/* * Portable Audio I/O Library WASAPI implementation * Copyright (c) 2006-2010 David Viens * Copyright (c) 2010-2019 Dmitry Kostjuchenko * * Based on the Open Source API proposed by Ross Bencina * Copyright (c) 1999-2019 Ross Bencina, Phil Burk * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files * (the "Software"), to deal in the Software without restriction, * including without limitation the rights to use, copy, modify, merge, * publish, distribute, sublicense, and/or sell copies of the Software, * and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * The text above constitutes the entire PortAudio license; however, * the PortAudio community also makes the following non-binding requests: * * Any person wishing to distribute modifications to the Software is * requested to send the modifications to the original developer so that * they can be incorporated into the canonical version. It is also * requested that these non-binding requests be included along with the * license above. */ /** @file @ingroup hostapi_src @brief WASAPI implementation of support for a host API. @note pa_wasapi currently requires minimum VC 2005, and the latest Vista SDK */ #include #include #include #include // Max device count (if defined) causes max constant device count in the device list that // enables PaWasapi_UpdateDeviceList() API and makes it possible to update WASAPI list dynamically #ifndef PA_WASAPI_MAX_CONST_DEVICE_COUNT #define PA_WASAPI_MAX_CONST_DEVICE_COUNT 0 // Force basic behavior by defining 0 if not defined by user #endif // Fallback from Event to the Polling method in case if latency is higher than 21.33ms, as it allows to use // 100% of CPU inside the PA's callback. // Note: Some USB DAC drivers are buggy when Polling method is forced in Exclusive mode, audio output becomes // unstable with a lot of interruptions, therefore this define is optional. The default behavior is to // not change the Event mode to Polling and use the mode which user provided. //#define PA_WASAPI_FORCE_POLL_IF_LARGE_BUFFER //! Poll mode time slots logging. //#define PA_WASAPI_LOG_TIME_SLOTS // WinRT #if defined(WINAPI_FAMILY) && (WINAPI_FAMILY == WINAPI_FAMILY_APP) #define PA_WINRT #define INITGUID #endif // WASAPI // using adjustments for MinGW build from @mgeier/MXE // https://github.com/mxe/mxe/commit/f4bbc45682f021948bdaefd9fd476e2a04c4740f #include // must be before other Wasapi headers #if defined(_MSC_VER) && (_MSC_VER >= 1400) || defined(__MINGW64_VERSION_MAJOR) #include #define COBJMACROS #include #include #define INITGUID // Avoid additional linkage of static libs, excessive code will be optimized out by the compiler #ifndef _MSC_VER #include #endif #include #include #include // Used to get IKsJackDescription interface #undef INITGUID // Visual Studio 2010 does not support the inline keyword #if (_MSC_VER <= 1600) #define inline _inline #endif #endif #ifndef __MWERKS__ #include #include #endif #ifndef PA_WINRT #include #endif #include "pa_util.h" #include "pa_allocation.h" #include "pa_hostapi.h" #include "pa_stream.h" #include "pa_cpuload.h" #include "pa_process.h" #include "pa_win_wasapi.h" #include "pa_debugprint.h" #include "pa_ringbuffer.h" #include "pa_win_coinitialize.h" #if !defined(NTDDI_VERSION) || (defined(__GNUC__) && (__GNUC__ <= 6) && !defined(__MINGW64__)) #undef WINVER #undef _WIN32_WINNT #define WINVER 0x0600 // VISTA #define _WIN32_WINNT WINVER #ifndef WINAPI #define WINAPI __stdcall #endif #ifndef __unaligned #define __unaligned #endif #ifndef __C89_NAMELESS #define __C89_NAMELESS #endif #ifndef _AVRT_ //<< fix MinGW dummy compile by defining missing type: AVRT_PRIORITY typedef enum _AVRT_PRIORITY { AVRT_PRIORITY_LOW = -1, AVRT_PRIORITY_NORMAL, AVRT_PRIORITY_HIGH, AVRT_PRIORITY_CRITICAL } AVRT_PRIORITY, *PAVRT_PRIORITY; #endif #include // << for IID/CLSID #include #include #ifndef __LPCGUID_DEFINED__ #define __LPCGUID_DEFINED__ typedef const GUID *LPCGUID; #endif typedef GUID IID; typedef GUID CLSID; #ifndef PROPERTYKEY_DEFINED #define PROPERTYKEY_DEFINED typedef struct _tagpropertykey { GUID fmtid; DWORD pid; } PROPERTYKEY; #endif #ifdef __midl_proxy #define __MIDL_CONST #else #define __MIDL_CONST const #endif #ifdef WIN64 #include #define FASTCALL #include #include #else typedef struct _BYTE_BLOB { unsigned long clSize; unsigned char abData[ 1 ]; } BYTE_BLOB; typedef /* [unique] */ __RPC_unique_pointer BYTE_BLOB *UP_BYTE_BLOB; typedef LONGLONG REFERENCE_TIME; #define NONAMELESSUNION #endif #ifndef NT_SUCCESS typedef LONG NTSTATUS; #endif #ifndef WAVE_FORMAT_IEEE_FLOAT #define WAVE_FORMAT_IEEE_FLOAT 0x0003 // 32-bit floating-point #endif #ifndef __MINGW_EXTENSION #if defined(__GNUC__) || defined(__GNUG__) #define __MINGW_EXTENSION __extension__ #else #define __MINGW_EXTENSION #endif #endif #include #include #define COBJMACROS #define INITGUID // Avoid additional linkage of static libs, excessive code will be optimized out by the compiler #include #include #include #include #include // Used to get IKsJackDescription interface #undef INITGUID #endif // NTDDI_VERSION // Missing declarations for WinRT #ifdef PA_WINRT #define DEVICE_STATE_ACTIVE 0x00000001 typedef enum _EDataFlow { eRender = 0, eCapture = ( eRender + 1 ) , eAll = ( eCapture + 1 ) , EDataFlow_enum_count = ( eAll + 1 ) } EDataFlow; typedef enum _EndpointFormFactor { RemoteNetworkDevice = 0, Speakers = ( RemoteNetworkDevice + 1 ) , LineLevel = ( Speakers + 1 ) , Headphones = ( LineLevel + 1 ) , Microphone = ( Headphones + 1 ) , Headset = ( Microphone + 1 ) , Handset = ( Headset + 1 ) , UnknownDigitalPassthrough = ( Handset + 1 ) , SPDIF = ( UnknownDigitalPassthrough + 1 ) , HDMI = ( SPDIF + 1 ) , UnknownFormFactor = ( HDMI + 1 ) } EndpointFormFactor; #endif #ifndef GUID_SECT #define GUID_SECT #endif #define __DEFINE_GUID(n,l,w1,w2,b1,b2,b3,b4,b5,b6,b7,b8) static const GUID n GUID_SECT = {l,w1,w2,{b1,b2,b3,b4,b5,b6,b7,b8}} #define __DEFINE_IID(n,l,w1,w2,b1,b2,b3,b4,b5,b6,b7,b8) static const IID n GUID_SECT = {l,w1,w2,{b1,b2,b3,b4,b5,b6,b7,b8}} #define __DEFINE_CLSID(n,l,w1,w2,b1,b2,b3,b4,b5,b6,b7,b8) static const CLSID n GUID_SECT = {l,w1,w2,{b1,b2,b3,b4,b5,b6,b7,b8}} #define PA_DEFINE_CLSID(className, l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8) \ __DEFINE_CLSID(pa_CLSID_##className, 0x##l, 0x##w1, 0x##w2, 0x##b1, 0x##b2, 0x##b3, 0x##b4, 0x##b5, 0x##b6, 0x##b7, 0x##b8) #define PA_DEFINE_IID(interfaceName, l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8) \ __DEFINE_IID(pa_IID_##interfaceName, 0x##l, 0x##w1, 0x##w2, 0x##b1, 0x##b2, 0x##b3, 0x##b4, 0x##b5, 0x##b6, 0x##b7, 0x##b8) // "1CB9AD4C-DBFA-4c32-B178-C2F568A703B2" PA_DEFINE_IID(IAudioClient, 1cb9ad4c, dbfa, 4c32, b1, 78, c2, f5, 68, a7, 03, b2); // "726778CD-F60A-4EDA-82DE-E47610CD78AA" PA_DEFINE_IID(IAudioClient2, 726778cd, f60a, 4eda, 82, de, e4, 76, 10, cd, 78, aa); // "7ED4EE07-8E67-4CD4-8C1A-2B7A5987AD42" PA_DEFINE_IID(IAudioClient3, 7ed4ee07, 8e67, 4cd4, 8c, 1a, 2b, 7a, 59, 87, ad, 42); // "1BE09788-6894-4089-8586-9A2A6C265AC5" PA_DEFINE_IID(IMMEndpoint, 1be09788, 6894, 4089, 85, 86, 9a, 2a, 6c, 26, 5a, c5); // "A95664D2-9614-4F35-A746-DE8DB63617E6" PA_DEFINE_IID(IMMDeviceEnumerator, a95664d2, 9614, 4f35, a7, 46, de, 8d, b6, 36, 17, e6); // "BCDE0395-E52F-467C-8E3D-C4579291692E" PA_DEFINE_CLSID(IMMDeviceEnumerator,bcde0395, e52f, 467c, 8e, 3d, c4, 57, 92, 91, 69, 