/* ** String scanning. ** Copyright (C) 2005-2022 Mike Pall. See Copyright Notice in luajit.h */ #include #define lj_strscan_c #define LUA_CORE #include "lj_obj.h" #include "lj_char.h" #include "lj_strscan.h" /* -- Scanning numbers ---------------------------------------------------- */ /* ** Rationale for the builtin string to number conversion library: ** ** It removes a dependency on libc's strtod(), which is a true portability ** nightmare. Mainly due to the plethora of supported OS and toolchain ** combinations. Sadly, the various implementations ** a) are often buggy, incomplete (no hex floats) and/or imprecise, ** b) sometimes crash or hang on certain inputs, ** c) return non-standard NaNs that need to be filtered out, and ** d) fail if the locale-specific decimal separator is not a dot, ** which can only be fixed with atrocious workarounds. ** ** Also, most of the strtod() implementations are hopelessly bloated, ** which is not just an I-cache hog, but a problem for static linkage ** on embedded systems, too. ** ** OTOH the builtin conversion function is very compact. Even though it ** does a lot more, like parsing long longs, octal or imaginary numbers ** and returning the result in different formats: ** a) It needs less than 3 KB (!) of machine code (on x64 with -Os), ** b) it doesn't perform any dynamic allocation and, ** c) it needs only around 600 bytes of stack space. ** ** The builtin function is faster than strtod() for typical inputs, e.g. ** "123", "1.5" or "1e6". Arguably, it's slower for very large exponents, ** which are not very common (this could be fixed, if needed). ** ** And most importantly, the builtin function is equally precise on all ** platforms. It correctly converts and rounds any input to a double. ** If this is not the case, please send a bug report -- but PLEASE verify ** that the implementation you're comparing to is not the culprit! ** ** The implementation quickly pre-scans the entire string first and ** handles simple integers on-the-fly. Otherwise, it dispatches to the ** base-specific parser. Hex and octal is straightforward. ** ** Decimal to binary conversion uses a fixed-length circular buffer in ** base 100. Some simple cases are handled directly. For other cases, the ** number in the buffer is up-scaled or down-scaled until the integer part ** is in the proper range. Then the integer part is rounded and converted ** to a double which is finally rescaled to the result. Denormals need ** special treatment to prevent incorrect 'double rounding'. */ /* Definitions for circular decimal digit buffer (base 100 = 2 digits/byte). */ #define STRSCAN_DIG 1024 #define STRSCAN_MAXDIG 800 /* 772 + extra are sufficient. */ #define STRSCAN_DDIG (STRSCAN_DIG/2) #define STRSCAN_DMASK (STRSCAN_DDIG-1) #define STRSCAN_MAXEXP (1 << 20) /* Helpers for circular buffer. */ #define DNEXT(a) (((a)+1) & STRSCAN_DMASK) #define DPREV(a) (((a)-1) & STRSCAN_DMASK) #define DLEN(lo, hi) ((int32_t)(((lo)-(hi)) & STRSCAN_DMASK)) #define casecmp(c, k) (((c) | 0x20) == k) /* Final conversion to double. */ static void strscan_double(uint64_t x, TValue *o, int32_t ex2, int32_t neg) { double n; /* Avoid double rounding for denormals. */ if (LJ_UNLIKELY(ex2 <= -1075 && x != 0)) { /* NYI: all of this generates way too much code on 32 bit CPUs. */ #if (defined(__GNUC__) || defined(__clang__)) && LJ_64 int32_t b = (int32_t)(__builtin_clzll(x)^63); #else int32_t b = (x>>32) ? 