/************************************************************************* * * * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * * All rights reserved. Email: russ@q12.org Web: www.q12.org * * * * This library is free software; you can redistribute it and/or * * modify it under the terms of EITHER: * * (1) The GNU Lesser General Public License as published by the Free * * Software Foundation; either version 2.1 of the License, or (at * * your option) any later version. The text of the GNU Lesser * * General Public License is included with this library in the * * file LICENSE.TXT. * * (2) The BSD-style license that is included with this library in * * the file LICENSE-BSD.TXT. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * * LICENSE.TXT and LICENSE-BSD.TXT for more details. * * * *************************************************************************/ /* TODO ---- * gettimeofday() and the pentium time stamp counter return the real time, not the process time. fix this somehow! */ #include #include #include "config.h" #include "common.h" // misc defines #define ALLOCA dALLOCA16 //**************************************************************************** // implementation for windows based on the multimedia performance counter. #ifdef WIN32 #include "windows.h" static inline void getClockCount (unsigned long cc[2]) { LARGE_INTEGER a; QueryPerformanceCounter (&a); cc[0] = a.LowPart; cc[1] = a.HighPart; } static inline void serialize() { } static inline double loadClockCount (unsigned long cc[2]) { LARGE_INTEGER a; a.LowPart = cc[0]; a.HighPart = cc[1]; return double(a.QuadPart); } double dTimerResolution() { return 1.0/dTimerTicksPerSecond(); } double dTimerTicksPerSecond() { static int query=0; static double hz=0.0; if (!query) { LARGE_INTEGER a; QueryPerformanceFrequency (&a); hz = double(a.QuadPart); query = 1; } return hz; } #endif //**************************************************************************** // implementation based on the pentium time stamp counter. the timer functions // can be serializing or non-serializing. serializing will ensure that all // instructions have executed and data has been written back before the cpu // time stamp counter is read. the CPUID instruction is used to serialize. #if defined(PENTIUM) && !defined(WIN32) // we need to know the clock rate so that the timing function can report // accurate times. this number only needs to be set accurately if we're // doing performance tests and care about real-world time numbers - otherwise, // just ignore this. i have not worked out how to determine this number // automatically yet. #define PENTIUM_HZ (500e6) static inline void getClockCount (unsigned long cc[2]) { #ifndef X86_64_SYSTEM asm volatile ( "rdtsc\n" "movl %%eax,(%%esi)\n" "movl %%edx,4(%%esi)\n" : : "S" (cc) : "%eax","%edx","cc","memory"); #else asm volatile ( "rdtsc\n" "movl %%eax,(%%rsi)\n" "movl %%edx,4(%%rsi)\n" : : "S" (cc) : "%eax","%edx","cc","memory"); #endif } static inline void serialize() { #ifndef X86_64_SYSTEM asm volatile ( "mov $0,%%eax\n" "push %%ebx\n" "cpuid\n" "pop %%ebx\n" : : : "%eax","%ecx","%edx","cc","memory"); #else asm volatile ( "mov $0,%%rax\n" "push %%rbx\n" "cpuid\n" "pop %%rbx\n" : : : "%rax","%rcx","%rdx","cc","memory"); #endif } static inline double loadClockCount (unsigned long a[2]) { double ret; #ifndef X86_64_SYSTEM asm volatile ("fildll %1; fstpl %0" : "=m" (ret) : "m" (a[0]) : "cc","memory"); #else asm volatile ("fildll %1; fstpl %0" : "=m" (ret) : "m" (a[0]) : "cc","memory"); #endif return ret; } double dTimerResolution() { return 1.0/PENTIUM_HZ; } double dTimerTicksPerSecond() { return PENTIUM_HZ; } #endif //**************************************************************************** // otherwise, do the implementation based on gettimeofday(). #if !defined(PENTIUM) && !defined(WIN32) #ifndef macintosh #include #include static inline void getClockCount (unsigned long cc[2]) { struct timeval tv; gettimeofday (&tv,0); cc[0] = tv.tv_usec; cc[1] = tv.tv_sec; } #else // macintosh #include #include static inline void getClockCount (unsigned long cc[2]) { UnsignedWide ms; Microseconds (&ms); cc[1] = ms.lo / 1000000; cc[0] = ms.lo - ( cc[1] * 1000000 ); } #endif static inline void serialize() { } static inline double loadClockCount (unsigned long a[2]) { return a[1]*1.0e6 + a[0]; } double dTimerResolution() { unsigned long cc1[2],cc2[2]; getClockCount (cc1); do { getClockCount (cc2); } while (cc1[0]==cc2[0] && cc1[1]==cc2[1]); do { getClockCount (cc1); } while (cc1[0]==cc2[0] && cc1[1]==cc2[1]); double t1 = loadClockCount (cc1); double t2 = loadClockCount (cc2); return (t1-t2) / dTimerTicksPerSecond(); } double dTimerTicksPerSecond() { return 1000000; } #endif //**************************************************************************** // stop watches void dStopwatchReset (dStopwatch *s) { s->time = 0; s->cc[0] = 0; s->cc[1] = 0; } void dStopwatchStart (dStopwatch *s) { serialize(); getClockCount (s->cc); } void dStopwatchStop (dStopwatch *s) { unsigned long cc[2]; serialize(); getClockCount (cc); double t1 = loadClockCount (s->cc); double t2 = loadClockCount (cc); s->time += t2-t1; } double dStopwatchTime (dStopwatch *s) { return s->time / dTimerTicksPerSecond(); } //**************************************************************************** // code timers // maximum number of events to record #define MAXNUM 100 static int num = 0; // number of entries used in event array static struct { unsigned long cc[2]; // clock counts double total_t; // total clocks used in this slot. double total_p; // total percentage points used in this slot. int count; // number of times this slot has been updated. const char *description; // pointer to static string } event[MAXNUM]; // make sure all slot totals and counts reset to 0 at start static void initSlots() { static int initialized=0; if (!initialized) { for (int i=0; i (description); num = 1; serialize(); getClockCount (event[0].cc); } void dTimerNow (const char *description) { if (num < MAXNUM) { // do not serialize getClockCount (event[num].cc); event[num].description = const_cast (description); num++; } } void dTimerEnd() { if (num < MAXNUM) { serialize(); getClockCount (event[num].cc); event[num].description = "TOTAL"; num++; } } //**************************************************************************** // print report static void fprintDoubleWithPrefix (FILE *f, double a, const char *fmt) { if (a >= 0.999999) { fprintf (f,fmt,a); return; } a *= 1000.0; if (a >= 0.999999) { fprintf (f,fmt,a); fprintf (f,"m"); return; } a *= 1000.0; if (a >= 0.999999) { fprintf (f,fmt,a); fprintf (f,"u"); return; } a *= 1000.0; fprintf (f,fmt,a); fprintf (f,"n"); } void dTimerReport (FILE *fout, int average) { int i; sizeint maxl; double ccunit = 1.0/dTimerTicksPerSecond(); fprintf (fout,"\nTimer Report ("); fprintDoubleWithPrefix (fout,ccunit,"%.2f "); fprintf (fout,"s resolution)\n------------\n"); if (num < 1) return; // get maximum description length maxl = 0; for (i=0; i maxl) maxl = l; } // calculate total time double t1 = loadClockCount (event[0].cc); double t2 = loadClockCount (event[num-1].cc); double total = t2 - t1; if (total <= 0) total = 1; // compute time difference for all slots except the last one. update totals double *times = (double*) ALLOCA (num * sizeof(double)); for (i=0; i < (num-1); i++) { double t1 = loadClockCount (event[i].cc); double t2 = loadClockCount (event[i+1].cc); times[i] = t2 - t1; event[i].count++; event[i].total_t += times[i]; event[i].total_p += times[i]/total * 100.0; } // print report (with optional averages) for (i=0; i