2e); // "F294ACFC-3146-4483-A7BF-ADDCA7C260E2" PA_DEFINE_IID(IAudioRenderClient, f294acfc, 3146, 4483, a7, bf, ad, dc, a7, c2, 60, e2); // "C8ADBD64-E71E-48a0-A4DE-185C395CD317" PA_DEFINE_IID(IAudioCaptureClient, c8adbd64, e71e, 48a0, a4, de, 18, 5c, 39, 5c, d3, 17); // *2A07407E-6497-4A18-9787-32F79BD0D98F* Or this?? PA_DEFINE_IID(IDeviceTopology, 2A07407E, 6497, 4A18, 97, 87, 32, f7, 9b, d0, d9, 8f); // *AE2DE0E4-5BCA-4F2D-AA46-5D13F8FDB3A9* PA_DEFINE_IID(IPart, AE2DE0E4, 5BCA, 4F2D, aa, 46, 5d, 13, f8, fd, b3, a9); // *4509F757-2D46-4637-8E62-CE7DB944F57B* PA_DEFINE_IID(IKsJackDescription, 4509F757, 2D46, 4637, 8e, 62, ce, 7d, b9, 44, f5, 7b); // Media formats: __DEFINE_GUID(pa_KSDATAFORMAT_SUBTYPE_PCM, 0x00000001, 0x0000, 0x0010, 0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71 ); __DEFINE_GUID(pa_KSDATAFORMAT_SUBTYPE_ADPCM, 0x00000002, 0x0000, 0x0010, 0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71 ); __DEFINE_GUID(pa_KSDATAFORMAT_SUBTYPE_IEEE_FLOAT, 0x00000003, 0x0000, 0x0010, 0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71 ); #ifdef __IAudioClient2_INTERFACE_DEFINED__ typedef enum _pa_AUDCLNT_STREAMOPTIONS { pa_AUDCLNT_STREAMOPTIONS_NONE = 0x00, pa_AUDCLNT_STREAMOPTIONS_RAW = 0x01, pa_AUDCLNT_STREAMOPTIONS_MATCH_FORMAT = 0x02 } pa_AUDCLNT_STREAMOPTIONS; typedef struct _pa_AudioClientProperties { UINT32 cbSize; BOOL bIsOffload; AUDIO_STREAM_CATEGORY eCategory; pa_AUDCLNT_STREAMOPTIONS Options; } pa_AudioClientProperties; #define PA_AUDIOCLIENTPROPERTIES_SIZE_CATEGORY (sizeof(pa_AudioClientProperties) - sizeof(pa_AUDCLNT_STREAMOPTIONS)) #define PA_AUDIOCLIENTPROPERTIES_SIZE_OPTIONS sizeof(pa_AudioClientProperties) #endif // __IAudioClient2_INTERFACE_DEFINED__ /* use CreateThread for CYGWIN/Windows Mobile, _beginthreadex for all others */ #if !defined(__CYGWIN__) && !defined(_WIN32_WCE) #define CREATE_THREAD(PROC) (HANDLE)_beginthreadex( NULL, 0, (PROC), stream, 0, &stream->dwThreadId ) #define PA_THREAD_FUNC static unsigned WINAPI #define PA_THREAD_ID unsigned #else #define CREATE_THREAD(PROC) CreateThread( NULL, 0, (PROC), stream, 0, &stream->dwThreadId ) #define PA_THREAD_FUNC static DWORD WINAPI #define PA_THREAD_ID DWORD #endif // Thread function forward decl. PA_THREAD_FUNC ProcThreadEvent(void *param); PA_THREAD_FUNC ProcThreadPoll(void *param); // Error codes (available since Windows 7) #ifndef AUDCLNT_E_BUFFER_ERROR #define AUDCLNT_E_BUFFER_ERROR AUDCLNT_ERR(0x018) #endif #ifndef AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED #define AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED AUDCLNT_ERR(0x019) #endif #ifndef AUDCLNT_E_INVALID_DEVICE_PERIOD #define AUDCLNT_E_INVALID_DEVICE_PERIOD AUDCLNT_ERR(0x020) #endif // Stream flags (available since Windows 7) #ifndef AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY #define AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY 0x08000000 #endif #ifndef AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM #define AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM 0x80000000 #endif #define PA_WASAPI_DEVICE_ID_LEN 256 #define PA_WASAPI_DEVICE_NAME_LEN 128 #ifdef PA_WINRT #define PA_WASAPI_DEVICE_MAX_COUNT 16 #endif enum { S_INPUT = 0, S_OUTPUT = 1, S_COUNT = 2, S_FULLDUPLEX = 0 }; // Number of packets which compose single contignous buffer. With trial and error it was calculated // that WASAPI Input sub-system uses 6 packets per whole buffer. Please provide more information // or corrections if available. enum { WASAPI_PACKETS_PER_INPUT_BUFFER = 6 }; #define STATIC_ARRAY_SIZE(array) (sizeof(array)/sizeof(array[0])) #define PRINT(x) PA_DEBUG(x); #define PA_SKELETON_SET_LAST_HOST_ERROR( errorCode, errorText ) \ PaUtil_SetLastHostErrorInfo( paWASAPI, errorCode, errorText ) #define PA_WASAPI__IS_FULLDUPLEX(STREAM) ((STREAM)->in.clientProc && (STREAM)->out.clientProc) #ifndef IF_FAILED_JUMP #define IF_FAILED_JUMP(hr, label) if(FAILED(hr)) goto label; #endif #ifndef IF_FAILED_INTERNAL_ERROR_JUMP #define IF_FAILED_INTERNAL_ERROR_JUMP(hr, error, label) if(FAILED(hr)) { error = paInternalError; goto label; } #endif #define SAFE_CLOSE(h) if ((h) != NULL) { CloseHandle((h)); (h) = NULL; } #define SAFE_RELEASE(punk) if ((punk) != NULL) { (punk)->lpVtbl->Release((punk)); (punk) = NULL; } // Mixer function typedef void (*MixMonoToStereoF) (void *__to, const void *__from, UINT32 count); // AVRT is the new "multimedia scheduling stuff" #ifndef PA_WINRT typedef BOOL (WINAPI *FAvRtCreateThreadOrderingGroup) (PHANDLE,PLARGE_INTEGER,GUID*,PLARGE_INTEGER); typedef BOOL (WINAPI *FAvRtDeleteThreadOrderingGroup) (HANDLE); typedef BOOL (WINAPI *FAvRtWaitOnThreadOrderingGroup) (HANDLE); typedef HANDLE (WINAPI *FAvSetMmThreadCharacteristics) (LPCSTR,LPDWORD); typedef BOOL (WINAPI *FAvRevertMmThreadCharacteristics)(HANDLE); typedef BOOL (WINAPI *FAvSetMmThreadPriority) (HANDLE,AVRT_PRIORITY); static HMODULE hDInputDLL = 0; FAvRtCreateThreadOrderingGroup pAvRtCreateThreadOrderingGroup = NULL; FAvRtDeleteThreadOrderingGroup pAvRtDeleteThreadOrderingGroup = NULL; FAvRtWaitOnThreadOrderingGroup pAvRtWaitOnThreadOrderingGroup = NULL; FAvSetMmThreadCharacteristics pAvSetMmThreadCharacteristics = NULL; FAvRevertMmThreadCharacteristics pAvRevertMmThreadCharacteristics = NULL; FAvSetMmThreadPriority pAvSetMmThreadPriority = NULL; #endif #define _GetProc(fun, type, name) { \ fun = (type) GetProcAddress(hDInputDLL,name); \ if (fun == NULL) { \ PRINT(("GetProcAddr failed for %s" ,name)); \ return FALSE; \ } \ } \ // ------------------------------------------------------------------------------------------ /* prototypes for functions declared in this file */ #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ PaError PaWasapi_Initialize( PaUtilHostApiRepresentation **hostApi, PaHostApiIndex index ); #ifdef __cplusplus } #endif /* __cplusplus */ // dummy entry point for other compilers and sdks // currently built using RC1 SDK (5600) //#if _MSC_VER < 1400 //PaError PaWasapi_Initialize( PaUtilHostApiRepresentation **hostApi, PaHostApiIndex hostApiIndex ) //{ //return paNoError; //} //#else // ------------------------------------------------------------------------------------------ static void Terminate( struct PaUtilHostApiRepresentation *hostApi ); static PaError IsFormatSupported( struct PaUtilHostApiRepresentation *hostApi, const PaStreamParameters *inputParameters, const PaStreamParameters *outputParameters, double sampleRate ); static PaError OpenStream( struct PaUtilHostApiRepresentation *hostApi, PaStream** s, const PaStreamParameters *inputParameters, const PaStreamParameters *outputParameters, double sampleRate, unsigned long framesPerBuffer, PaStreamFlags streamFlags, PaStreamCallback *streamCallback, void *userData ); static PaError CloseStream( PaStream* stream ); static PaError StartStream( PaStream *stream ); static PaError StopStream( PaStream *stream ); static PaError AbortStream( PaStream *stream ); static PaError IsStreamStopped( PaStream *s ); static PaError IsStreamActive( PaStream *stream ); static PaTime GetStreamTime( PaStream *stream ); static double GetStreamCpuLoad( PaStream* stream ); static PaError ReadStream( PaStream* stream, void *buffer, unsigned long frames ); static PaError WriteStream( PaStream* stream, const void *buffer, unsigned long frames ); static signed long GetStreamReadAvailable( PaStream* stream ); static signed long GetStreamWriteAvailable( PaStream* stream ); // ------------------------------------------------------------------------------------------ /* These are fields that can be gathered from IDevice and IAudioDevice PRIOR to Initialize, and done in first pass i assume that neither of these will cause the Driver to "load", but again, who knows how they implement their stuff */ typedef struct PaWasapiDeviceInfo { // Device #ifndef PA_WINRT IMMDevice *device; #endif // device Id WCHAR deviceId[PA_WASAPI_DEVICE_ID_LEN]; // from GetState DWORD state; // Fields filled from IAudioDevice (_prior_ to Initialize) // from GetDevicePeriod( REFERENCE_TIME DefaultDevicePeriod; REFERENCE_TIME MinimumDevicePeriod; // Default format (setup through Control Panel by user) WAVEFORMATEXTENSIBLE DefaultFormat; // Mix format (internal format used by WASAPI audio engine) WAVEFORMATEXTENSIBLE MixFormat; // Fields filled from IMMEndpoint'sGetDataFlow EDataFlow flow; // Form-factor EndpointFormFactor formFactor; } PaWasapiDeviceInfo; // ------------------------------------------------------------------------------------------ /* PaWasapiHostApiRepresentation - host api datastructure specific to this implementation */ typedef struct { PaUtilHostApiRepresentation inheritedHostApiRep; PaUtilStreamInterface callbackStreamInterface; PaUtilStreamInterface blockingStreamInterface; PaUtilAllocationGroup *allocations; /* implementation specific data goes here */ PaWinUtilComInitializationResult comInitializationResult; // this is the REAL number of devices, whether they are useful to PA or not! UINT32 deviceCount; PaWasapiDeviceInfo *devInfo; // is TRUE when WOW64 Vista/7 Workaround is needed BOOL useWOW64Workaround; } PaWasapiHostApiRepresentation; // ------------------------------------------------------------------------------------------ /* PaWasapiAudioClientParams - audio client parameters */ typedef struct PaWasapiAudioClientParams { PaWasapiDeviceInfo *device_info; PaStreamParameters stream_params; PaWasapiStreamInfo wasapi_params; UINT32 frames_per_buffer; double sample_rate; BOOL blocking; BOOL full_duplex; BOOL wow64_workaround; } PaWasapiAudioClientParams; // ------------------------------------------------------------------------------------------ /* PaWasapiStream - a stream data structure specifically for this implementation */ typedef struct PaWasapiSubStream { IAudioClient *clientParent; #ifndef PA_WINRT IStream *clientStream; #endif IAudioClient *clientProc; WAVEFORMATEXTENSIBLE wavex; UINT32 bufferSize; REFERENCE_TIME deviceLatency; REFERENCE_TIME period; double latencySeconds; UINT32 framesPerHostCallback; AUDCLNT_SHAREMODE shareMode; UINT32 streamFlags; // AUDCLNT_STREAMFLAGS_EVENTCALLBACK, ... UINT32 flags; PaWasapiAudioClientParams params; //!< parameters // Buffers UINT32 buffers; //!< number of buffers used (from host side) UINT32 framesPerBuffer; //!< number of frames per 1 buffer BOOL userBufferAndHostMatch; // Used for Mono >> Stereo workaround, if driver does not support it // (in Exclusive mode WASAPI usually refuses to operate with Mono (1-ch) void *monoBuffer; //!< pointer to buffer UINT32 monoBufferSize; //!< buffer size in bytes MixMonoToStereoF monoMixer; //!< pointer to mixer function PaUtilRingBuffer *tailBuffer; //!< buffer with trailing sample for blocking mode operations (only for Input) void *tailBufferMemory; //!< tail buffer memory region } PaWasapiSubStream; // ------------------------------------------------------------------------------------------ /* PaWasapiHostProcessor - redirects processing data */ typedef struct PaWasapiHostProcessor { PaWasapiHostProcessorCallback processor; void *userData; } PaWasapiHostProcessor; // ------------------------------------------------------------------------------------------ typedef struct PaWasapiStream { /* IMPLEMENT ME: rename this */ PaUtilStreamRepresentation streamRepresentation; PaUtilCpuLoadMeasurer cpuLoadMeasurer; PaUtilBufferProcessor bufferProcessor; // input PaWasapiSubStream in; IAudioCaptureClient *captureClientParent; #ifndef PA_WINRT IStream *captureClientStream; #endif IAudioCaptureClient *captureClient; IAudioEndpointVolume *inVol; // output PaWasapiSubStream out; IAudioRenderClient *renderClientParent; #ifndef PA_WINRT IStream *renderClientStream; #endif IAudioRenderClient *renderClient; IAudioEndpointVolume *outVol; // event handles for event-driven processing mode HANDLE event[S_COUNT]; // buffer mode PaUtilHostBufferSizeMode bufferMode; // must be volatile to avoid race condition on user query while // thread is being started volatile BOOL running; PA_THREAD_ID dwThreadId; HANDLE hThread; HANDLE hCloseRequest; HANDLE hThreadStart; //!< signalled by thread on start HANDLE hThreadExit; //!< signalled by thread on exit HANDLE hBlockingOpStreamRD; HANDLE hBlockingOpStreamWR; // Host callback Output overrider PaWasapiHostProcessor hostProcessOverrideOutput; // Host callback Input overrider PaWasapiHostProcessor hostProcessOverrideInput; // Defines blocking/callback interface used BOOL bBlocking; // Av Task (MM thread management) HANDLE hAvTask; // Thread priority level PaWasapiThreadPriority nThreadPriority; // State handler PaWasapiStreamStateCallback fnStateHandler; void *pStateHandlerUserData; } PaWasapiStream; // COM marshaling static HRESULT MarshalSubStreamComPointers(PaWasapiSubStream *substream); static HRESULT MarshalStreamComPointers(PaWasapiStream *stream); static HRESULT UnmarshalSubStreamComPointers(PaWasapiSubStream *substream); static HRESULT UnmarshalStreamComPointers(PaWasapiStream *stream); static void ReleaseUnmarshaledSubComPointers(PaWasapiSubStream *substream); static void ReleaseUnmarshaledComPointers(PaWasapiStream *stream); // Local methods static void _StreamOnStop(PaWasapiStream *stream); static void _StreamFinish(PaWasapiStream *stream); static void _StreamCleanup(PaWasapiStream *stream); static HRESULT _PollGetOutputFramesAvailable(PaWasapiStream *stream, UINT32 *available); static HRESULT _PollGetInputFramesAvailable(PaWasapiStream *stream, UINT32 *available); static void *PaWasapi_ReallocateMemory(void *prev, size_t size); static void PaWasapi_FreeMemory(void *ptr); static PaSampleFormat WaveToPaFormat(const WAVEFORMATEXTENSIBLE *fmtext); // WinRT (UWP) device list #ifdef PA_WINRT typedef struct PaWasapiWinrtDeviceInfo { WCHAR id[PA_WASAPI_DEVICE_ID_LEN]; WCHAR name[PA_WASAPI_DEVICE_NAME_LEN]; EndpointFormFactor formFactor; } PaWasapiWinrtDeviceInfo; typedef struct PaWasapiWinrtDeviceListRole { WCHAR defaultId[PA_WASAPI_DEVICE_ID_LEN]; PaWasapiWinrtDeviceInfo devices[PA_WASAPI_DEVICE_MAX_COUNT]; UINT32 deviceCount; } PaWasapiWinrtDeviceListRole; typedef struct PaWasapiWinrtDeviceList { PaWasapiWinrtDeviceListRole render; PaWasapiWinrtDeviceListRole capture; } PaWasapiWinrtDeviceList; static PaWasapiWinrtDeviceList g_DeviceListInfo = { 0 }; #endif // WinRT (UWP) device list context #ifdef PA_WINRT typedef struct PaWasapiWinrtDeviceListContextEntry { PaWasapiWinrtDeviceInfo *info; EDataFlow flow; } PaWasapiWinrtDeviceListContextEntry; typedef struct PaWasapiWinrtDeviceListContext { PaWasapiWinrtDeviceListContextEntry devices[PA_WASAPI_DEVICE_MAX_COUNT * 2]; } PaWasapiWinrtDeviceListContext; #endif // ------------------------------------------------------------------------------------------ #define LogHostError(HRES) __LogHostError(HRES, __FUNCTION__, __FILE__, __LINE__) static HRESULT __LogHostError(HRESULT res, const