/* * Copyright © 2004 Red Hat, Inc. * Copyright © 2005 Red Hat, Inc. * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is Red Hat, Inc. * * Contributor(s): * Keith Packard * Graydon Hoare * Carl Worth * Karl Tomlinson , Mozilla Corporation */ #include "config.h" #include "cairo-script-private.h" #include /* * An entry can be in one of three states: * * FREE: Entry has never been used, terminates all searches. * Appears in the table as a %NULL pointer. * * DEAD: Entry had been live in the past. A dead entry can be reused * but does not terminate a search for an exact entry. * Appears in the table as a pointer to DEAD_ENTRY. * * LIVE: Entry is currently being used. * Appears in the table as any non-%NULL, non-DEAD_ENTRY pointer. */ #define DEAD_ENTRY ((csi_hash_entry_t *) 0x1) #define ENTRY_IS_FREE(entry) ((entry) == NULL) #define ENTRY_IS_DEAD(entry) ((entry) == DEAD_ENTRY) #define ENTRY_IS_LIVE(entry) ((entry) > DEAD_ENTRY) /* This table is open-addressed with double hashing. Each table size is a * prime chosen to be a little more than double the high water mark for a * given arrangement, so the tables should remain < 50% full. The table * size makes for the "first" hash modulus; a second prime (2 less than the * first prime) serves as the "second" hash modulus, which is co-prime and * thus guarantees a complete permutation of table indices. * * This structure, and accompanying table, is borrowed/modified from the * file xserver/render/glyph.c in the freedesktop.org x server, with * permission (and suggested modification of doubling sizes) by Keith * Packard. */ static const csi_hash_table_arrangement_t hash_table_arrangements [] = { { 16, 43, 41 }, { 32, 73, 71 }, { 64, 151, 149 }, { 128, 283, 281 }, { 256, 571, 569 }, { 512, 1153, 1151 }, { 1024, 2269, 2267 }, { 2048, 4519, 4517 }, { 4096, 9013, 9011 }, { 8192, 18043, 18041 }, { 16384, 36109, 36107 }, { 32768, 72091, 72089 }, { 65536, 144409, 144407 }, { 131072, 288361, 288359 }, { 262144, 576883, 576881 }, { 524288, 1153459, 1153457 }, { 1048576, 2307163, 2307161 }, { 2097152, 4613893, 4613891 }, { 4194304, 9227641, 9227639 }, { 8388608, 18455029, 18455027 }, { 16777216, 36911011, 36911009 }, { 33554432, 73819861, 73819859 }, { 67108864, 147639589, 147639587 }, { 134217728, 295279081, 295279079 }, { 268435456, 590559793, 590559791 } }; #define NUM_HASH_TABLE_ARRANGEMENTS ARRAY_LENGTH (hash_table_arrangements) /** * _csi_hash_table_create: * @keys_equal: a function to return %TRUE if two keys are equal * * Creates a new hash table which will use the keys_equal() function * to compare hash keys. Data is provided to the hash table in the * form of user-derived versions of #csi_hash_entry_t. A hash entry * must be able to hold both a key (including a hash code) and a * value. Sometimes only the key will be necessary, (as in * _csi_hash_table_remove), and other times both a key and a value * will be necessary, (as in _csi_hash_table_insert). * * See #csi_hash_entry_t for more details. * * Return value: the new hash table or %NULL if out of memory. **/ csi_status_t _csi_hash_table_init (csi_hash_table_t *hash_table, csi_hash_keys_equal_func_t keys_equal) { hash_table->keys_equal = keys_equal; hash_table->arrangement = &hash_table_arrangements[0]; hash_table->entries = calloc (hash_table->arrangement->size, sizeof(csi_hash_entry_t *)); if (hash_table->entries == NULL) return _csi_error (CAIRO_STATUS_NO_MEMORY); hash_table->live_entries = 0; hash_table->used_entries = 0; hash_table->iterating = 0; return CSI_STATUS_SUCCESS; } /** * _csi_hash_table_destroy: * @hash_table: an empty hash table to destroy * * Immediately destroys the given hash table, freeing all resources * associated with it. * * WARNING: The hash_table must have no live entries in it before * _csi_hash_table_destroy is called. It is a fatal error otherwise, * and this function will halt. The rationale for this behavior is to * avoid memory leaks and to avoid needless complication of the API * with destroy notifiy callbacks. * * WARNING: The hash_table must have no running iterators in it when * _csi_hash_table_destroy is called. It is a fatal error