/* cairo - a vector graphics library with display and print output * * Copyright © 2004 Red Hat, Inc. * Copyright © 2005 Red Hat, Inc. * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is Red Hat, Inc. * * Contributor(s): * Keith Packard * Graydon Hoare * Carl Worth */ #include "cairoint.h" #include "cairo-error-private.h" /* * An entry can be in one of three states: * * FREE: Entry has never been used, terminates all searches. * Appears in the table as a %NULL pointer. * * DEAD: Entry had been live in the past. A dead entry can be reused * but does not terminate a search for an exact entry. * Appears in the table as a pointer to DEAD_ENTRY. * * LIVE: Entry is currently being used. * Appears in the table as any non-%NULL, non-DEAD_ENTRY pointer. */ #define DEAD_ENTRY ((cairo_hash_entry_t *) 0x1) #define ENTRY_IS_FREE(entry) ((entry) == NULL) #define ENTRY_IS_DEAD(entry) ((entry) == DEAD_ENTRY) #define ENTRY_IS_LIVE(entry) ((entry) > DEAD_ENTRY) /* * This table is open-addressed with double hashing. Each table size * is a prime and it makes for the "first" hash modulus; a second * prime (2 less than the first prime) serves as the "second" hash * modulus, which is smaller and thus guarantees a complete * permutation of table indices. * * Hash tables are rehashed in order to keep between 12.5% and 50% * entries in the hash table alive and at least 25% free. When table * size is changed, the new table has about 25% live elements. * * The free entries guarantee an expected constant-time lookup. * Doubling/halving the table in the described fashion guarantees * amortized O(1) insertion/removal. * * This structure, and accompanying table, is borrowed/modified from the * file xserver/render/glyph.c in the freedesktop.org x server, with * permission (and suggested modification of doubling sizes) by Keith * Packard. */ static const unsigned long hash_table_sizes[] = { 43, 73, 151, 283, 571, 1153, 2269, 4519, 9013, 18043, 36109, 72091, 144409, 288361, 576883, 1153459, 2307163, 4613893, 9227641, 18455029, 36911011, 73819861, 147639589, 295279081, 590559793 }; struct _cairo_hash_table { cairo_hash_keys_equal_func_t keys_equal; cairo_hash_entry_t *cache[32]; const unsigned long *table_size; cairo_hash_entry_t **entries; unsigned long live_entries; unsigned long free_entries; unsigned long iterating; /* Iterating, no insert, no resize */ }; /** * _cairo_hash_table_uid_keys_equal: * @key_a: the first key to be compared * @key_b: the second key to be compared * * Provides a #cairo_hash_keys_equal_func_t which always returns * %TRUE. This is useful to create hash tables using keys whose hash * completely describes the key, because in this special case * comparing the hashes is sufficient to guarantee that the keys are * equal. * * Return value: %TRUE. **/ static cairo_bool_t _cairo_hash_table_uid_keys_equal (const void *key_a, const void *key_b) { return TRUE; } /** * _cairo_hash_table_create: * @keys_equal: a function to return %TRUE if two keys are equal * * Creates a new hash table which will use the keys_equal() function * to compare hash keys. Data is provided to the hash table in the * form of user-derived versions of #cairo_hash_entry_t. A hash entry * must be able to hold both a key (including a hash code) and a * value. Sometimes only the key will be necessary, (as in * _cairo_hash_table_remove), and other times both a key and a value * will be necessary, (as in _cairo_hash_table_insert). * * If @keys_equal is %NULL, two keys will be considered equal if and * only if their hashes are equal. * * See #cairo_hash_entry_t for more details. * * Return value: the new hash table or %NULL if out of memory. **/ cairo_hash_table_t * _cairo_hash_table_create (cairo_hash_keys_equal_func_t