char *func, const char *file, int line) { const char *text = NULL; switch (res) { case S_OK: return res; case E_POINTER :text ="E_POINTER"; break; case E_INVALIDARG :text ="E_INVALIDARG"; break; case AUDCLNT_E_NOT_INITIALIZED :text ="AUDCLNT_E_NOT_INITIALIZED"; break; case AUDCLNT_E_ALREADY_INITIALIZED :text ="AUDCLNT_E_ALREADY_INITIALIZED"; break; case AUDCLNT_E_WRONG_ENDPOINT_TYPE :text ="AUDCLNT_E_WRONG_ENDPOINT_TYPE"; break; case AUDCLNT_E_DEVICE_INVALIDATED :text ="AUDCLNT_E_DEVICE_INVALIDATED"; break; case AUDCLNT_E_NOT_STOPPED :text ="AUDCLNT_E_NOT_STOPPED"; break; case AUDCLNT_E_BUFFER_TOO_LARGE :text ="AUDCLNT_E_BUFFER_TOO_LARGE"; break; case AUDCLNT_E_OUT_OF_ORDER :text ="AUDCLNT_E_OUT_OF_ORDER"; break; case AUDCLNT_E_UNSUPPORTED_FORMAT :text ="AUDCLNT_E_UNSUPPORTED_FORMAT"; break; case AUDCLNT_E_INVALID_SIZE :text ="AUDCLNT_E_INVALID_SIZE"; break; case AUDCLNT_E_DEVICE_IN_USE :text ="AUDCLNT_E_DEVICE_IN_USE"; break; case AUDCLNT_E_BUFFER_OPERATION_PENDING :text ="AUDCLNT_E_BUFFER_OPERATION_PENDING"; break; case AUDCLNT_E_THREAD_NOT_REGISTERED :text ="AUDCLNT_E_THREAD_NOT_REGISTERED"; break; case AUDCLNT_E_EXCLUSIVE_MODE_NOT_ALLOWED :text ="AUDCLNT_E_EXCLUSIVE_MODE_NOT_ALLOWED"; break; case AUDCLNT_E_ENDPOINT_CREATE_FAILED :text ="AUDCLNT_E_ENDPOINT_CREATE_FAILED"; break; case AUDCLNT_E_SERVICE_NOT_RUNNING :text ="AUDCLNT_E_SERVICE_NOT_RUNNING"; break; case AUDCLNT_E_EVENTHANDLE_NOT_EXPECTED :text ="AUDCLNT_E_EVENTHANDLE_NOT_EXPECTED"; break; case AUDCLNT_E_EXCLUSIVE_MODE_ONLY :text ="AUDCLNT_E_EXCLUSIVE_MODE_ONLY"; break; case AUDCLNT_E_BUFDURATION_PERIOD_NOT_EQUAL :text ="AUDCLNT_E_BUFDURATION_PERIOD_NOT_EQUAL"; break; case AUDCLNT_E_EVENTHANDLE_NOT_SET :text ="AUDCLNT_E_EVENTHANDLE_NOT_SET"; break; case AUDCLNT_E_INCORRECT_BUFFER_SIZE :text ="AUDCLNT_E_INCORRECT_BUFFER_SIZE"; break; case AUDCLNT_E_BUFFER_SIZE_ERROR :text ="AUDCLNT_E_BUFFER_SIZE_ERROR"; break; case AUDCLNT_E_CPUUSAGE_EXCEEDED :text ="AUDCLNT_E_CPUUSAGE_EXCEEDED"; break; case AUDCLNT_E_BUFFER_ERROR :text ="AUDCLNT_E_BUFFER_ERROR"; break; case AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED :text ="AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED"; break; case AUDCLNT_E_INVALID_DEVICE_PERIOD :text ="AUDCLNT_E_INVALID_DEVICE_PERIOD"; break; #ifdef AUDCLNT_E_INVALID_STREAM_FLAG case AUDCLNT_E_INVALID_STREAM_FLAG :text ="AUDCLNT_E_INVALID_STREAM_FLAG"; break; #endif #ifdef AUDCLNT_E_ENDPOINT_OFFLOAD_NOT_CAPABLE case AUDCLNT_E_ENDPOINT_OFFLOAD_NOT_CAPABLE :text ="AUDCLNT_E_ENDPOINT_OFFLOAD_NOT_CAPABLE"; break; #endif #ifdef AUDCLNT_E_OUT_OF_OFFLOAD_RESOURCES case AUDCLNT_E_OUT_OF_OFFLOAD_RESOURCES :text ="AUDCLNT_E_OUT_OF_OFFLOAD_RESOURCES"; break; #endif #ifdef AUDCLNT_E_OFFLOAD_MODE_ONLY case AUDCLNT_E_OFFLOAD_MODE_ONLY :text ="AUDCLNT_E_OFFLOAD_MODE_ONLY"; break; #endif #ifdef AUDCLNT_E_NONOFFLOAD_MODE_ONLY case AUDCLNT_E_NONOFFLOAD_MODE_ONLY :text ="AUDCLNT_E_NONOFFLOAD_MODE_ONLY"; break; #endif #ifdef AUDCLNT_E_RESOURCES_INVALIDATED case AUDCLNT_E_RESOURCES_INVALIDATED :text ="AUDCLNT_E_RESOURCES_INVALIDATED"; break; #endif #ifdef AUDCLNT_E_RAW_MODE_UNSUPPORTED case AUDCLNT_E_RAW_MODE_UNSUPPORTED :text ="AUDCLNT_E_RAW_MODE_UNSUPPORTED"; break; #endif #ifdef AUDCLNT_E_ENGINE_PERIODICITY_LOCKED case AUDCLNT_E_ENGINE_PERIODICITY_LOCKED :text ="AUDCLNT_E_ENGINE_PERIODICITY_LOCKED"; break; #endif #ifdef AUDCLNT_E_ENGINE_FORMAT_LOCKED case AUDCLNT_E_ENGINE_FORMAT_LOCKED :text ="AUDCLNT_E_ENGINE_FORMAT_LOCKED"; break; #endif case AUDCLNT_S_BUFFER_EMPTY :text ="AUDCLNT_S_BUFFER_EMPTY"; break; case AUDCLNT_S_THREAD_ALREADY_REGISTERED :text ="AUDCLNT_S_THREAD_ALREADY_REGISTERED"; break; case AUDCLNT_S_POSITION_STALLED :text ="AUDCLNT_S_POSITION_STALLED"; break; // other windows common errors: case CO_E_NOTINITIALIZED :text ="CO_E_NOTINITIALIZED: you must call CoInitialize() before Pa_OpenStream()"; break; default: text = "UNKNOWN ERROR"; } PRINT(("WASAPI ERROR HRESULT: 0x%X : %s\n [FUNCTION: %s FILE: %s {LINE: %d}]\n", res, text, func, file, line)); #ifndef PA_ENABLE_DEBUG_OUTPUT (void)func; (void)file; (void)line; #endif PA_SKELETON_SET_LAST_HOST_ERROR(res, text); return res; } // ------------------------------------------------------------------------------------------ #define LogPaError(PAERR) __LogPaError(PAERR, __FUNCTION__, __FILE__, __LINE__) static PaError __LogPaError(PaError err, const char *func, const char *file, int line) { if (err == paNoError) return err; PRINT(("WASAPI ERROR PAERROR: %i : %s\n [FUNCTION: %s FILE: %s {LINE: %d}]\n", err, Pa_GetErrorText(err), func, file, line)); #ifndef PA_ENABLE_DEBUG_OUTPUT (void)func; (void)file; (void)line; #endif return err; } // ------------------------------------------------------------------------------------------ /*! \class ThreadSleepScheduler Allows to emulate thread sleep of less than 1 millisecond under Windows. Scheduler calculates number of times the thread must run until next sleep of 1 millisecond. It does not make thread sleeping for real number of microseconds but rather controls how many of imaginary microseconds the thread task can allow thread to sleep. */ typedef struct ThreadIdleScheduler { UINT32 m_idle_microseconds; //!< number of microseconds to sleep UINT32 m_next_sleep; //!< next sleep round UINT32 m_i; //!< current round iterator position UINT32 m_resolution; //!< resolution in number of milliseconds } ThreadIdleScheduler; //! Setup scheduler. static void ThreadIdleScheduler_Setup(ThreadIdleScheduler *sched, UINT32 resolution, UINT32 microseconds) { assert(microseconds != 0); assert(resolution != 0); assert((resolution * 1000) >= microseconds); memset(sched, 0, sizeof(*sched)); sched->m_idle_microseconds = microseconds; sched->m_resolution = resolution; sched->m_next_sleep = (resolution * 1000) / microseconds; } //! Iterate and check if can sleep. static inline UINT32 ThreadIdleScheduler_NextSleep(ThreadIdleScheduler *sched) { // advance and check if thread can sleep if (++sched->m_i == sched->m_next_sleep) { sched->m_i = 0; return sched->m_resolution; } return 0; } // ------------------------------------------------------------------------------------------ typedef struct _SystemTimer { INT32 granularity; } SystemTimer; static LARGE_INTEGER g_SystemTimerFrequency; static BOOL g_SystemTimerUseQpc = FALSE; //! Set granularity of the system timer. static BOOL SystemTimer_SetGranularity(SystemTimer *timer, UINT32 granularity) { #ifndef PA_WINRT TIMECAPS caps; timer->granularity = granularity; if (timeGetDevCaps(&caps, sizeof(caps)) == MMSYSERR_NOERROR) { if (timer->granularity < (INT32)caps.wPeriodMin) timer->granularity = (INT32)caps.wPeriodMin; } if (timeBeginPeriod(timer->granularity) != TIMERR_NOERROR) { PRINT(("SetSystemTimer: timeBeginPeriod(1) failed!\n")); timer->granularity = 10; return FALSE; } #else (void)granularity; // UWP does not support increase of the timer precision change and thus calling WaitForSingleObject with anything // below 10 milliseconds will cause underruns for input and output stream. timer->granularity = 10; #endif return TRUE; } //! Restore granularity of the system timer. static void SystemTimer_RestoreGranularity(SystemTimer *timer) { #ifndef PA_WINRT if (timer->granularity != 0) { if (timeEndPeriod(timer->granularity) != TIMERR_NOERROR) { PRINT(("RestoreSystemTimer: timeEndPeriod(1) failed!