otherwise, * and this function will halt. **/ void _csi_hash_table_fini (csi_hash_table_t *hash_table) { free (hash_table->entries); } static csi_hash_entry_t ** _csi_hash_table_lookup_unique_key (csi_hash_table_t *hash_table, csi_hash_entry_t *key) { unsigned long table_size, i, idx, step; csi_hash_entry_t **entry; table_size = hash_table->arrangement->size; idx = key->hash % table_size; entry = &hash_table->entries[idx]; if (! ENTRY_IS_LIVE (*entry)) return entry; i = 1; step = key->hash % hash_table->arrangement->rehash; if (step == 0) step = 1; do { idx += step; if (idx >= table_size) idx -= table_size; entry = &hash_table->entries[idx]; if (! ENTRY_IS_LIVE (*entry)) return entry; } while (++i < table_size); return NULL; } /** * _csi_hash_table_manage: * @hash_table: a hash table * * Resize the hash table if the number of entries has gotten much * bigger or smaller than the ideal number of entries for the current * size, or control the number of dead entries by moving the entries * within the table. * * Return value: %CAIRO_STATUS_SUCCESS if successful or * %CAIRO_STATUS_NO_MEMORY if out of memory. **/ static csi_status_t _csi_hash_table_manage (csi_hash_table_t *hash_table) { csi_hash_table_t tmp; csi_boolean_t realloc = TRUE; unsigned long i; /* This keeps the size of the hash table between 2 and approximately 8 * times the number of live entries and keeps the proportion of free * entries (search-terminations) > 25%. */ unsigned long high = hash_table->arrangement->high_water_mark; unsigned long low = high >> 2; unsigned long max_used = high + high / 2; tmp = *hash_table; if (hash_table->live_entries > high) { tmp.arrangement = hash_table->arrangement + 1; /* This code is being abused if we can't make a table big enough. */ } else if (hash_table->live_entries < low && /* Can't shrink if we're at the smallest size */ hash_table->arrangement != &hash_table_arrangements[0]) { tmp.arrangement = hash_table->arrangement - 1; } else if (hash_table->used_entries > max_used) { /* Clean out dead entries to prevent lookups from becoming too slow. */ for (i = 0; i < hash_table->arrangement->size; ++i) { if (ENTRY_IS_DEAD (hash_table->entries[i])) hash_table->entries[i] = NULL; } hash_table->used_entries = hash_table->live_entries; /* There is no need to reallocate but some entries may need to be * moved. Typically the proportion of entries needing to be moved is * small, but, if the moving should leave a large number of dead * entries, they will be cleaned out next time this code is * executed. */ realloc = FALSE; } else { return CAIRO_STATUS_SUCCESS; } if (realloc) { tmp.entries = calloc (tmp.arrangement->size, sizeof (csi_hash_entry_t*)); if (tmp.entries == NULL) return _csi_error (CAIRO_STATUS_NO_MEMORY); hash_table->used_entries = 0; } for (i = 0; i < hash_table->arrangement->size; ++i) { csi_hash_entry_t *entry, **pos; entry = hash_table->entries[i]; if (ENTRY_IS_LIVE (entry)) { hash_table->entries[i] = DEAD_ENTRY; pos = _csi_hash_table_lookup_unique_key (&tmp, entry); if (ENTRY_IS_FREE (*pos)) hash_table->used_entries++; *pos = entry; } } if (realloc) { free (hash_table->entries); hash_table->entries = tmp.entries; hash_table->arrangement = tmp.arrangement; } return CAIRO_STATUS_SUCCESS; } /** * _csi_hash_table_lookup: * @hash_table: a hash table * @key: the key of interest * * Performs a lookup in @hash_table looking for an entry which has a * key that matches @key, (as determined by the keys_equal() function * passed to _csi_hash_table_create). * * Return value: the matching entry, of %NULL if no match was found. **/ void * _csi_hash_table_lookup (csi_hash_table_t *hash_table, csi_hash_entry_t *key) { csi_hash_entry_t **entry; unsigned long table_size, i, idx, step; table_size = hash_table->arrangement->size; idx = key->hash % table_size; entry = &hash_table->entries[idx]; if (ENTRY_IS_LIVE (*entry)) { if ((*entry)->hash == key->hash && hash_table->keys_equal (key, *entry)) return *entry; } else if (ENTRY_IS_FREE (*entry)) return NULL; i = 1; step = key->hash % hash_table->arrangement->rehash; if (step == 0) step = 1; do { idx += step; if (idx >= table_size) idx -= table_size; entry = &hash_table->entries[idx]; if (ENTRY_IS_LIVE (*entry)) { if ((*entry)->hash == key->hash && hash_table->keys_equal (key, *entry)) { return *entry; } } else if (ENTRY_IS_FREE (*entry)) return NULL; } while (++i < table_size); return NULL; } /** * _csi_hash_table_insert: * @hash_table: a hash table * @key_and_value: an entry to be inserted * * Insert the entry #key_and_value into the hash table. * * WARNING: There must not be an existing entry in the hash table * with a matching key. * * WARNING: It is a fatal error to insert an element while * an iterator is running * * Instead of using insert to replace an entry, consider just editing * the entry obtained with _csi_hash_table_lookup. Or if absolutely * necessary, use _csi_hash_table_remove first. * * Return value: %CAIRO_STATUS_SUCCESS if successful or * %CAIRO_STATUS_NO_MEMORY if insufficient memory is available. **/ csi_status_t _csi_hash_table_insert (csi_hash_table_t *hash_table, csi_hash_entry_t *key_and_value) { csi_status_t status; csi_hash_entry_t **entry; hash_table->live_entries++; status = _csi_hash_table_manage (hash_table); if (_csi_unlikely (status)) { /* abort the insert... */ hash_table->live_entries--; return status; } entry = _csi_hash_table_lookup_unique_key (hash_table, key_and_value); if (ENTRY_IS_FREE (*entry)) hash_table->used_entries++; *entry = key_and_value; return CAIRO_STATUS_SUCCESS; } static csi_hash_entry_t ** _csi_hash_table_lookup_exact_key (csi_hash_table_t *hash_table, csi_hash_entry_t *key) { unsigned long table_size, i, idx, step; csi_hash_entry_t **entry; table_size = hash_table->arrangement->size; idx = key->hash % table_size; entry = &hash_table->entries[idx]; if (*entry == key) return entry; i = 1; step = key->hash % hash_table->arrangement->rehash; if (step == 0) step = 1; do { idx += step; if (idx >= table_size) idx -= table_size; entry = &hash_table->entries[idx]; if (*entry == key) return entry; } while (++i < table_size); return NULL; } /** * _csi_hash_table_remove: * @hash_table: a hash table * @key: key of entry to be removed * * Remove an entry from the hash table which points to @key. * * Return value: %CAIRO_STATUS_SUCCESS if successful or * %CAIRO_STATUS_NO_MEMORY if out of memory. **/ void _csi_hash_table_remove (csi_hash_table_t *hash_table, csi_hash_entry_t *key) { *_csi_hash_table_lookup_exact_key (hash_table, key) = DEAD_ENTRY; hash_table->live_entries--; /* Check for table resize. Don't do this when iterating as this will * reorder elements of the table and cause the iteration to potentially * skip some elements. */ if (hash_table->iterating == 0) { /* This call _can_ fail, but only in failing to allocate new * memory to shrink the hash table. It does leave the table in a * consistent state, and we've already succeeded in removing the * entry, so we don't examine the failure status of this call. */ _csi_hash_table_manage (hash_table); } } /** * _csi_hash_table_foreach: * @hash_table: a hash table * @hash_callback: function to be called for each live entry * @closure: additional argument to be passed to @hash_callback * * Call @hash_callback for each live entry in the hash table, in a * non-specified order. * * Entries in @hash_table may be removed by code executed from @hash_callback. * * Entries may not be inserted to @hash_table, nor may @hash_table * be destroyed by code executed from @hash_callback. The relevant * functions will halt in these cases. **/ void _csi_hash_table_foreach (csi_hash_table_t *hash_table, csi_hash_callback_func_t hash_callback, void *closure) { unsigned long i; csi_hash_entry_t *entry; /* Mark the table for iteration */ ++hash_table->iterating; for (i = 0; i < hash_table->arrangement->size; i++) { entry = hash_table->entries[i]; if (ENTRY_IS_LIVE(entry)) hash_callback (entry, closure); } /* If some elements were deleted during the iteration, * the table may need resizing. Just do this every time * as the check is inexpensive. */ if (--hash_table->iterating == 0) { /* Should we fail to shrink the hash table, it is left unaltered, * and we don't need to propagate the error status. */ _csi_hash_table_manage (hash_table); } }