/* ** String formatting for floating-point numbers. ** Copyright (C) 2005-2022 Mike Pall. See Copyright Notice in luajit.h ** Contributed by Peter Cawley. */ #include #define lj_strfmt_num_c #define LUA_CORE #include "lj_obj.h" #include "lj_buf.h" #include "lj_str.h" #include "lj_strfmt.h" /* -- Precomputed tables -------------------------------------------------- */ /* Rescale factors to push the exponent of a number towards zero. */ #define RESCALE_EXPONENTS(P, N) \ P(308), P(289), P(270), P(250), P(231), P(212), P(193), P(173), P(154), \ P(135), P(115), P(96), P(77), P(58), P(38), P(0), P(0), P(0), N(39), N(58), \ N(77), N(96), N(116), N(135), N(154), N(174), N(193), N(212), N(231), \ N(251), N(270), N(289) #define ONE_E_P(X) 1e+0 ## X #define ONE_E_N(X) 1e-0 ## X static const int16_t rescale_e[] = { RESCALE_EXPONENTS(-, +) }; static const double rescale_n[] = { RESCALE_EXPONENTS(ONE_E_P, ONE_E_N) }; #undef ONE_E_N #undef ONE_E_P /* ** For p in range -70 through 57, this table encodes pairs (m, e) such that ** 4*2^p <= (uint8_t)m*10^e, and is the smallest value for which this holds. */ static const int8_t four_ulp_m_e[] = { 34, -21, 68, -21, 14, -20, 28, -20, 55, -20, 2, -19, 3, -19, 5, -19, 9, -19, -82, -18, 35, -18, 7, -17, -117, -17, 28, -17, 56, -17, 112, -16, -33, -16, 45, -16, 89, -16, -78, -15, 36, -15, 72, -15, -113, -14, 29, -14, 57, -14, 114, -13, -28, -13, 46, -13, 91, -12, -74, -12, 37, -12, 73, -12, 15, -11, 3, -11, 59, -11, 2, -10, 3, -10, 5, -10, 1, -9, -69, -9, 38, -9, 75, -9, 15, -7, 3, -7, 6, -7, 12, -6, -17, -7, 48, -7, 96, -7, -65, -6, 39, -6, 77, -6, -103, -5, 31, -5, 62, -5, 123, -4, -11, -4, 49, -4, 98, -4, -60, -3, 4, -2, 79, -3, 16, -2, 32, -2, 63, -2, 2, -1, 25, 0, 5, 1, 1, 2, 2, 2, 4, 2, 8, 2, 16, 2, 32, 2, 64, 2, -128, 2, 26, 2, 52, 2, 103, 3, -51, 3, 41, 4, 82, 4, -92, 4, 33, 4, 66, 4, -124, 5, 27, 5, 53, 5, 105, 6, 21, 6, 42, 6, 84, 6, 17, 7, 34, 7, 68, 7, 2, 8, 3, 8, 6, 8, 108, 9, -41, 9, 43, 10, 86, 9, -84, 10, 35, 10, 69, 10, -118, 11, 28, 11, 55, 12, 11, 13, 22, 13, 44, 13, 88, 13, -80, 13, 36, 13, 71, 13, -115, 14, 29, 14, 57, 14, 113, 15, -30, 15, 46, 15, 91, 15, 19, 16, 37, 16, 73, 16, 2, 17, 3, 17, 6, 17 }; /* min(2^32-1, 10^e-1) for e in range 0 through 10 */ static uint32_t ndigits_dec_threshold[] = { 0, 9U, 99U, 999U, 9999U, 99999U, 999999U, 9999999U, 99999999U, 999999999U, 0xffffffffU }; /* -- Helper functions ---------------------------------------------------- */ /* Compute the number of digits in the decimal representation of x. */ static MSize ndigits_dec(uint32_t x) { MSize t = ((lj_fls(x | 1) * 77) >> 8) + 1; /* 2^8/77 is roughly log2(10) */ return t + (x > ndigits_dec_threshold[t]); } #define WINT_R(x, sh, sc) \ { uint32_t d = (x*(((1<>sh; x -= d*sc; *p++ = (char)('0'+d); } /* Write 9-digit unsigned integer to buffer. */ static char *lj_strfmt_wuint9(char *p, uint32_t u) { uint32_t v = u / 10000, w; u -= v * 10000; w = v / 10000; v -= w * 10000; *p++ = (char)('0'+w); WINT_R(v, 23, 1000) WINT_R(v, 12, 100) WINT_R(v, 10, 10) *p++ = (char)('0'+v); WINT_R(u, 23, 1000) WINT_R(u, 12, 100) WINT_R(u, 10, 10) *p++ = (char)('0'+u); return p; } #undef WINT_R /* -- Extended precision arithmetic --------------------------------------- */ /* ** The "nd" format is a fixed-precision decimal representation for numbers. It ** consists of up to 64 uint32_t values, with each uint32_t storing a value ** in the range [0, 1e9). A number in "nd" format consists of three variables: ** ** uint32_t nd[64]; ** uint32_t ndlo; ** uint32_t ndhi; ** ** The integral part of the number is stored in nd[0 ... ndhi], the value of ** which is sum{i in [0, ndhi] | nd[i] * 10^(9*i)}. If the fractional part of ** the number is zero, ndlo is zero. Otherwise, the fractional part is stored ** in nd[ndlo ... 63], the value of which is taken to be ** sum{i in [ndlo, 63] | nd[i] * 10^(9*(i-64))}. ** ** If the array part had 128 elements rather than 64, then every double would ** have an exact representation in "nd" format. With 64 elements, all integral ** doubles have an exact representation, and all non-integral doubles have ** enough digits to make both %.99e and %.99f do the right thing. */ #if LJ_64 #define ND_MUL2K_MAX_SHIFT 29 #define ND_MUL2K_DIV1E9(val) ((uint32_t)((val) / 1000000000)) #else #define ND_MUL2K_MAX_SHIFT 11 #define ND_MUL2K_DIV1E9(val) ((uint32_t)((val) >> 9) / 1953125) #endif /* Multiply nd by 2^k and add carry_in (ndlo is assumed to be zero). */ static uint32_t nd_mul2k(uint32_t* nd, uint32_t ndhi, uint32_t k, uint32_t carry_in, SFormat sf) { uint32_t i, ndlo = 0, start = 1; /* Performance hacks. */ if (k > ND_MUL2K_MAX_SHIFT*2 && STRFMT_FP(sf) != STRFMT_FP(STRFMT_T_FP_F)) { start = ndhi - (STRFMT_PREC(sf) + 17) / 8; } /* Real logic. */ while (k >= ND_MUL2K_MAX_SHIFT) { for (i = ndlo; i <= ndhi; i++) { uint64_t val = ((uint64_t)nd[i] << ND_MUL2K_MAX_SHIFT) | carry_in; carry_in = ND_MUL2K_DIV1E9(val); nd[i] = (uint32_t)val - carry_in * 1000000000; } if (carry_in) { nd[++ndhi] = carry_in; carry_in = 0; if (start++ == ndlo) ++ndlo; } k -= ND_MUL2K_MAX_SHIFT; } if (k) { for (i = ndlo; i <= ndhi; i++) { uint64_t val = ((uint64_t)nd[i] << k) | carry_in; carry_in = ND_MUL2K_DIV1E9(val); nd[i] = (uint32_t)val - carry_in * 1000000000; } if (carry_in) nd[++ndhi] = carry_in; } return ndhi; } /* Divide