keys_equal) { cairo_hash_table_t *hash_table; hash_table = _cairo_malloc (sizeof (cairo_hash_table_t)); if (unlikely (hash_table == NULL)) { _cairo_error_throw (CAIRO_STATUS_NO_MEMORY); return NULL; } if (keys_equal == NULL) hash_table->keys_equal = _cairo_hash_table_uid_keys_equal; else hash_table->keys_equal = keys_equal; memset (&hash_table->cache, 0, sizeof (hash_table->cache)); hash_table->table_size = &hash_table_sizes[0]; hash_table->entries = calloc (*hash_table->table_size, sizeof (cairo_hash_entry_t *)); if (unlikely (hash_table->entries == NULL)) { _cairo_error_throw (CAIRO_STATUS_NO_MEMORY); free (hash_table); return NULL; } hash_table->live_entries = 0; hash_table->free_entries = *hash_table->table_size; hash_table->iterating = 0; return hash_table; } /** * _cairo_hash_table_destroy: * @hash_table: an empty hash table to destroy * * Immediately destroys the given hash table, freeing all resources * associated with it. * * WARNING: The hash_table must have no live entries in it before * _cairo_hash_table_destroy is called. It is a fatal error otherwise, * and this function will halt. The rationale for this behavior is to * avoid memory leaks and to avoid needless complication of the API * with destroy notifiy callbacks. * * WARNING: The hash_table must have no running iterators in it when * _cairo_hash_table_destroy is called. It is a fatal error otherwise, * and this function will halt. **/ void _cairo_hash_table_destroy (cairo_hash_table_t *hash_table) { /* The hash table must be empty. Otherwise, halt. */ assert (hash_table->live_entries == 0); /* No iterators can be running. Otherwise, halt. */ assert (hash_table->iterating == 0); free (hash_table->entries); free (hash_table); } static cairo_hash_entry_t ** _cairo_hash_table_lookup_unique_key (cairo_hash_table_t *hash_table, cairo_hash_entry_t *key) { unsigned long table_size, i, idx, step; cairo_hash_entry_t **entry; table_size = *hash_table->table_size; idx = key->hash % table_size; entry = &hash_table->entries[idx]; if (! ENTRY_IS_LIVE (*entry)) return entry; i = 1; step = 1 + key->hash % (table_size - 2); do { idx += step; if (idx >= table_size) idx -= table_size; entry = &hash_table->entries[idx]; if (! ENTRY_IS_LIVE (*entry)) return entry; } while (++i < table_size); ASSERT_NOT_REACHED; return NULL; } /** * _cairo_hash_table_manage: * @hash_table: a hash table * * Resize the hash table if the number of entries has gotten much * bigger or smaller than the ideal number of entries for the current * size and guarantee some free entries to be used as lookup * termination points. * * Return value: %CAIRO_STATUS_SUCCESS if successful or * %CAIRO_STATUS_NO_MEMORY if out of memory. **/ static cairo_status_t _cairo_hash_table_manage (cairo_hash_table_t *hash_table) { cairo_hash_table_t tmp; unsigned long new_size, i; /* Keep between 12.5% and 50% entries in the hash table alive and * at least 25% free. */ unsigned long live_high = *hash_table->table_size >> 1; unsigned long live_low = live_high >> 2; unsigned long free_low = live_high >> 1; tmp = *hash_table; if (hash_table->live_entries > live_high) { tmp.table_size = hash_table->table_size + 1; /* This code is being abused if we can't make a table big enough. */ assert (tmp.table_size - hash_table_sizes < ARRAY_LENGTH (hash_table_sizes)); } else if (hash_table->live_entries < live_low) { /* Can't shrink if we're at the smallest size */ if (hash_table->table_size == &hash_table_sizes[0]) tmp.table_size = hash_table->table_size; else tmp.table_size = hash_table->table_size - 1; } if (tmp.table_size == hash_table->table_size && hash_table->free_entries > free_low) { /* The number of live entries is within the desired bounds * (we're not