\n")); } } #else (void)timer; #endif } //! Initialize high-resolution time getter. static void SystemTimer_InitializeTimeGetter() { g_SystemTimerUseQpc = QueryPerformanceFrequency(&g_SystemTimerFrequency); } //! Get high-resolution time in milliseconds (using QPC by default). static inline LONGLONG SystemTimer_GetTime(SystemTimer *timer) { (void)timer; // QPC: https://docs.microsoft.com/en-us/windows/win32/sysinfo/acquiring-high-resolution-time-stamps if (g_SystemTimerUseQpc) { LARGE_INTEGER now; QueryPerformanceCounter(&now); return (now.QuadPart * 1000LL) / g_SystemTimerFrequency.QuadPart; } else { #ifdef PA_WINRT return GetTickCount64(); #else return timeGetTime(); #endif } } // ------------------------------------------------------------------------------------------ /*static double nano100ToMillis(REFERENCE_TIME ref) { // 1 nano = 0.000000001 seconds //100 nano = 0.0000001 seconds //100 nano = 0.0001 milliseconds return ((double)ref) * 0.0001; }*/ // ------------------------------------------------------------------------------------------ static double nano100ToSeconds(REFERENCE_TIME ref) { // 1 nano = 0.000000001 seconds //100 nano = 0.0000001 seconds //100 nano = 0.0001 milliseconds return ((double)ref) * 0.0000001; } // ------------------------------------------------------------------------------------------ /*static REFERENCE_TIME MillisTonano100(double ref) { // 1 nano = 0.000000001 seconds //100 nano = 0.0000001 seconds //100 nano = 0.0001 milliseconds return (REFERENCE_TIME)(ref / 0.0001); }*/ // ------------------------------------------------------------------------------------------ static REFERENCE_TIME SecondsTonano100(double ref) { // 1 nano = 0.000000001 seconds //100 nano = 0.0000001 seconds //100 nano = 0.0001 milliseconds return (REFERENCE_TIME)(ref / 0.0000001); } // ------------------------------------------------------------------------------------------ // Makes Hns period from frames and sample rate static REFERENCE_TIME MakeHnsPeriod(UINT32 nFrames, DWORD nSamplesPerSec) { return (REFERENCE_TIME)((10000.0 * 1000 / nSamplesPerSec * nFrames) + 0.5); } // ------------------------------------------------------------------------------------------ // Converts PaSampleFormat to bits per sample value // Note: paCustomFormat stands for 8.24 format (24-bits inside 32-bit containers) static WORD PaSampleFormatToBitsPerSample(PaSampleFormat format_id) { switch (format_id & ~paNonInterleaved) { case paFloat32: case paInt32: return 32; case paCustomFormat: case paInt24: return 24; case paInt16: return 16; case paInt8: case paUInt8: return 8; } return 0; } // ------------------------------------------------------------------------------------------ // Convert PaSampleFormat to valid sample format for I/O, e.g. if paCustomFormat is specified // it will be converted to paInt32, other formats pass through // Note: paCustomFormat stands for 8.24 format (24-bits inside 32-bit containers) static PaSampleFormat GetSampleFormatForIO(PaSampleFormat format_id) { return ((format_id & ~paNonInterleaved) == paCustomFormat ? (paInt32 | (format_id & paNonInterleaved ? paNonInterleaved : 0)) : format_id); } // ------------------------------------------------------------------------------------------ // Converts Hns period into number of frames static UINT32 MakeFramesFromHns(REFERENCE_TIME hnsPeriod, UINT32 nSamplesPerSec) { UINT32 nFrames = (UINT32)( // frames = 1.0 * hnsPeriod * // hns * nSamplesPerSec / // (frames / s) / 1000 / // (ms / s) / 10000 // (hns / s) / + 0.5 // rounding ); return nFrames; } // Aligning function type typedef UINT32 (*ALIGN_FUNC) (UINT32 v, UINT32 align); // ------------------------------------------------------------------------------------------ // Aligns 'v' backwards static UINT32 ALIGN_BWD(UINT32 v, UINT32 align) { return ((v - (align ? v % align : 0))); } // ------------------------------------------------------------------------------------------ // Aligns 'v' forward static UINT32 ALIGN_FWD(UINT32 v, UINT32 align) { UINT32 remainder = (align ? (v % align) : 0); if (remainder == 0) return v; return v + (align - remainder); } // ------------------------------------------------------------------------------------------ // Get next value power of 2 static UINT32 ALIGN_NEXT_POW2(UINT32 v) { UINT32 v2 = 1; while (v > (v2 <<= 1)) { } v = v2; return v; } // ------------------------------------------------------------------------------------------ // Aligns WASAPI buffer to 128 byte packet boundary. HD Audio will fail to play if buffer // is misaligned. This problem was solved in Windows 7 were AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED // is thrown although we must align for Vista anyway. static UINT32 AlignFramesPerBuffer(UINT32 nFrames, UINT32 nBlockAlign, ALIGN_FUNC pAlignFunc) { #define HDA_PACKET_SIZE (128) UINT32 bytes = nFrames * nBlockAlign; UINT32 packets; // align to a HD Audio packet size bytes = pAlignFunc(bytes, HDA_PACKET_SIZE); // atlest 1 frame must be available if (bytes < HDA_PACKET_SIZE) bytes = HDA_PACKET_SIZE; packets = bytes / HDA_PACKET_SIZE; bytes = packets * HDA_PACKET_SIZE; nFrames = bytes / nBlockAlign; // WASAPI frames are always aligned to at least 8 nFrames = ALIGN_FWD(nFrames, 8); return nFrames; #undef HDA_PACKET_SIZE } // ------------------------------------------------------------------------------------------ static UINT32 GetFramesSleepTime(REFERENCE_TIME nFrames, REFERENCE_TIME nSamplesPerSec) { REFERENCE_TIME nDuration; if (nSamplesPerSec == 0) return 0; #define REFTIMES_PER_SEC 10000000LL #define REFTIMES_PER_MILLISEC 10000LL // Calculate the actual duration of the allocated buffer. nDuration = (REFTIMES_PER_SEC * nFrames) / nSamplesPerSec; return (UINT32)(nDuration / REFTIMES_PER_MILLISEC); #undef REFTIMES_PER_SEC #undef REFTIMES_PER_MILLISEC } // ------------------------------------------------------------------------------------------ static UINT32 GetFramesSleepTimeMicroseconds(REFERENCE_TIME nFrames, REFERENCE_TIME nSamplesPerSec) { REFERENCE_TIME nDuration; if (nSamplesPerSec == 0) return 0; #define REFTIMES_PER_SEC 10000000LL #define REFTIMES_PER_MILLISEC 10000LL // Calculate the actual duration of the allocated buffer. nDuration = (REFTIMES_PER_SEC * nFrames) / nSamplesPerSec; return (UINT32)(nDuration / 10); #undef REFTIMES_PER_SEC #undef REFTIMES_PER_MILLISEC } // ------------------------------------------------------------------------------------------ #ifndef PA_WINRT static BOOL SetupAVRT() { hDInputDLL = LoadLibraryA("avrt.dll"); if (hDInputDLL == NULL) return FALSE; _GetProc(pAvRtCreateThreadOrderingGroup, FAvRtCreateThreadOrderingGroup, "AvRtCreateThreadOrderingGroup"); _GetProc(pAvRtDeleteThreadOrderingGroup, FAvRtDeleteThreadOrderingGroup, "AvRtDeleteThreadOrderingGroup"); _GetProc(pAvRtWaitOnThreadOrderingGroup, FAvRtWaitOnThreadOrderingGroup, "AvRtWaitOnThreadOrderingGroup"); _GetProc(pAvSetMmThreadCharacteristics, FAvSetMmThreadCharacteristics, "AvSetMmThreadCharacteristicsA"); _GetProc(pAvRevertMmThreadCharacteristics,FAvRevertMmThreadCharacteristics,"AvRevertMmThreadCharacteristics"); _GetProc(pAvSetMmThreadPriority, FAvSetMmThreadPriority, "AvSetMmThreadPriority"); return pAvRtCreateThreadOrderingGroup && pAvRtDeleteThreadOrderingGroup && pAvRtWaitOnThreadOrderingGroup && pAvSetMmThreadCharacteristics && pAvRevertMmThreadCharacteristics && pAvSetMmThreadPriority; } #endif // ------------------------------------------------------------------------------------------ static void CloseAVRT() { #ifndef PA_WINRT if (hDInputDLL != NULL) FreeLibrary(hDInputDLL); hDInputDLL = NULL; #endif } // ------------------------------------------------------------------------------------------ static BOOL IsWow64() { #ifndef PA_WINRT // http://msdn.microsoft.com/en-us/library/ms684139(VS.85).aspx typedef BOOL (WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL); LPFN_ISWOW64PROCESS fnIsWow64Process; BOOL bIsWow64 = FALSE; // IsWow64Process is not available on all supported versions of Windows. // Use GetModuleHandle to get a handle to the DLL that contains the function // and GetProcAddress to get a pointer to the function if available. fnIsWow64Process = (LPFN_ISWOW64PROCESS) GetProcAddress( GetModuleHandleA("kernel32"), "IsWow64Process"); if (fnIsWow64Process == NULL) return FALSE; if (!fnIsWow64Process(GetCurrentProcess(), &bIsWow64)) return FALSE; return bIsWow64; #else return FALSE; #endif } // ------------------------------------------------------------------------------------------ typedef enum EWindowsVersion { WINDOWS_UNKNOWN = 0, WINDOWS_VISTA_SERVER2008, WINDOWS_7_SERVER2008R2, WINDOWS_8_SERVER2012, WINDOWS_8_1_SERVER2012R2, WINDOWS_10_SERVER2016, WINDOWS_FUTURE } EWindowsVersion; // Alternative way for checking Windows version (allows to check version on Windows 8.1 and up) #ifndef PA_WINRT static BOOL IsWindowsVersionOrGreater(WORD wMajorVersion, WORD wMinorVersion, WORD wServicePackMajor) { typedef ULONGLONG (NTAPI *LPFN_VERSETCONDITIONMASK)(ULONGLONG ConditionMask, DWORD TypeMask, BYTE Condition); typedef BOOL (WINAPI *LPFN_VERIFYVERSIONINFO)(LPOSVERSIONINFOEXA lpVersionInformation, DWORD dwTypeMask, DWORDLONG dwlConditionMask); LPFN_VERSETCONDITIONMASK fnVerSetConditionMask; LPFN_VERIFYVERSIONINFO fnVerifyVersionInfo; OSVERSIONINFOEXA osvi = { sizeof(osvi), 0, 0, 0, 0, {0}, 0, 0 }; DWORDLONG dwlConditionMask; fnVerSetConditionMask = (LPFN_VERSETCONDITIONMASK)GetProcAddress(GetModuleHandleA("kernel32"), "VerSetConditionMask"); fnVerifyVersionInfo = (LPFN_VERIFYVERSIONINFO)GetProcAddress(GetModuleHandleA("kernel32"), "VerifyVersionInfoA"); if ((fnVerSetConditionMask == NULL) || (fnVerifyVersionInfo == NULL)) return FALSE; dwlConditionMask = fnVerSetConditionMask( fnVerSetConditionMask( fnVerSetConditionMask( 0, VER_MAJORVERSION, VER_GREATER_EQUAL), VER_MINORVERSION, VER_GREATER_EQUAL), VER_SERVICEPACKMAJOR, VER_GREATER_EQUAL); osvi.dwMajorVersion = wMajorVersion; osvi.dwMinorVersion = wMinorVersion; osvi.wServicePackMajor = wServicePackMajor; return (fnVerifyVersionInfo(&osvi, VER_MAJORVERSION | VER_MINORVERSION | VER_SERVICEPACKMAJOR, dwlConditionMask) != FALSE); } #endif // Get Windows version static EWindowsVersion GetWindowsVersion() { #ifndef PA_WINRT static EWindowsVersion version = WINDOWS_UNKNOWN; if (version == WINDOWS_UNKNOWN) { DWORD dwMajorVersion = 0xFFFFFFFFU, dwMinorVersion = 0, dwBuild = 0; // RTL_OSVERSIONINFOW equals OSVERSIONINFOW but it is missing inb MinGW winnt.h header, // thus use OSVERSIONINFOW for greater portability typedef NTSTATUS (WINAPI *LPFN_RTLGETVERSION)(POSVERSIONINFOW lpVersionInformation); LPFN_RTLGETVERSION fnRtlGetVersion; #define NTSTATUS_SUCCESS ((NTSTATUS)0x00000000L) // RtlGetVersion must be able to provide true Windows version (Windows 10 may be reported as Windows 8 // by GetVersion API) if ((fnRtlGetVersion = (LPFN_RTLGETVERSION)GetProcAddress(GetModuleHandleA("ntdll"), "RtlGetVersion")) != NULL) { OSVERSIONINFOW ver = { sizeof(OSVERSIONINFOW), 0, 0, 0, 0, {0} }; PRINT(("WASAPI: getting Windows version with RtlGetVersion()\n")); if (fnRtlGetVersion(&ver) == NTSTATUS_SUCCESS) { dwMajorVersion = ver.dwMajorVersion; dwMinorVersion = ver.dwMinorVersion; dwBuild = ver.dwBuildNumber; } } #undef NTSTATUS_SUCCESS // fallback to GetVersion if RtlGetVersion is missing if (dwMajorVersion == 0xFFFFFFFFU) { typedef DWORD (WINAPI *LPFN_GETVERSION)(VOID); LPFN_GETVERSION fnGetVersion; if ((fnGetVersion = (LPFN_GETVERSION)GetProcAddress(GetModuleHandleA("kernel32"), "GetVersion")) != NULL) { DWORD dwVersion; PRINT(("WASAPI: getting Windows version with GetVersion()\n")); dwVersion = fnGetVersion(); dwMajorVersion = (DWORD)(LOBYTE(LOWORD(dwVersion))); dwMinorVersion = (DWORD)(HIBYTE(LOWORD(dwVersion))); if (dwVersion < 0x80000000) dwBuild = (DWORD)(HIWORD(dwVersion)); } } if (dwMajorVersion != 0xFFFFFFFFU) { switch (dwMajorVersion) { case 0: case 1: case 2: case 3: case 4: case 5: break; // skip lower case 6: switch (dwMinorVersion) { case 0: version = WINDOWS_VISTA_SERVER2008; break; case 1: version = WINDOWS_7_SERVER2008R2; break; case 2: version = WINDOWS_8_SERVER2012; break; case 3: version = WINDOWS_8_1_SERVER2012R2; break; default: version = WINDOWS_FUTURE; break; } break; case 10: switch (dwMinorVersion) { case 0: version = WINDOWS_10_SERVER2016; break; default: version = WINDOWS_FUTURE; break; } break; default: version = WINDOWS_FUTURE; break; } } // fallback to VerifyVersionInfo if RtlGetVersion and GetVersion are missing else { PRINT(("WASAPI: getting Windows version with VerifyVersionInfo()\n")); if (IsWindowsVersionOrGreater(10, 0, 0)) version = WINDOWS_10_SERVER2016; else if (IsWindowsVersionOrGreater(6, 3, 0)) version = WINDOWS_8_1_SERVER2012R2; else if (IsWindowsVersionOrGreater(6, 2, 0)) version = WINDOWS_8_SERVER2012; else if (IsWindowsVersionOrGreater(6, 1, 0)) version = WINDOWS_7_SERVER2008R2; else if (IsWindowsVersionOrGreater(6, 0, 0)) version = WINDOWS_VISTA_SERVER2008; else version = WINDOWS_FUTURE; } PRINT(("WASAPI: Windows version = %d\n", version)); } return version; #else #if (_WIN32_WINNT >= _WIN32_WINNT_WIN10) return WINDOWS_10_SERVER2016; #else return WINDOWS_8_SERVER2012; #endif #endif } // ------------------------------------------------------------------------------------------ static BOOL UseWOW64Workaround() { // note: WOW64 bug is common to Windows Vista x64, thus we fall back to safe Poll-driven // method. Windows 7 x64 seems has WOW64 bug fixed. return (IsWow64() && (GetWindowsVersion() == WINDOWS_VISTA_SERVER2008)); } // ------------------------------------------------------------------------------------------ static UINT32 GetAudioClientVersion() { if (GetWindowsVersion() >= WINDOWS_10_SERVER2016) return 3; else if (GetWindowsVersion() >= WINDOWS_8_SERVER2012) return 2; return 1; } // ------------------------------------------------------------------------------------------ static const IID *GetAudioClientIID() { static const IID *cli_iid = NULL; if (cli_iid == NULL) { UINT32 cli_version = GetAudioClientVersion(); switch (cli_version) { case 3: cli_iid = &pa_IID_IAudioClient3; break; case 2: cli_iid = &pa_IID_IAudioClient2; break; default: cli_iid = &pa_IID_IAudioClient; break; } PRINT(("WASAPI: IAudioClient version = %d\n", cli_version)); } return cli_iid; } // ------------------------------------------------------------------------------------------ typedef enum EMixDirection { MIX_DIR__1TO2, //!< mix one channel to L and R MIX_DIR__2TO1, //!< mix L and R channels to one channel MIX_DIR__2TO1_L //!