nd by 2^k (ndlo is assumed to be zero). */ static uint32_t nd_div2k(uint32_t* nd, uint32_t ndhi, uint32_t k, SFormat sf) { uint32_t ndlo = 0, stop1 = ~0, stop2 = ~0; /* Performance hacks. */ if (!ndhi) { if (!nd[0]) { return 0; } else { uint32_t s = lj_ffs(nd[0]); if (s >= k) { nd[0] >>= k; return 0; } nd[0] >>= s; k -= s; } } if (k > 18) { if (STRFMT_FP(sf) == STRFMT_FP(STRFMT_T_FP_F)) { stop1 = 63 - (int32_t)STRFMT_PREC(sf) / 9; } else { int32_t floorlog2 = ndhi * 29 + lj_fls(nd[ndhi]) - k; int32_t floorlog10 = (int32_t)(floorlog2 * 0.30102999566398114); stop1 = 62 + (floorlog10 - (int32_t)STRFMT_PREC(sf)) / 9; stop2 = 61 + ndhi - (int32_t)STRFMT_PREC(sf) / 8; } } /* Real logic. */ while (k >= 9) { uint32_t i = ndhi, carry = 0; for (;;) { uint32_t val = nd[i]; nd[i] = (val >> 9) + carry; carry = (val & 0x1ff) * 1953125; if (i == ndlo) break; i = (i - 1) & 0x3f; } if (ndlo != stop1 && ndlo != stop2) { if (carry) { ndlo = (ndlo - 1) & 0x3f; nd[ndlo] = carry; } if (!nd[ndhi]) { ndhi = (ndhi - 1) & 0x3f; stop2--; } } else if (!nd[ndhi]) { if (ndhi != ndlo) { ndhi = (ndhi - 1) & 0x3f; stop2--; } else return ndlo; } k -= 9; } if (k) { uint32_t mask = (1U << k) - 1, mul = 1000000000 >> k, i = ndhi, carry = 0; for (;;) { uint32_t val = nd[i]; nd[i] = (val >> k) + carry; carry = (val & mask) * mul; if (i == ndlo) break; i = (i - 1) & 0x3f; } if (carry) { ndlo = (ndlo - 1) & 0x3f; nd[ndlo] = carry; } } return ndlo; } /* Add m*10^e to nd (assumes ndlo <= e/9 <= ndhi and 0 <= m <= 9). */ static uint32_t nd_add_m10e(uint32_t* nd, uint32_t ndhi, uint8_t m, int32_t e) { uint32_t i, carry; if (e >= 0) { i = (uint32_t)e/9; carry = m * (ndigits_dec_threshold[e - (int32_t)i*9] + 1); } else { int32_t f = (e-8)/9; i = (uint32_t)(64 + f); carry = m * (ndigits_dec_threshold[e - f*9] + 1); } for (;;) { uint32_t val = nd[i] + carry; if (LJ_UNLIKELY(val >= 1000000000)) { val -= 1000000000; nd[i] = val; if (LJ_UNLIKELY(i == ndhi)) { ndhi = (ndhi + 1) & 0x3f; nd[ndhi] = 1; break; } carry = 1; i = (i + 1) & 0x3f; } else { nd[i] = val; break; } } return ndhi; } /* Test whether two "nd" values are equal in their most significant digits. */ static int nd_similar(uint32_t* nd, uint32_t ndhi, uint32_t* ref, MSize hilen, MSize prec) { char nd9[9], ref9[9]; if (hilen <= prec) { if (LJ_UNLIKELY(nd[ndhi] != *ref)) return 0; prec -= hilen; ref--; ndhi = (ndhi - 1) & 0x3f; if (prec >= 9) { if (LJ_UNLIKELY(nd[ndhi] != *ref)) return 0; prec -= 9; ref--; ndhi = (ndhi - 1) & 0x3f; } } else { prec -= hilen - 9; } lj_assertX(prec < 9, "bad precision %d", prec); lj_strfmt_wuint9(nd9, nd[ndhi]); lj_strfmt_wuint9(ref9, *ref); return !memcmp(nd9, ref9, prec) && (nd9[prec] < '5') == (ref9[prec] < '5'); } /* -- Formatted conversions to buffer ------------------------------------- */ /* Write formatted floating-point number to either sb or p. */ static char *lj_strfmt_wfnum(SBuf *sb, SFormat sf, lua_Number n, char *p) { MSize width = STRFMT_WIDTH(sf), prec = STRFMT_PREC(sf), len; TValue t; t.n = n; if (LJ_UNLIKELY((t.u32.hi << 1) >= 0xffe00000)) { /* Handle non-finite values uniformly for %a, %e, %f, %g. */ int prefix = 0, ch = (sf & STRFMT_F_UPPER) ? 0x202020 : 0; if (((t.u32.hi & 0x000fffff) | t.u32.lo) != 0) { ch ^= ('n' << 16) | ('a' << 8) | 'n'; if ((sf & STRFMT_F_SPACE)) prefix = ' '; } else { ch ^= ('i' << 16) | ('n' << 8) | 'f'; if ((t.u32.hi & 0x80000000)) prefix = '-'; else if ((sf & STRFMT_F_PLUS)) prefix = '+'; else if ((sf & STRFMT_F_SPACE)) prefix = ' '; } len = 3 + (prefix != 0); if (!p) p = lj_buf_more(sb, width > len ? width : len); if (!(sf & STRFMT_F_LEFT)) while (width-- > len) *p++ = ' '; if (prefix) *p++ = prefix; *p++ = (char)(ch >> 16); *p++ = (char)(ch >> 8); *p++ = (char)ch; } else if (STRFMT_FP(sf) == STRFMT_FP(STRFMT_T_FP_A)) { /* %a */ const char *hexdig = (sf & STRFMT_F_UPPER) ? "0123456789ABCDEFPX" : "0123456789abcdefpx"; int32_t e = (t.u32.hi >> 20) & 0x7ff; char prefix = 0, eprefix = '+'; if (t.u32.hi & 0x80000000) prefix = '-'; else if ((sf & STRFMT_F_PLUS)) prefix = '+'; else if ((sf & STRFMT_F_SPACE)) prefix = ' '; t.u32.hi &= 0xfffff; if (e) { t.u32.hi |= 0x100000; e -= 1023; } else if (t.u32.lo | t.u32.hi) { /* Non-zero denormal - normalise it. */ uint32_t shift = t.u32.hi ? 20-lj_fls(t.u32.hi) : 52-lj_fls(t.u32.lo); e = -1022 - shift; t.u64 <<= shift; } /* abs(n) == t.u64 * 2^(e - 52) */ /* If n != 0, bit 52 of t.u64 is set, and is the highest set bit. */ if ((int32_t)prec < 0) { /* Default precision: use smallest precision giving exact result. */ prec = t.u32.lo ? 13-lj_ffs(t.u32.lo)/4 : 5-lj_ffs(t.u32.hi|0x100000)/4; } else if (prec < 13) { /* Precision is sufficiently low as to maybe require rounding. */ t.u64 += (((uint64_t)1) << (51 - prec*4)); } if (e < 0) { eprefix = '-'; e = -e; } len = 5 + ndigits_dec((uint32_t)e) + prec + (prefix != 0) + ((prec | (sf & STRFMT_F_ALT)) != 0); if (!p) p = lj_buf_more(sb, width > len ? width : len); if (!