/************************************************************************* * * * Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. * * All rights reserved. Email: russ@q12.org Web: www.q12.org * * * * This library is free software; you can redistribute it and/or * * modify it under the terms of EITHER: * * (1) The GNU Lesser General Public License as published by the Free * * Software Foundation; either version 2.1 of the License, or (at * * your option) any later version. The text of the GNU Lesser * * General Public License is included with this library in the * * file LICENSE.TXT. * * (2) The BSD-style license that is included with this library in * * the file LICENSE-BSD.TXT. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * * LICENSE.TXT and LICENSE-BSD.TXT for more details. * * * *************************************************************************/ /******************************************************************* * * * cylinder-sphere collider by Christoph Beyer (boernerb@web.de) * * * * In Cylinder/Sphere-collisions, there are three possibilies: * * 1. collision with the cylinder's nappe * * 2. collision with one of the cylinder's disc * * 3. collision with one of the disc's border * * * * This collider computes two distances (s, t) and based on them, * * it decides, which collision we have. * * This collider always generates 1 (or 0, if we have no collison) * * contacts. * * It is able to "separate" cylinder and sphere in all * * configurations, but it never pays attention to velocity. * * So, in extrem situations, "tunneling-effect" is possible. * * * *******************************************************************/ #include #include #include #include "config.h" #include "matrix.h" #include "odemath.h" #include "collision_kernel.h" // for dxGeom #include "collision_util.h" int dCollideCylinderSphere(dxGeom* Cylinder, dxGeom* Sphere, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (Cylinder->type == dCylinderClass); dIASSERT (Sphere->type == dSphereClass); dIASSERT ((flags & NUMC_MASK) >= 1); //unsigned char* pContactData = (unsigned char*)contact; int GeomCount = 0; // count of used contacts #ifdef dSINGLE const dReal toleranz = REAL(0.0001); #endif #ifdef dDOUBLE const dReal toleranz = REAL(0.0000001); #endif // get the data from the geoms dReal radius, length; dGeomCylinderGetParams(Cylinder, &radius, &length); dVector3 &cylpos = Cylinder->final_posr->pos; //const dReal* pfRot1 = dGeomGetRotation(Cylinder); dReal radius2; radius2 = dGeomSphereGetRadius(Sphere); const dReal* SpherePos = dGeomGetPosition(Sphere); // G1Pos1 is the middle of the first disc // G1Pos2 is the middle of the second disc // vDir1 is the unit direction of the cylinderaxis dVector3 G1Pos1, G1Pos2, vDir1; vDir1[0] = Cylinder->final_posr->R[2]; vDir1[1] = Cylinder->final_posr->R[6]; vDir1[2] = Cylinder->final_posr->R[10]; dReal s; s = length * REAL(0.5); // just a precomputed factor G1Pos2[0] = vDir1[0] * s + cylpos[0]; G1Pos2[1] = vDir1[1] * s + cylpos[1]; G1Pos2[2] = vDir1[2] * s + cylpos[2]; G1Pos1[0] = vDir1[0] * -s + cylpos[0]; G1Pos1[1] = vDir1[1] * -s + cylpos[1]; G1Pos1[2] = vDir1[2] * -s + cylpos[2]; dVector3 C; dReal t; // Step 1: compute the two distances 's' and 't' // 's' is the distance from the first disc (in vDir1-/Zylinderaxis-direction), the disc with G1Pos1 in the middle s = (SpherePos[0] - G1Pos1[0]) * vDir1[0] - (G1Pos1[1] - SpherePos[1]) * vDir1[1] - (G1Pos1[2] - SpherePos[2]) * vDir1[2]; if(s < (-radius2) || s > (length + radius2) ) { // Sphere is too far away from the discs // no collision return 0; } // C is the direction from Sphere-middle to the cylinder-axis (vDir1); C is orthogonal to the cylinder-axis C[0] = s * vDir1[0] + G1Pos1[0] - SpherePos[0]; C[1] = s * vDir1[1] + G1Pos1[1] - SpherePos[1]; C[2] = s * vDir1[2] + G1Pos1[2] - SpherePos[2]; // t is the distance from the Sphere-middle to the cylinder-axis! t = dVector3Length(C); if(t > (radius + radius2) ) { // Sphere is too far away from the cylinder axis! // no collision return 0; } // decide which kind of collision we have: if(t > radius && (s < 0 || s > length) ) { // 3. collision if(s <= 0) { contact->depth = radius2 - dSqrt( (s) * (s) + (t - radius) * (t - radius) ); if(contact->depth < 0) { // no collision! return 0; } contact->pos[0] = C[0] / t * -radius + G1Pos1[0]; contact->pos[1] = C[1] / t * -radius + G1Pos1[1]; contact->pos[2] = C[2] / t * -radius + G1Pos1[2]; contact->normal[0] = (contact->pos[0] - SpherePos[0]) / (radius2 - contact->depth); contact->normal[1] = (contact->pos[1] - SpherePos[1]) / (radius2 - contact->depth); contact->normal[2] = (contact->pos[2] - SpherePos[2]) / (radius2 - contact->depth); contact->g1 = Cylinder; contact->g2 = Sphere; contact->side1 = -1; contact->side2 = -1; GeomCount++; return GeomCount; } else { // now s is bigger than length here! contact->depth = radius2 - dSqrt( (s - length) * (s - length) + (t - radius) * (t - radius) ); if(contact->depth < 0) { // no collision! return 0; } contact->pos[0] = C[0] / t * -radius + G1Pos2[0]; contact->pos[1] = C[1] / t * -radius + G1Pos2[1]; contact->pos[2] = C[2] / t * -radius + G1Pos2[2]; contact->normal[0] = (contact->pos[0] - SpherePos[0]) / (radius2 - contact->depth); contact->normal[1] = (contact->pos[1] - SpherePos[1]) / (radius2 - contact->depth); contact->normal[2] = (contact->pos[2] - SpherePos[2]) / (radius2 - contact->depth); contact->g1 = Cylinder; contact->g2 = Sphere; contact->side1 = -1; contact->side2 = -1; GeomCount++; return GeomCount; } } else if( (radius - t) <= s && (radius - t) <= (length - s) ) { // 1. collsision if(t > (radius2 + toleranz)) { // cylinder-axis is outside the sphere contact->depth = (radius2 + radius) - t; if(contact->depth < 0) { // should never happen, but just for safeness return 0; } else { C[0] /= t; C[1] /= t; C[2] /= t; contact->pos[0] = C[0] * radius2 + SpherePos[0]; contact->pos[1] = C[1] * radius2 + SpherePos[1]; contact->pos[2] = C[2] * radius2 + SpherePos[2]; contact->normal[0] = C[0]; contact->normal[1] = C[1]; contact->normal[2] = C[2]; contact->g1 = Cylinder; contact->g2 = Sphere; contact->side1 = -1; contact->side2 = -1; GeomCount++; return GeomCount; } } else { // cylinder-axis is outside of the sphere contact->depth = (radius2 + radius) - t; if(contact->depth < 0) { // should never happen, but just for safeness return 0; } else { contact->pos[0] = C[0] + SpherePos[0]; contact->pos[1] = C[1] + SpherePos[1]; contact->pos[2] = C[2] + SpherePos[2]; contact->normal[0] = C[0] / t; contact->normal[1] = C[1] / t; contact->normal[2] = C[2] / t; contact->g1 = Cylinder; contact->g2 = Sphere; contact->side1 = -1; contact->side2 = -1; GeomCount++; return GeomCount; } } } else { // 2. collision if(s <= (length * REAL(0.5)) ) { // collsision with the first disc contact->depth = s + radius2; if(contact->depth < 0) { // should never happen, but just for safeness return 0; } contact->pos[0] = radius2 * vDir1[0] + SpherePos[0]; contact->pos[1] = radius2 * vDir1[1] + SpherePos[1]; contact->pos[2] = radius2 * vDir1[2] + SpherePos[2]; contact->normal[0] = vDir1[0]; contact->normal[1] = vDir1[1]; contact->normal[2] = vDir1[2]; contact->g1 = Cylinder; contact->g2 = Sphere; contact->side1 = -1; contact->side2 = -1; GeomCount++; return GeomCount; } else { // collsision with the second disc contact->depth = (radius2 + length - s); if(contact->depth < 0) { // should never happen, but just for safeness return 0; } contact->pos[0] = radius2 * -vDir1[0] + SpherePos[0]; contact->pos[1] = radius2 * -vDir1[1] + SpherePos[1]; contact->pos[2] = radius2 * -vDir1[2] + SpherePos[2]; contact->normal[0] = -vDir1[0]; contact->normal[1] = -vDir1[1]; contact->normal[2] = -vDir1[2]; contact->g1 = Cylinder; contact->g2 = Sphere; contact->side1 = -1; contact->side2 = -1; GeomCount++; return GeomCount; } } return GeomCount; }