat.c2 *= presentScaling.y; mat.a3 *= presentScaling.z; mat.b3 *= presentScaling.z; mat.c3 *= presentScaling.z; mat.a4 = presentPosition.x; mat.b4 = presentPosition.y; mat.c4 = presentPosition.z; } mLastTime = time; }