(sf & (STRFMT_F_LEFT | STRFMT_F_ZERO))) { while (width-- > len) *p++ = ' '; } if (prefix) *p++ = prefix; *p++ = '0'; *p++ = hexdig[17]; /* x or X */ if ((sf & (STRFMT_F_LEFT | STRFMT_F_ZERO)) == STRFMT_F_ZERO) { while (width-- > len) *p++ = '0'; } *p++ = '0' + (t.u32.hi >> 20); /* Usually '1', sometimes '0' or '2'. */ if ((prec | (sf & STRFMT_F_ALT))) { /* Emit fractional part. */ char *q = p + 1 + prec; *p = '.'; if (prec < 13) t.u64 >>= (52 - prec*4); else while (prec > 13) p[prec--] = '0'; while (prec) { p[prec--] = hexdig[t.u64 & 15]; t.u64 >>= 4; } p = q; } *p++ = hexdig[16]; /* p or P */ *p++ = eprefix; /* + or - */ p = lj_strfmt_wint(p, e); } else { /* %e or %f or %g - begin by converting n to "nd" format. */ uint32_t nd[64]; uint32_t ndhi = 0, ndlo, i; int32_t e = (t.u32.hi >> 20) & 0x7ff, ndebias = 0; char prefix = 0, *q; if (t.u32.hi & 0x80000000) prefix = '-'; else if ((sf & STRFMT_F_PLUS)) prefix = '+'; else if ((sf & STRFMT_F_SPACE)) prefix = ' '; prec += ((int32_t)prec >> 31) & 7; /* Default precision is 6. */ if (STRFMT_FP(sf) == STRFMT_FP(STRFMT_T_FP_G)) { /* %g - decrement precision if non-zero (to make it like %e). */ prec--; prec ^= (uint32_t)((int32_t)prec >> 31); } if ((sf & STRFMT_T_FP_E) && prec < 14 && n != 0) { /* Precision is sufficiently low that rescaling will probably work. */ if ((ndebias = rescale_e[e >> 6])) { t.n = n * rescale_n[e >> 6]; if (LJ_UNLIKELY(!e)) t.n *= 1e10, ndebias -= 10; t.u64 -= 2; /* Convert 2ulp below (later we convert 2ulp above). */ nd[0] = 0x100000 | (t.u32.hi & 0xfffff); e = ((t.u32.hi >> 20) & 0x7ff) - 1075 - (ND_MUL2K_MAX_SHIFT < 29); goto load_t_lo; rescale_failed: t.n = n; e = (t.u32.hi >> 20) & 0x7ff; ndebias = ndhi = 0; } } nd[0] = t.u32.hi & 0xfffff; if (e == 0) e++; else nd[0] |= 0x100000; e -= 1043; if (t.u32.lo) { e -= 32 + (ND_MUL2K_MAX_SHIFT < 29); load_t_lo: #if ND_MUL2K_MAX_SHIFT >= 29 nd[0] = (nd[0] << 3) | (t.u32.lo >> 29); ndhi = nd_mul2k(nd, ndhi, 29, t.u32.lo & 0x1fffffff, sf); #elif ND_MUL2K_MAX_SHIFT >= 11 ndhi = nd_mul2k(nd, ndhi, 11, t.u32.lo >> 21, sf); ndhi = nd_mul2k(nd, ndhi, 11, (t.u32.lo >> 10) & 0x7ff, sf); ndhi = nd_mul2k(nd, ndhi, 11, (t.u32.lo << 1) & 0x7ff, sf); #else #error "ND_MUL2K_MAX_SHIFT too small" #endif } if (e >= 0) { ndhi = nd_mul2k(nd, ndhi, (uint32_t)e, 0, sf); ndlo = 0; } else { ndlo = nd_div2k(nd, ndhi, (uint32_t)-e, sf); if (ndhi && !nd[ndhi]) ndhi--; } /* abs(n) == nd * 10^ndebias (for slightly loose interpretation of ==) */ if ((sf & STRFMT_T_FP_E)) { /* %e or %g - assume %e and start by calculating nd's exponent (nde). */ char eprefix = '+'; int32_t nde = -1; MSize hilen; if (ndlo && !nd[ndhi]) { ndhi = 64; do {} while (!nd[--ndhi]); nde -= 64 * 9; } hilen = ndigits_dec(nd[ndhi]); nde += ndhi * 9 + hilen; if (ndebias) { /* ** Rescaling was performed, but this introduced some error, and might ** have pushed us across a rounding boundary. We check whether this ** error affected the result by introducing even more error (2ulp in ** either direction), and seeing whether a rounding boundary was ** crossed. Having already converted the -2ulp case, we save off its ** most significant digits, convert the +2ulp case, and compare them. */ int32_t eidx = e + 70 + (ND_MUL2K_MAX_SHIFT < 29) + (t.u32.lo >= 0xfffffffe && !