32+(int32_t)lj_fls((uint32_t)(x>>32)) : (int32_t)lj_fls((uint32_t)x); #endif if ((int32_t)b + ex2 <= -1023 && (int32_t)b + ex2 >= -1075) { uint64_t rb = (uint64_t)1 << (-1075-ex2); if ((x & rb) && ((x & (rb+rb+rb-1)))) x += rb+rb; x = (x & ~(rb+rb-1)); } } /* Convert to double using a signed int64_t conversion, then rescale. */ lj_assertX((int64_t)x >= 0, "bad double conversion"); n = (double)(int64_t)x; if (neg) n = -n; if (ex2) n = ldexp(n, ex2); o->n = n; } /* Parse hexadecimal number. */ static StrScanFmt strscan_hex(const uint8_t *p, TValue *o, StrScanFmt fmt, uint32_t opt, int32_t ex2, int32_t neg, uint32_t dig) { uint64_t x = 0; uint32_t i; /* Scan hex digits. */ for (i = dig > 16 ? 16 : dig ; i; i--, p++) { uint32_t d = (*p != '.' ? *p : *++p); if (d > '9') d += 9; x = (x << 4) + (d & 15); } /* Summarize rounding-effect of excess digits. */ for (i = 16; i < dig; i++, p++) x |= ((*p != '.' ? *p : *++p) != '0'), ex2 += 4; /* Format-specific handling. */ switch (fmt) { case STRSCAN_INT: if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg && !(x == 0 && neg)) { o->i = neg ? -(int32_t)x : (int32_t)x; return STRSCAN_INT; /* Fast path for 32 bit integers. */ } if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; break; } /* fallthrough */ case STRSCAN_U32: if (dig > 8) return STRSCAN_ERROR; o->i = neg ? -(int32_t)x : (int32_t)x; return STRSCAN_U32; case STRSCAN_I64: case STRSCAN_U64: if (dig > 16) return STRSCAN_ERROR; o->u64 = neg ? (uint64_t)-(int64_t)x : x; return fmt; default: break; } /* Reduce range, then convert to double. */ if ((x & U64x(c0000000,0000000))) { x = (x >> 2) | (x & 3); ex2 += 2; } strscan_double(x, o, ex2, neg); return fmt; } /* Parse octal number. */ static StrScanFmt strscan_oct(const uint8_t *p, TValue *o, StrScanFmt fmt, int32_t neg, uint32_t dig) { uint64_t x = 0; /* Scan octal digits. */ if (dig > 22 || (dig == 22 && *p > '1')) return STRSCAN_ERROR; while (dig-- > 0) { if (!(*p >= '0' && *p <= '7')) return STRSCAN_ERROR; x = (x << 3) + (*p++ & 7); } /* Format-specific handling. */ switch (fmt) { case STRSCAN_INT: if (x >= 0x80000000u+neg) fmt = STRSCAN_U32; /* fallthrough */ case STRSCAN_U32: if ((x >> 32)) return STRSCAN_ERROR; o->i = neg ? -(int32_t)x : (int32_t)x; break; default: case STRSCAN_I64: case STRSCAN_U64: o->u64 = neg ? (uint64_t)-(int64_t)x : x; break; } return fmt; } /* Parse decimal number. */ static StrScanFmt strscan_dec(const uint8_t *p, TValue *o, StrScanFmt fmt, uint32_t opt, int32_t ex10, int32_t neg, uint32_t dig) { uint8_t xi[STRSCAN_DDIG], *xip = xi; if (dig) { uint32_t i = dig; if (i > STRSCAN_MAXDIG) { ex10 += (int32_t)(i - STRSCAN_MAXDIG); i = STRSCAN_MAXDIG; } /* Scan unaligned leading digit. */ if (((ex10^i) & 1)) *xip++ = ((*p != '.' ? *p : *++p) & 15), i--, p++; /* Scan aligned double-digits. */ for ( ; i > 1; i -= 2) { uint32_t d = 10 * ((*p != '.' ? *p : *++p) & 15); p++; *xip++ = d + ((*p != '.' ? *p : *++p) & 15); p++; } /* Scan and realign trailing digit. */ if (i) *xip++ = 10 * ((*p != '.' ? *p : *++p) & 15), ex10--, dig++, p++; /* Summarize rounding-effect of excess digits. */ if (dig > STRSCAN_MAXDIG) { do { if ((*p != '.' ? *p : *++p) != '0') { xip[-1] |= 1; break; } p++; } while (--dig > STRSCAN_MAXDIG); dig = STRSCAN_MAXDIG; } else { /* Simplify exponent. */ while (ex10 > 0 && dig <= 18) *xip++ = 0, ex10 -= 2, dig += 2; } } else { /* Only got zeros. */ ex10 = 0; xi[0] = 0; } /* Fast path for numbers in integer format (but handles e.g. 1e6, too). */ if (dig <= 20 && ex10 == 0) { uint8_t *xis; uint64_t x = xi[0]; double n; for (xis = xi+1; xis < xip; xis++) x = x * 100 + *xis; if (!(dig == 20 && (xi[0] > 18 || (int64_t)x >= 0))) { /* No overflow? */ /* Format-specific handling. */ switch (fmt) { case STRSCAN_INT: if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) { o->i = neg ? -(int32_t)x : (int32_t)x; return STRSCAN_INT; /* Fast path for 32 bit integers. */ } if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; goto plainnumber; } /* fallthrough */ case STRSCAN_U32: if ((x >> 32) != 0) return STRSCAN_ERROR; o->i = neg ? -(int32_t)x : (int32_t)x; return STRSCAN_U32; case STRSCAN_I64: case STRSCAN_U64: o->u64 = neg ? (uint64_t)-(int64_t)x : x; return fmt; default: plainnumber: /* Fast path for plain numbers < 2^63. */ if ((int64_t)x < 0) break; n = (double)(int64_t)x; if (neg) n = -n; o->n = n; return fmt; } } } /* Slow non-integer path. */ if (fmt == STRSCAN_INT) { if ((opt & STRSCAN_OPT_C)) return STRSCAN_ERROR; fmt = STRSCAN_NUM; } else if (fmt > STRSCAN_INT) { return STRSCAN_ERROR; } { uint32_t hi = 0, lo = (uint32_t)(xip-xi); int32_t ex2 = 0, idig = (int32_t)lo + (ex10 >> 1); lj_assertX(lo > 0 && (ex10 & 1) == 0, "bad lo %d ex10 %d", lo, ex10); /* Handle simple overflow/underflow. */ if (idig > 310/2) { if (neg) setminfV(o); else setpinfV(o); return fmt; } else if (idig < -326/2) { o->n = neg ? -0.0 : 0.0; return fmt; } /* Scale up until we have at least 17 or 18 integer part digits. */ while (idig < 9 && idig < DLEN(lo, hi)) { uint32_t i, cy = 0; ex2 -= 6; for (i = DPREV(lo); ; i = DPREV(i)) { uint32_t d = (xi[i] << 6) + cy; cy = (((d >> 2) * 5243) >> 17); d = d - cy * 100; /* Div/mod 100. */ xi[i] = (uint8_t)d; if (i == hi) break; if (d == 0 && i == DPREV(lo)) lo = i; } if (cy) { hi = DPREV(hi); if (xi[DPREV(lo)] == 0) lo = DPREV(lo); else if (hi == lo) { lo = DPREV(lo); xi[DPREV(lo)] |= xi[lo]; } xi[hi] = (uint8_t)cy; idig++; } } /* Scale down until no more than 17 or 18 integer part digits remain. */ while (idig > 9) { uint32_t i = hi, cy = 0; ex2 += 6; do { cy += xi[i]; xi[i] = (cy >> 6); cy = 100 * (cy & 0x3f); if (xi[i] == 0 && i == hi) hi = DNEXT(hi), idig--; i = DNEXT(i); } while (i != lo); while (cy) { if (hi == lo) { xi[DPREV(lo)] |= 1; break; } xi[lo] = (cy >> 6); lo = DNEXT(lo); cy = 100 * (cy & 0x3f); } } /* Collect integer part digits and convert to rescaled double. */ { uint64_t x = xi[hi]; uint32_t i; for (i = DNEXT(hi); --idig > 0 && i != lo; i = DNEXT(i)) x = x * 100 + xi[i]; if (i == lo) { while (--idig >= 0) x = x * 100; } else { /* Gather round bit from remaining digits. */ x <<= 1; ex2--; do { if (xi[i]) { x |= 1; break; } i = DNEXT(i); } while (i != lo); } strscan_double(x, o, ex2, neg); } } return fmt; } /* Parse binary number. */ static StrScanFmt strscan_bin(const uint8_t *p, TValue *o, StrScanFmt fmt, uint32_t opt, int32_t ex2, int32_t neg, uint32_t dig) { uint64_t x = 0; uint32_t i; if (ex2 || dig > 64) return STRSCAN_ERROR; /* Scan binary digits. */ for (i = dig; i; i--, p++) { if ((*p & ~1) != '0') return STRSCAN_ERROR; x = (x << 1) | (*p & 1); } /* Format-specific handling. */ switch (fmt) { case STRSCAN_INT: if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) { o->i = neg ? -(int32_t)x : (int32_t)x; return STRSCAN_INT; /* Fast path for 32 bit integers. */ } if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; break; } /* fallthrough */ case STRSCAN_U32: if (dig > 32) return STRSCAN_ERROR; o->i = neg ? -(int32_t)x : (int32_t)x; return STRSCAN_U32; case STRSCAN_I64: case STRSCAN_U64: o->u64 = neg ? (uint64_t)-(int64_t)x : x; return fmt; default: break; } /* Reduce range, then convert to double. */ if ((x & U64x(c0000000,0000000))) { x = (x >> 2) | (x & 3); ex2 += 2; } strscan_double(x, o, ex2, neg); return fmt; } /* Scan string containing a number. Returns format. Returns value in o. */ StrScanFmt lj_strscan_scan(const uint8_t *p, MSize len, TValue *o, uint32_t opt) { int32_t neg = 0; const uint8_t *pe = p + len; /* Remove leading space, parse sign and non-numbers. */ if (LJ_UNLIKELY(!lj_char_isdigit(*p))) { while (lj_char_isspace(*p)) p++; if (*p == '+' || *p == '-') neg = (*p++ == '-'); if (LJ_UNLIKELY(*p >= 'A')) { /* Parse "inf", "infinity" or "nan". */ TValue tmp; setnanV(&tmp); if (casecmp(p[0],'i') && casecmp(p[1],'n') && casecmp(p[2],'f')) { if (neg) setminfV(&tmp); else setpinfV(&tmp); p += 3; if (casecmp(p[0],'i') && casecmp(p[1],'n') && casecmp(p[2],'i') && casecmp(p[3],'t') && casecmp(p[4],'y')) p += 5; } else if (casecmp(p[0],'n') && casecmp(p[1],'a') && casecmp(p[2],'n')) { p += 3; } while (lj_char_isspace(*p)) p++; if (*p || p < pe) return STRSCAN_ERROR; o->u64 = tmp.u64; return STRSCAN_NUM; } } /* Parse regular number. */ { StrScanFmt fmt = STRSCAN_INT; int cmask = LJ_CHAR_DIGIT; int base = (opt & STRSCAN_OPT_C) && *p == '0' ? 0 : 10; const uint8_t *sp, *dp = NULL; uint32_t dig = 0, hasdig = 0, x = 0; int32_t ex = 0; /* Determine base and skip leading zeros. */ if (LJ_UNLIKELY(*p <= '0')) { if (*p == '0') { if (casecmp(p[1], 'x')) base = 16, cmask = LJ_CHAR_XDIGIT, p += 2; else if (casecmp(p[1], 'b')) base = 2, cmask = LJ_CHAR_DIGIT, p += 2; } for ( ; ; p++) { if (*p == '0') { hasdig = 1; } else if (*p == '.') { if (dp) return STRSCAN_ERROR; dp = p; } else { break; } } } /* Preliminary digit and decimal point scan. */ for (sp = p; ; p++) { if (LJ_LIKELY(lj_char_isa(*p, cmask))) { x = x * 10 + (*p & 15); /* For fast path below. */ dig++; } else if (*p == '.') { if (dp) return STRSCAN_ERROR; dp = p; } else { break; } } if (!