going to resize the table) and we have enough * free entries. Do nothing. */ return CAIRO_STATUS_SUCCESS; } new_size = *tmp.table_size; tmp.entries = calloc (new_size, sizeof (cairo_hash_entry_t*)); if (unlikely (tmp.entries == NULL)) return _cairo_error (CAIRO_STATUS_NO_MEMORY); for (i = 0; i < *hash_table->table_size; ++i) { if (ENTRY_IS_LIVE (hash_table->entries[i])) { *_cairo_hash_table_lookup_unique_key (&tmp, hash_table->entries[i]) = hash_table->entries[i]; } } free (hash_table->entries); hash_table->entries = tmp.entries; hash_table->table_size = tmp.table_size; hash_table->free_entries = new_size - hash_table->live_entries; return CAIRO_STATUS_SUCCESS; } /** * _cairo_hash_table_lookup: * @hash_table: a hash table * @key: the key of interest * * Performs a lookup in @hash_table looking for an entry which has a * key that matches @key, (as determined by the keys_equal() function * passed to _cairo_hash_table_create). * * Return value: the matching entry, of %NULL if no match was found. **/ void * _cairo_hash_table_lookup (cairo_hash_table_t *hash_table, cairo_hash_entry_t *key) { cairo_hash_entry_t *entry; unsigned long table_size, i, idx, step; unsigned long hash = key->hash; entry = hash_table->cache[hash & 31]; if (entry && entry->hash == hash && hash_table->keys_equal (key, entry)) return entry; table_size = *hash_table->table_size; idx = hash % table_size; entry = hash_table->entries[idx]; if (ENTRY_IS_LIVE (entry)) { if (entry->hash == hash && hash_table->keys_equal (key, entry)) goto insert_cache; } else if (ENTRY_IS_FREE (entry)) return NULL; i = 1; step = 1 + hash % (table_size - 2); do { idx += step; if (idx >= table_size) idx -= table_size; entry = hash_table->entries[idx]; if (ENTRY_IS_LIVE (entry)) { if (entry->hash == hash && hash_table->keys_equal (key, entry)) goto insert_cache; } else if (ENTRY_IS_FREE (entry)) return NULL; } while (++i < table_size); ASSERT_NOT_REACHED; return NULL; insert_cache: hash_table->cache[hash & 31] = entry; return entry; } /** * _cairo_hash_table_random_entry: * @hash_table: a hash table * @predicate: a predicate function. * * Find a random entry in the hash table satisfying the given * @predicate. * * We use the same algorithm as the lookup algorithm to walk over the * entries in the hash table in a pseudo-random order. Walking * linearly would favor entries following gaps in the hash table. We * could also call rand() repeatedly, which works well for almost-full * tables, but degrades when the table is almost empty, or predicate * returns %TRUE for most entries. * * Return value: a random live entry or %NULL if there are no entries * that match the given predicate. In particular, if predicate is * %NULL, a %NULL return value indicates that the table is empty. **/ void * _cairo_hash_table_random_entry (cairo_hash_table_t *hash_table, cairo_hash_predicate_func_t predicate) { cairo_hash_entry_t *entry; unsigned long hash; unsigned long table_size, i, idx, step; assert (predicate != NULL); table_size = *hash_table->table_size; hash = rand (); idx = hash % table_size; entry = hash_table->entries[idx]; if (ENTRY_IS_LIVE (entry) && predicate (entry)) return entry; i = 1; step = 1 + hash % (table_size - 2); do { idx += step; if (idx >= table_size) idx -= table_size; entry = hash_table->entries[idx]; if (ENTRY_IS_LIVE (entry) && predicate (entry)) return entry; } while (++i < table_size); return NULL; } /** * _cairo_hash_table_insert: * @hash_table: a hash table * @key_and_value: an entry to be inserted * * Insert the entry #key_and_value into the hash table. * * WARNING: There must not be an existing entry in the hash table * with a matching key. * * WARNING: It is a fatal error to insert an element while * an iterator