(~t.u32.hi << 12)); const int8_t *m_e = four_ulp_m_e + eidx * 2; lj_assertG_(G(sbufL(sb)), 0 <= eidx && eidx < 128, "bad eidx %d", eidx); nd[33] = nd[ndhi]; nd[32] = nd[(ndhi - 1) & 0x3f]; nd[31] = nd[(ndhi - 2) & 0x3f]; nd_add_m10e(nd, ndhi, (uint8_t)*m_e, m_e[1]); if (LJ_UNLIKELY(!nd_similar(nd, ndhi, nd + 33, hilen, prec + 1))) { goto rescale_failed; } } if ((int32_t)(prec - nde) < (0x3f & -(int32_t)ndlo) * 9) { /* Precision is sufficiently low as to maybe require rounding. */ ndhi = nd_add_m10e(nd, ndhi, 5, nde - prec - 1); nde += (hilen != ndigits_dec(nd[ndhi])); } nde += ndebias; if ((sf & STRFMT_T_FP_F)) { /* %g */ if ((int32_t)prec >= nde && nde >= -4) { if (nde < 0) ndhi = 0; prec -= nde; goto g_format_like_f; } else if (!(sf & STRFMT_F_ALT) && prec && width > 5) { /* Decrease precision in order to strip trailing zeroes. */ char tail[9]; uint32_t maxprec = hilen - 1 + ((ndhi - ndlo) & 0x3f) * 9; if (prec >= maxprec) prec = maxprec; else ndlo = (ndhi - (((int32_t)(prec - hilen) + 9) / 9)) & 0x3f; i = prec - hilen - (((ndhi - ndlo) & 0x3f) * 9) + 10; lj_strfmt_wuint9(tail, nd[ndlo]); while (prec && tail[--i] == '0') { prec--; if (!i) { if (ndlo == ndhi) { prec = 0; break; } lj_strfmt_wuint9(tail, nd[++ndlo]); i = 9; } } } } if (nde < 0) { /* Make nde non-negative. */ eprefix = '-'; nde = -nde; } len = 3 + prec + (prefix != 0) + ndigits_dec((uint32_t)nde) + (nde < 10) + ((prec | (sf & STRFMT_F_ALT)) != 0); if (!p) p = lj_buf_more(sb, (width > len ? width : len) + 5); if (!(sf & (STRFMT_F_LEFT | STRFMT_F_ZERO))) { while (width-- > len) *p++ = ' '; } if (prefix) *p++ = prefix; if ((sf & (STRFMT_F_LEFT | STRFMT_F_ZERO)) == STRFMT_F_ZERO) { while (width-- > len) *p++ = '0'; } q = lj_strfmt_wint(p + 1, nd[ndhi]); p[0] = p[1]; /* Put leading digit in the correct place. */ if ((prec | (sf & STRFMT_F_ALT))) { /* Emit fractional part. */ p[1] = '.'; p += 2; prec -= (MSize)(q - p); p = q; /* Account for digits already emitted. */ /* Then emit chunks of 9 digits (this may emit 8 digits too many). */ for (i = ndhi; (int32_t)prec > 0 && i != ndlo; prec -= 9) { i = (i - 1) & 0x3f; p = lj_strfmt_wuint9(p, nd[i]); } if ((sf & STRFMT_T_FP_F) && !(sf & STRFMT_F_ALT)) { /* %g (and not %#g) - strip trailing zeroes. */ p += (int32_t)prec & ((int32_t)prec >> 31); while (p[-1] == '0') p--; if (p[-1] == '.') p--; } else { /* %e (or %#g) - emit trailing zeroes. */ while ((int32_t)prec > 0) { *p++ = '0'; prec--; } p += (int32_t)prec; } } else { p++; } *p++ = (sf & STRFMT_F_UPPER) ? 