(hasdig | dig)) return STRSCAN_ERROR; /* Handle decimal point. */ if (dp) { if (base == 2) return STRSCAN_ERROR; fmt = STRSCAN_NUM; if (dig) { ex = (int32_t)(dp-(p-1)); dp = p-1; while (ex < 0 && *dp-- == '0') ex++, dig--; /* Skip trailing zeros. */ if (ex <= -STRSCAN_MAXEXP) return STRSCAN_ERROR; if (base == 16) ex *= 4; } } /* Parse exponent. */ if (base >= 10 && casecmp(*p, (uint32_t)(base == 16 ? 'p' : 'e'))) { uint32_t xx; int negx = 0; fmt = STRSCAN_NUM; p++; if (*p == '+' || *p == '-') negx = (*p++ == '-'); if (!lj_char_isdigit(*p)) return STRSCAN_ERROR; xx = (*p++ & 15); while (lj_char_isdigit(*p)) { xx = xx * 10 + (*p & 15); if (xx >= STRSCAN_MAXEXP) return STRSCAN_ERROR; p++; } ex += negx ? -(int32_t)xx : (int32_t)xx; } /* Parse suffix. */ if (*p) { /* I (IMAG), U (U32), LL (I64), ULL/LLU (U64), L (long), UL/LU (ulong). */ /* NYI: f (float). Not needed until cp_number() handles non-integers. */ if (casecmp(*p, 'i')) { if (!(opt & STRSCAN_OPT_IMAG)) return STRSCAN_ERROR; p++; fmt = STRSCAN_IMAG; } else if (fmt == STRSCAN_INT) { if (casecmp(*p, 'u')) p++, fmt = STRSCAN_U32; if (casecmp(*p, 'l')) { p++; if (casecmp(*p, 'l')) p++, fmt += STRSCAN_I64 - STRSCAN_INT; else if (!(opt & STRSCAN_OPT_C)) return STRSCAN_ERROR; else if (sizeof(long) == 8) fmt += STRSCAN_I64 - STRSCAN_INT; } if (casecmp(*p, 'u') && (fmt == STRSCAN_INT || fmt == STRSCAN_I64)) p++, fmt += STRSCAN_U32 - STRSCAN_INT; if ((fmt == STRSCAN_U32 && !(opt & STRSCAN_OPT_C)) || (fmt >= STRSCAN_I64 && !(opt & STRSCAN_OPT_LL))) return STRSCAN_ERROR; } while (lj_char_isspace(*p)) p++; if (*p) return STRSCAN_ERROR; } if (p < pe) return STRSCAN_ERROR; /* Fast path for decimal 32 bit integers. */ if (fmt == STRSCAN_INT && base == 10 && (dig < 10 || (dig == 10 && *sp <= '2' && x < 0x80000000u+neg))) { if ((opt & STRSCAN_OPT_TONUM)) { o->n = neg ? -(double)x : (double)x; return STRSCAN_NUM; } else if (x == 0 && neg) { o->n = -0.0; return STRSCAN_NUM; } else { o->i = neg ? -(int32_t)x : (int32_t)x; return STRSCAN_INT; } } /* Dispatch to base-specific parser. */ if (base == 0 && !(fmt == STRSCAN_NUM || fmt == STRSCAN_IMAG)) return strscan_oct(sp, o, fmt, neg, dig); if (base == 16) fmt = strscan_hex(sp, o, fmt, opt, ex, neg, dig); else if (base == 2) fmt = strscan_bin(sp, o, fmt, opt, ex, neg, dig); else fmt = strscan_dec(sp, o, fmt, opt, ex, neg, dig); /* Try to convert number to integer, if requested. */ if (fmt == STRSCAN_NUM && (opt & STRSCAN_OPT_TOINT) && !tvismzero(o)) { double n = o->n; int32_t i = lj_num2int(n); if (n == (lua_Number)i) { o->i = i; return STRSCAN_INT; } } return fmt; } } int LJ_FASTCALL lj_strscan_num(GCstr *str, TValue *o) { StrScanFmt fmt = lj_strscan_scan((const uint8_t *)strdata(str), str->len, o, STRSCAN_OPT_TONUM); lj_assertX(fmt == STRSCAN_ERROR || fmt == STRSCAN_NUM, "bad scan format"); return (fmt != STRSCAN_ERROR); } #if LJ_DUALNUM int LJ_FASTCALL lj_strscan_number(GCstr *str, TValue *o) { StrScanFmt fmt = lj_strscan_scan((const uint8_t *)strdata(str), str->len, o, STRSCAN_OPT_TOINT); lj_assertX(fmt == STRSCAN_ERROR || fmt == STRSCAN_NUM || fmt == STRSCAN_INT, "bad scan format"); if (fmt == STRSCAN_INT) setitype(o, LJ_TISNUM); return (fmt != STRSCAN_ERROR); } #endif #undef DNEXT #undef DPREV #undef DLEN