//! if OPC_TRITRI_EPSILON_TEST is true then we do a check (if |dv|<EPSILON then dv=0.0;) else no check is done (which is less robust, but faster) #define LOCAL_EPSILON 0.000001f //! sort so that a<=b #define SORT(a,b) \ if(a>b) \ { \ const float c=a; \ a=b; \ b=c; \ } //! Edge to edge test based on Franlin Antonio's gem: "Faster Line Segment Intersection", in Graphics Gems III, pp. 199-202 #define EDGE_EDGE_TEST(V0, U0, U1) \ Bx = U0[i0] - U1[i0]; \ By = U0[i1] - U1[i1]; \ Cx = V0[i0] - U0[i0]; \ Cy = V0[i1] - U0[i1]; \ f = Ay*Bx - Ax*By; \ d = By*Cx - Bx*Cy; \ if((f>0.0f && d>=0.0f && d<=f) || (f<0.0f && d<=0.0f && d>=f)) \ { \ const float e=Ax*Cy - Ay*Cx; \ if(f>0.0f) \ { \ if(e>=0.0f && e<=f) return TRUE; \ } \ else \ { \ if(e<=0.0f && e>=f) return TRUE; \ } \ } //! TO BE DOCUMENTED #define EDGE_AGAINST_TRI_EDGES(V0, V1, U0, U1, U2) \ { \ float Bx,By,Cx,Cy,d,f; \ const float Ax = V1[i0] - V0[i0]; \ const float Ay = V1[i1] - V0[i1]; \ /* test edge U0,U1 against V0,V1 */ \ EDGE_EDGE_TEST(V0, U0, U1); \ /* test edge U1,U2 against V0,V1 */ \ EDGE_EDGE_TEST(V0, U1, U2); \ /* test edge U2,U1 against V0,V1 */ \ EDGE_EDGE_TEST(V0, U2, U0); \ } //! TO BE DOCUMENTED #define POINT_IN_TRI(V0, U0, U1, U2) \ { \ /* is T1 completly inside T2? */ \ /* check if V0 is inside tri(U0,U1,U2) */ \ float a = U1[i1] - U0[i1]; \ float b = -(U1[i0] - U0[i0]); \ float c = -a*U0[i0] - b*U0[i1]; \ float d0 = a*V0[i0] + b*V0[i1] + c; \ \ a = U2[i1] - U1[i1]; \ b = -(U2[i0] - U1[i0]); \ c = -a*U1[i0] - b*U1[i1]; \ const float d1 = a*V0[i0] + b*V0[i1] + c; \ \ a = U0[i1] - U2[i1]; \ b = -(U0[i0] - U2[i0]); \ c = -a*U2[i0] - b*U2[i1]; \ const float d2 = a*V0[i0] + b*V0[i1] + c; \ if(d0*d1>0.0f) \ { \ if(d0*d2>0.0f) return TRUE; \ } \ } //! TO BE DOCUMENTED BOOL CoplanarTriTri(const Point& n, const Point& v0, const Point& v1, const Point& v2, const Point& u0, const Point& u1, const Point& u2) { float A[3]; short i0,i1; /* first project onto an axis-aligned plane, that maximizes the area */ /* of the triangles, compute indices: i0,i1. */ A[0] = fabsf(n[0]); A[1] = fabsf(n[1]); A[2] = fabsf(n[2]); if(A[0]>A[1]) { if(A[0]>A[2]) { i0=1; /* A[0] is greatest */ i1=2; } else { i0=0; /* A[2] is greatest */ i1=1; } } else /* A[0]<=A[1] */ { if(A[2]>A[1]) { i0=0; /* A[2] is greatest */ i1=1; } else { i0=0; /* A[1] is greatest */ i1=2; } } /* test all edges of triangle 1 against the edges of triangle 2 */ EDGE_AGAINST_TRI_EDGES(v0, v1, u0, u1, u2); EDGE_AGAINST_TRI_EDGES(v1, v2, u0, u1, u2); EDGE_AGAINST_TRI_EDGES(v2, v0, u0, u1, u2); /* finally, test if tri1 is totally contained in tri2 or vice versa */ POINT_IN_TRI(v0, u0, u1, u2); POINT_IN_TRI(u0, v0, v1, v2); return FALSE; } //! TO BE DOCUMENTED #define NEWCOMPUTE_INTERVALS(VV0, VV1, VV2, D0, D1, D2, D0D1, D0D2, A, B, C, X0, X1) \ { \ if(D0D1>0.0f) \ { \ /* here we know that D0D2<=0.0 */ \ /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \ A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1; \ } \ else if(D0D2>0.0f) \ { \ /* here we know that d0d1<=0.0 */ \ A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2; \ } \ else if(D1*D2>0.0f || D0!=0.0f) \ { \ /* here we know that d0d1<=0.0 or that D0!=0.0 */ \ A=VV0; B=(VV1 - VV0)*D0; C=(VV2 - VV0)*D0; X0=D0 - D1; X1=D0 - D2; \ } \ else if(D1!=0.0f) \ { \ A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2; \ } \ else if(D2!