'E' : 'e'; *p++ = eprefix; /* + or - */ if (nde < 10) *p++ = '0'; /* Always at least two digits of exponent. */ p = lj_strfmt_wint(p, nde); } else { /* %f (or, shortly, %g in %f style) */ if (prec < (MSize)(0x3f & -(int32_t)ndlo) * 9) { /* Precision is sufficiently low as to maybe require rounding. */ ndhi = nd_add_m10e(nd, ndhi, 5, 0 - prec - 1); } g_format_like_f: if ((sf & STRFMT_T_FP_E) && !(sf & STRFMT_F_ALT) && prec && width) { /* Decrease precision in order to strip trailing zeroes. */ if (ndlo) { /* nd has a fractional part; we need to look at its digits. */ char tail[9]; uint32_t maxprec = (64 - ndlo) * 9; if (prec >= maxprec) prec = maxprec; else ndlo = 64 - (prec + 8) / 9; i = prec - ((63 - ndlo) * 9); lj_strfmt_wuint9(tail, nd[ndlo]); while (prec && tail[--i] == '0') { prec--; if (!i) { if (ndlo == 63) { prec = 0; break; } lj_strfmt_wuint9(tail, nd[++ndlo]); i = 9; } } } else { /* nd has no fractional part, so precision goes straight to zero. */ prec = 0; } } len = ndhi * 9 + ndigits_dec(nd[ndhi]) + prec + (prefix != 0) + ((prec | (sf & STRFMT_F_ALT)) != 0); if (!p) p = lj_buf_more(sb, (width > len ? width : len) + 8); if (!(sf & (STRFMT_F_LEFT | STRFMT_F_ZERO))) { while (width-- > len) *p++ = ' '; } if (prefix) *p++ = prefix; if ((sf & (STRFMT_F_LEFT | STRFMT_F_ZERO)) == STRFMT_F_ZERO) { while (width-- > len) *p++ = '0'; } /* Emit integer part. */ p = lj_strfmt_wint(p, nd[ndhi]); i = ndhi; while (i) p = lj_strfmt_wuint9(p, nd[--i]); if ((prec | (sf & STRFMT_F_ALT))) { /* Emit fractional part. */ *p++ = '.'; /* Emit chunks of 9 digits (this may emit 8 digits too many). */ while ((int32_t)prec > 0 && i != ndlo) { i = (i - 1) & 0x3f; p = lj_strfmt_wuint9(p, nd[i]); prec -= 9; } if ((sf & STRFMT_T_FP_E) && !(sf & STRFMT_F_ALT)) { /* %g (and not %#g) - strip trailing zeroes. */ p += (int32_t)prec & ((int32_t)prec >> 31); while (p[-1] == '0') p--; if (p[-1] == '.') p--; } else { /* %f (or %#g) - emit trailing zeroes. */ while ((int32_t)prec > 0) { *p++ = '0'; prec--; } p += (int32_t)prec; } } } } if ((sf & STRFMT_F_LEFT)) while (width-- > len) *p++ = ' '; return p; } /* Add formatted floating-point number to buffer. */ SBuf *lj_strfmt_putfnum(SBuf *sb, SFormat sf, lua_Number n) { sb->w = lj_strfmt_wfnum(sb, sf, n, NULL); return sb; } /* -- Conversions to strings ---------------------------------------------- */ /* Convert number to string. */ GCstr * LJ_FASTCALL lj_strfmt_num(lua_State *L, cTValue *o) { char buf[STRFMT_MAXBUF_NUM]; MSize len = (MSize)(lj_strfmt_wfnum(NULL, STRFMT_G14, o->n, buf) - buf); return lj_str_new(L, buf, len); }