is running * * Instead of using insert to replace an entry, consider just editing * the entry obtained with _cairo_hash_table_lookup. Or if absolutely * necessary, use _cairo_hash_table_remove first. * * Return value: %CAIRO_STATUS_SUCCESS if successful or * %CAIRO_STATUS_NO_MEMORY if insufficient memory is available. **/ cairo_status_t _cairo_hash_table_insert (cairo_hash_table_t *hash_table, cairo_hash_entry_t *key_and_value) { cairo_hash_entry_t **entry; cairo_status_t status; /* Insert is illegal while an iterator is running. */ assert (hash_table->iterating == 0); status = _cairo_hash_table_manage (hash_table); if (unlikely (status)) return status; entry = _cairo_hash_table_lookup_unique_key (hash_table, key_and_value); if (ENTRY_IS_FREE (*entry)) hash_table->free_entries--; *entry = key_and_value; hash_table->cache[key_and_value->hash & 31] = key_and_value; hash_table->live_entries++; return CAIRO_STATUS_SUCCESS; } static cairo_hash_entry_t ** _cairo_hash_table_lookup_exact_key (cairo_hash_table_t *hash_table, cairo_hash_entry_t *key) { unsigned long table_size, i, idx, step; cairo_hash_entry_t **entry; table_size = *hash_table->table_size; idx = key->hash % table_size; entry = &hash_table->entries[idx]; if (*entry == key) return entry; i = 1; step = 1 + key->hash % (table_size - 2); do { idx += step; if (idx >= table_size) idx -= table_size; entry = &hash_table->entries[idx]; if (*entry == key) return entry; } while (++i < table_size); ASSERT_NOT_REACHED; return NULL; } /** * _cairo_hash_table_remove: * @hash_table: a hash table * @key: key of entry to be removed * * Remove an entry from the hash table which points to @key. * * Return value: %CAIRO_STATUS_SUCCESS if successful or * %CAIRO_STATUS_NO_MEMORY if out of memory. **/ void _cairo_hash_table_remove (cairo_hash_table_t *hash_table, cairo_hash_entry_t *key) { *_cairo_hash_table_lookup_exact_key (hash_table, key) = DEAD_ENTRY; hash_table->live_entries--; hash_table->cache[key->hash & 31] = NULL; /* Check for table resize. Don't do this when iterating as this will * reorder elements of the table and cause the iteration to potentially * skip some elements. */ if (hash_table->iterating == 0) { /* This call _can_ fail, but only in failing to allocate new * memory to shrink the hash table. It does leave the table in a * consistent state, and we've already succeeded in removing the * entry, so we don't examine the failure status of this call. */ _cairo_hash_table_manage (hash_table); } } /** * _cairo_hash_table_foreach: * @hash_table: a hash table * @hash_callback: function to be called for each live entry * @closure: additional argument to be passed to @hash_callback * * Call @hash_callback for each live entry in the hash table, in a * non-specified order. * * Entries in @hash_table may be removed by code executed from @hash_callback. * * Entries may not be inserted to @hash_table, nor may @hash_table * be destroyed by code executed from @hash_callback. The relevant * functions will halt in these cases. **/ void _cairo_hash_table_foreach (cairo_hash_table_t *hash_table, cairo_hash_callback_func_t hash_callback, void *closure) { unsigned long i; cairo_hash_entry_t *entry; /* Mark the table for iteration */ ++hash_table->iterating; for (i = 0; i < *hash_table->table_size; i++) { entry = hash_table->entries[i]; if (ENTRY_IS_LIVE(entry)) hash_callback (entry, closure); } /* If some elements were deleted during the iteration, * the table may need resizing. Just do this every time * as the check is inexpensive. */ if (--hash_table->iterating == 0) { /* Should we fail to shrink the hash table, it is left unaltered, * and we don't need to propagate the error status. */ _cairo_hash_table_manage (hash_table); } }