=0.0f) \ { \ A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1; \ } \ else \ { \ /* triangles are coplanar */ \ return CoplanarTriTri(N1, V0, V1, V2, U0, U1, U2); \ } \ } /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** * Triangle/triangle intersection test routine, * by Tomas Moller, 1997. * See article "A Fast Triangle-Triangle Intersection Test", * Journal of Graphics Tools, 2(2), 1997 * * Updated June 1999: removed the divisions -- a little faster now! * Updated October 1999: added {} to CROSS and SUB macros * * int NoDivTriTriIsect(float V0[3],float V1[3],float V2[3], * float U0[3],float U1[3],float U2[3]) * * \param V0 [in] triangle 0, vertex 0 * \param V1 [in] triangle 0, vertex 1 * \param V2 [in] triangle 0, vertex 2 * \param U0 [in] triangle 1, vertex 0 * \param U1 [in] triangle 1, vertex 1 * \param U2 [in] triangle 1, vertex 2 * \return true if triangles overlap */ /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// inline_ BOOL AABBTreeCollider::TriTriOverlap(const Point& V0, const Point& V1, const Point& V2, const Point& U0, const Point& U1, const Point& U2) { // Stats mNbPrimPrimTests++; // Compute plane equation of triangle(V0,V1,V2) Point E1 = V1 - V0; Point E2 = V2 - V0; const Point N1 = E1 ^ E2; const float d1 =-N1 | V0; // Plane equation 1: N1.X+d1=0 // Put U0,U1,U2 into plane equation 1 to compute signed distances to the plane float du0 = (N1|U0) + d1; float du1 = (N1|U1) + d1; float du2 = (N1|U2) + d1; // Coplanarity robustness check #ifdef OPC_TRITRI_EPSILON_TEST float absd1 = FastFabs(d1), sqmagN1 = N1.SquareMagnitude(); if (absd1>=sqmagN1) { if(FastFabs(du0)<=LOCAL_EPSILON*absd1) du0 = 0.0f; if(FastFabs(du1)<=LOCAL_EPSILON*absd1) du1 = 0.0f; if(FastFabs(du2)<=LOCAL_EPSILON*absd1) du2 = 0.0f; } else { if(FastFabs(du0)<=LOCAL_EPSILON*FCMax2(absd1, FCMin2(sqmagN1, U0.SquareMagnitude()))) du0 = 0.0f; if(FastFabs(du1)<=LOCAL_EPSILON*FCMax2(absd1, FCMin2(sqmagN1, U1.SquareMagnitude()))) du1 = 0.0f; if(FastFabs(du2)<=LOCAL_EPSILON*FCMax2(absd1, FCMin2(sqmagN1, U2.SquareMagnitude()))) du2 = 0.0f; } #endif const float du0du1 = du0 * du1; const float du0du2 = du0 * du2; if(du0du1>0.0f && du0du2>0.0f) // same sign on all of them + not equal 0 ? return FALSE; // no intersection occurs // Compute plane of triangle (U0,U1,U2) E1 = U1 - U0; E2 = U2 - U0; const Point N2 = E1 ^ E2; const float d2=-N2 | U0; // plane equation 2: N2.X+d2=0 // put V0,V1,V2 into plane equation 2 float dv0 = (N2|V0) + d2; float dv1 = (N2|V1) + d2; float dv2 = (N2|V2) + d2; #ifdef OPC_TRITRI_EPSILON_TEST float absd2 = FastFabs(d2), sqmagN2 = N2.SquareMagnitude(); if (absd2>=sqmagN2) { if(FastFabs(dv0)<=LOCAL_EPSILON*absd2) dv0 = 0.0f; if(FastFabs(dv1)<=LOCAL_EPSILON*absd2) dv1 = 0.0f; if(FastFabs(dv2)<=LOCAL_EPSILON*absd2) dv2 = 0.0f; } else { if(FastFabs(dv0)<=LOCAL_EPSILON*FCMax2(absd2, FCMin2(sqmagN2, V0.SquareMagnitude()))) dv0 = 0.0f; if(FastFabs(dv1)<=LOCAL_EPSILON*FCMax2(absd2, FCMin2(sqmagN2, V1.SquareMagnitude()))) dv1 = 0.0f; if(FastFabs(dv2)<=LOCAL_EPSILON*FCMax2(absd2, FCMin2(sqmagN2, V2.SquareMagnitude()))) dv2 = 0.0f; } #endif const float dv0dv1 = dv0 * dv1; const float dv0dv2 = dv0 * dv2; if(dv0dv1>0.0f && dv0dv2>0.0f) // same sign on all of them + not equal 0 ? return FALSE; // no intersection occurs // Compute direction of intersection line const Point D = N1^N2; // Compute and index to the largest component of D float max=fabsf(D[0]); short index=0; float bb=fabsf(D[1]); float cc=fabsf(D[2]); if(bb>max) max=bb,index=1; if(cc>max) max=cc,index=2; // This is the simplified projection onto L const float vp0 = V0[index]; const float vp1 = V1[index]; const float vp2 = V2[index]; const float up0 = U0[index]; const float up1 = U1[index]; const float up2 = U2[index]; // Compute interval for triangle 1 float a,b,c,x0,x1; NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1); // Compute interval for triangle 2 float d,e,f,y0,y1; NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1); const float xx=x0*x1; const float yy=y0*y1; const float xxyy=xx*yy; float isect1[2], isect2[2]; float tmp=a*xxyy; isect1[0]=tmp+b*x1*yy; isect1[1]=tmp+c*x0*yy; tmp=d*xxyy; isect2[0]=tmp+e*xx*y1; isect2[1]=tmp+f*xx*y0; SORT(isect1[0],isect1[1]); SORT(isect2[0],isect2[1]); if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return FALSE; return TRUE; }