< mix only L channel (of total 2 channels) to one channel } EMixDirection; // ------------------------------------------------------------------------------------------ #define _WASAPI_MONO_TO_STEREO_MIXER_1_TO_2(TYPE)\ TYPE * __restrict to = (TYPE *)__to;\ const TYPE * __restrict from = (const TYPE *)__from;\ const TYPE * __restrict end = from + count;\ while (from != end)\ {\ to[0] = to[1] = *from ++;\ to += 2;\ } // ------------------------------------------------------------------------------------------ #define _WASAPI_MONO_TO_STEREO_MIXER_2_TO_1_FLT32(TYPE)\ TYPE * __restrict to = (TYPE *)__to;\ const TYPE * __restrict from = (const TYPE *)__from;\ const TYPE * __restrict end = to + count;\ while (to != end)\ {\ *to ++ = (TYPE)((float)(from[0] + from[1]) * 0.5f);\ from += 2;\ } // ------------------------------------------------------------------------------------------ #define _WASAPI_MONO_TO_STEREO_MIXER_2_TO_1_INT32(TYPE)\ TYPE * __restrict to = (TYPE *)__to;\ const TYPE * __restrict from = (const TYPE *)__from;\ const TYPE * __restrict end = to + count;\ while (to != end)\ {\ *to ++ = (TYPE)(((INT32)from[0] + (INT32)from[1]) >> 1);\ from += 2;\ } // ------------------------------------------------------------------------------------------ #define _WASAPI_MONO_TO_STEREO_MIXER_2_TO_1_INT64(TYPE)\ TYPE * __restrict to = (TYPE *)__to;\ const TYPE * __restrict from = (const TYPE *)__from;\ const TYPE * __restrict end = to + count;\ while (to != end)\ {\ *to ++ = (TYPE)(((INT64)from[0] + (INT64)from[1]) >> 1);\ from += 2;\ } // ------------------------------------------------------------------------------------------ #define _WASAPI_MONO_TO_STEREO_MIXER_2_TO_1_L(TYPE)\ TYPE * __restrict to = (TYPE *)__to;\ const TYPE * __restrict from = (const TYPE *)__from;\ const TYPE * __restrict end = to + count;\ while (to != end)\ {\ *to ++ = from[0];\ from += 2;\ } // ------------------------------------------------------------------------------------------ static void _MixMonoToStereo_1TO2_8(void *__to, const void *__from, UINT32 count) { _WASAPI_MONO_TO_STEREO_MIXER_1_TO_2(BYTE); } static void _MixMonoToStereo_1TO2_16(void *__to, const void *__from, UINT32 count) { _WASAPI_MONO_TO_STEREO_MIXER_1_TO_2(short); } static void _MixMonoToStereo_1TO2_8_24(void *__to, const void *__from, UINT32 count) { _WASAPI_MONO_TO_STEREO_MIXER_1_TO_2(int); /* !!! int24 data is contained in 32-bit containers*/ } static void _MixMonoToStereo_1TO2_32(void *__to, const void *__from, UINT32 count) { _WASAPI_MONO_TO_STEREO_MIXER_1_TO_2(int); } static void _MixMonoToStereo_1TO2_32f(void *__to, const void *__from, UINT32 count) { _WASAPI_MONO_TO_STEREO_MIXER_1_TO_2(float); } static void _MixMonoToStereo_1TO2_24(void *__to, const void *__from, UINT32 count) { const UCHAR * __restrict from = (const UCHAR *)__from; UCHAR * __restrict to = (UCHAR *)__to; const UCHAR * __restrict end = to + (count * (2 * 3)); while (to != end) { to[0] = to[3] = from[0]; to[1] = to[4] = from[1]; to[2] = to[5] = from[2]; from += 3; to += (2 * 3); } } // ------------------------------------------------------------------------------------------ static void _MixMonoToStereo_2TO1_8(void *__to, const void *__from, UINT32 count) { _WASAPI_MONO_TO_STEREO_MIXER_2_TO_1_INT32(BYTE); } static void _MixMonoToStereo_2TO1_16(void *__to, const void *__from, UINT32 count) { _WASAPI_MONO_TO_STEREO_MIXER_2_TO_1_INT32(short); } static void _MixMonoToStereo_2TO1_8_24(void *__to, const void *__from, UINT32 count) { _WASAPI_MONO_TO_STEREO_MIXER_2_TO_1_INT32(int); /* !!! int24 data is contained in 32-bit containers*/ } static void _MixMonoToStereo_2TO1_32(void *__to, const void *__from, UINT32 count) { _WASAPI_MONO_TO_STEREO_MIXER_2_TO_1_INT64(int); } static void _MixMonoToStereo_2TO1_32f(void *__to, const void *__from, UINT32 count) { _WASAPI_MONO_TO_STEREO_MIXER_2_TO_1_FLT32(float); } static void _MixMonoToStereo_2TO1_24(void *__to, const void *__from, UINT32 count) { const UCHAR * __restrict from = (const UCHAR *)__from; UCHAR * __restrict to = (UCHAR *)__to; const UCHAR * __restrict end = to + (count * 3); PaInt32 tempL, tempR, tempM; while (to != end) { tempL = (((PaInt32)from[0]) << 8); tempL = tempL | (((PaInt32)from[1]) << 16); tempL = tempL | (((PaInt32)from[2]) << 24); tempR = (((PaInt32)from[3]) << 8); tempR = tempR | (((PaInt32)from[4]) << 16); tempR = tempR | (((PaInt32)from[5]) << 24); tempM = (tempL + tempR) >> 1; to[0] = (UCHAR)(tempM >> 8); to[1] = (UCHAR)(tempM >> 16); to[2] = (UCHAR)(tempM >> 24); from += (2 * 3); to += 3; } } // ------------------------------------------------------------------------------------------ static void _MixMonoToStereo_2TO1_8_L(void *__to, const void *__from, UINT32 count) { _WASAPI_MONO_TO_STEREO_MIXER_2_TO_1_L(BYTE); } static void _MixMonoToStereo_2TO1_16_L(void *__to, const void *__from, UINT32 count) { _WASAPI_MONO_TO_STEREO_MIXER_2_TO_1_L(short); } static void _MixMonoToStereo_2TO1_8_24_L(void *__to, const void *__from, UINT32 count) { _WASAPI_MONO_TO_STEREO_MIXER_2_TO_1_L(int); /* !!! int24 data is contained in 32-bit containers*/ } static void _MixMonoToStereo_2TO1_32_L(void *__to, const void *__from, UINT32 count) { _WASAPI_MONO_TO_STEREO_MIXER_2_TO_1_L(int); } static void _MixMonoToStereo_2TO1_32f_L(void *__to, const void *__from, UINT32 count) { _WASAPI_MONO_TO_STEREO_MIXER_2_TO_1_L(float); } static void _MixMonoToStereo_2TO1_24_L(void *__to, const void *__from, UINT32 count) { const UCHAR * __restrict from = (const UCHAR *)__from; UCHAR * __restrict to = (UCHAR *)__to; const UCHAR * __restrict end = to + (count * 3); while (to != end) { to[0] = from[0]; to[1] = from[1]; to[2] = from[2]; from += (2 * 3); to += 3; } } // ------------------------------------------------------------------------------------------ static MixMonoToStereoF GetMonoToStereoMixer(const WAVEFORMATEXTENSIBLE *fmtext, EMixDirection dir) { PaSampleFormat format = WaveToPaFormat(fmtext); switch (dir) { case MIX_DIR__1TO2: switch (format & ~paNonInterleaved) { case paUInt8: return _MixMonoToStereo_1TO2_8; case paInt16: return _MixMonoToStereo_1TO2_16; case paInt24: return (fmtext->Format.wBitsPerSample == 32 ? _MixMonoToStereo_1TO2_8_24 : _MixMonoToStereo_1TO2_24); case paInt32: return _MixMonoToStereo_1TO2_32; case paFloat32: return _MixMonoToStereo_1TO2_32f; } break; case MIX_DIR__2TO1: switch (format & ~paNonInterleaved) { case paUInt8: return _MixMonoToStereo_2TO1_8; case paInt16: return _MixMonoToStereo_2TO1_16; case paInt24: return (fmtext->Format.wBitsPerSample == 32 ? _MixMonoToStereo_2TO1_8_24 : _MixMonoToStereo_2TO1_24); case paInt32: return _MixMonoToStereo_2TO1_32; case paFloat32: return _MixMonoToStereo_2TO1_32f; } break; case MIX_DIR__2TO1_L: switch (format & ~paNonInterleaved) { case paUInt8: return _MixMonoToStereo_2TO1_8_L; case paInt16: return _MixMonoToStereo_2TO1_16_L; case paInt24: return (fmtext->Format.wBitsPerSample == 32 ? _MixMonoToStereo_2TO1_8_24_L : _MixMonoToStereo_2TO1_24_L); case paInt32: return _MixMonoToStereo_2TO1_32_L; case paFloat32: return _MixMonoToStereo_2TO1_32f_L; } break; } return NULL; } // ------------------------------------------------------------------------------------------ #ifdef PA_WINRT typedef struct PaActivateAudioInterfaceCompletionHandler { IActivateAudioInterfaceCompletionHandler parent; volatile LONG refs; volatile LONG done; struct { const IID *iid; void **obj; } in; struct { HRESULT hr; } out; } PaActivateAudioInterfaceCompletionHandler; static HRESULT (STDMETHODCALLTYPE PaActivateAudioInterfaceCompletionHandler_QueryInterface)( IActivateAudioInterfaceCompletionHandler *This, REFIID riid, void **ppvObject) { PaActivateAudioInterfaceCompletionHandler *handler = (PaActivateAudioInterfaceCompletionHandler *)This; // From MSDN: // "The IAgileObject interface is a marker interface that indicates that an object // is free threaded and can be called from any apartment." if (IsEqualIID(riid, &IID_IUnknown) || IsEqualIID(riid, &IID_IAgileObject)) { IActivateAudioInterfaceCompletionHandler_AddRef((IActivateAudioInterfaceCompletionHandler *)handler); (*ppvObject) = handler; return S_OK; } return E_NOINTERFACE; } static ULONG (STDMETHODCALLTYPE PaActivateAudioInterfaceCompletionHandler_AddRef)( IActivateAudioInterfaceCompletionHandler *This) { PaActivateAudioInterfaceCompletionHandler *handler = (PaActivateAudioInterfaceCompletionHandler *)This; return InterlockedIncrement(&handler->refs); } static ULONG (STDMETHODCALLTYPE PaActivateAudioInterfaceCompletionHandler_Release)( IActivateAudioInterfaceCompletionHandler *This) { PaActivateAudioInterfaceCompletionHandler *handler = (PaActivateAudioInterfaceCompletionHandler *)This; ULONG refs; if ((refs = InterlockedDecrement(&handler->refs)) == 0) { PaUtil_FreeMemory(handler->parent.lpVtbl); PaUtil_FreeMemory(handler); } return refs; } static HRESULT (STDMETHODCALLTYPE PaActivateAudioInterfaceCompletionHandler_ActivateCompleted)( IActivateAudioInterfaceCompletionHandler *This, IActivateAudioInterfaceAsyncOperation *activateOperation) { PaActivateAudioInterfaceCompletionHandler *handler = (PaActivateAudioInterfaceCompletionHandler *)This; HRESULT hr = S_OK; HRESULT hrActivateResult = S_OK; IUnknown *punkAudioInterface = NULL; // Check for a successful activation result hr = IActivateAudioInterfaceAsyncOperation_GetActivateResult(activateOperation, &hrActivateResult, &punkAudioInterface); if (SUCCEEDED(hr) && SUCCEEDED(hrActivateResult)) { // Get pointer to the requested audio interface IUnknown_QueryInterface(punkAudioInterface, handler->in.iid, handler->in.obj); if ((*handler->in.obj) == NULL) hrActivateResult = E_FAIL; } SAFE_RELEASE(punkAudioInterface); if (SUCCEEDED(hr)) handler->out.hr = hrActivateResult; else handler->out.hr = hr; // Got client object, stop busy waiting in ActivateAudioInterface InterlockedExchange(&handler->done, TRUE); return hr; } static IActivateAudioInterfaceCompletionHandler *CreateActivateAudioInterfaceCompletionHandler(const IID *iid, void **client) { PaActivateAudioInterfaceCompletionHandler *handler = PaUtil_AllocateMemory(sizeof(PaActivateAudioInterfaceCompletionHandler)); memset(handler, 0, sizeof(*handler)); handler->parent.lpVtbl = PaUtil_AllocateMemory(sizeof(*handler->parent.lpVtbl)); handler->parent.lpVtbl->QueryInterface = &PaActivateAudioInterfaceCompletionHandler_QueryInterface; handler->parent.lpVtbl->AddRef = &PaActivateAudioInterfaceCompletionHandler_AddRef; handler->parent.lpVtbl->Release = &PaActivateAudioInterfaceCompletionHandler_Release; handler->parent.lpVtbl->ActivateCompleted = &PaActivateAudioInterfaceCompletionHandler_ActivateCompleted; handler->refs = 1; handler->in.iid = iid; handler->in.obj = client; return (IActivateAudioInterfaceCompletionHandler *)handler; } #endif // ------------------------------------------------------------------------------------------ #ifdef PA_WINRT static HRESULT WinRT_GetDefaultDeviceId(WCHAR *deviceId, UINT32 deviceIdMax, EDataFlow flow) { switch (flow) { case eRender: if (g_DeviceListInfo.render.defaultId[0] != 0) wcsncpy_s(deviceId, deviceIdMax, g_DeviceListInfo.render.defaultId, wcslen(g_DeviceListInfo.render.defaultId)); else StringFromGUID2(&DEVINTERFACE_AUDIO_RENDER, deviceId, deviceIdMax); break; case eCapture: if (g_DeviceListInfo.capture.defaultId[0] != 0) wcsncpy_s(deviceId, deviceIdMax, g_DeviceListInfo.capture.defaultId, wcslen(g_DeviceListInfo.capture.defaultId)); else StringFromGUID2(&DEVINTERFACE_AUDIO_CAPTURE, deviceId, deviceIdMax); break; default: return S_FALSE; } return S_OK; } #endif // ------------------------------------------------------------------------------------------ #ifdef PA_WINRT static HRESULT WinRT_ActivateAudioInterface(const WCHAR *deviceId, const IID *iid, void **client) { PaError result = paNoError; HRESULT hr = S_OK; IActivateAudioInterfaceAsyncOperation *asyncOp = NULL; IActivateAudioInterfaceCompletionHandler *handler = CreateActivateAudioInterfaceCompletionHandler(iid, client); PaActivateAudioInterfaceCompletionHandler *handlerImpl = (PaActivateAudioInterfaceCompletionHandler *)handler; UINT32 sleepToggle = 0; // Async operation will call back to IActivateAudioInterfaceCompletionHandler::ActivateCompleted // which must be an agile interface implementation hr = ActivateAudioInterfaceAsync(deviceId, iid, NULL, handler, &asyncOp); IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); // Wait in busy loop for async operation to complete // Use Interlocked API here to ensure that ->done variable is read every time through the loop while (SUCCEEDED(hr) && !InterlockedOr(&handlerImpl->done, 0)) { Sleep(sleepToggle ^= 1); } hr = handlerImpl->out.hr; error: SAFE_RELEASE(asyncOp); SAFE_RELEASE(handler); return hr; } #endif // ------------------------------------------------------------------------------------------ static HRESULT ActivateAudioInterface(const PaWasapiDeviceInfo *deviceInfo, const PaWasapiStreamInfo *streamInfo, IAudioClient **client) { HRESULT hr; #ifndef PA_WINRT if (FAILED(hr = IMMDevice_Activate(deviceInfo->device, GetAudioClientIID(), CLSCTX_ALL, NULL, (void **)client))) return hr; #else if (FAILED(hr = WinRT_ActivateAudioInterface(deviceInfo->deviceId, GetAudioClientIID(), (void **)client))) return hr; #endif // Set audio client options (applicable only to IAudioClient2+): options may affect the audio format // support by IAudioClient implementation and therefore we should set them before GetClosestFormat() // in order to correctly match the requested format #ifdef __IAudioClient2_INTERFACE_DEFINED__ if ((streamInfo != NULL) && (GetAudioClientVersion() >= 2)) { pa_AudioClientProperties audioProps = { 0 }; audioProps.cbSize = sizeof(pa_AudioClientProperties); audioProps.bIsOffload = FALSE; audioProps.eCategory = (AUDIO_STREAM_CATEGORY)streamInfo->streamCategory; switch (streamInfo->streamOption) { case eStreamOptionRaw: if (GetWindowsVersion() >= WINDOWS_8_1_SERVER2012R2) audioProps.Options = pa_AUDCLNT_STREAMOPTIONS_RAW; break; case eStreamOptionMatchFormat: if (GetWindowsVersion() >= WINDOWS_10_SERVER2016) audioProps.Options = pa_AUDCLNT_STREAMOPTIONS_MATCH_FORMAT; break; } if (FAILED(hr = IAudioClient2_SetClientProperties((IAudioClient2 *)(*client), (AudioClientProperties *)&audioProps))) { PRINT(("WASAPI: IAudioClient2_SetClientProperties(IsOffload = %d, Category = %d, Options = %d) failed\n", audioProps.bIsOffload, audioProps.eCategory, audioProps.Options)); LogHostError(hr); } else { PRINT(("WASAPI: IAudioClient2 set properties: IsOffload = %d, Category = %d, Options = %d\n", audioProps.bIsOffload, audioProps.eCategory, audioProps.Options)); } } #endif return S_OK; } // ------------------------------------------------------------------------------------------ #ifdef PA_WINRT // Windows 10 SDK 10.0.15063.0 has SignalObjectAndWait defined again (unlike in 10.0.14393.0 and lower) #if !defined(WDK_NTDDI_VERSION) || (WDK_NTDDI_VERSION < NTDDI_WIN10_RS2) static DWORD SignalObjectAndWait(HANDLE hObjectToSignal, HANDLE hObjectToWaitOn, DWORD dwMilliseconds, BOOL bAlertable) { SetEvent(hObjectToSignal); return WaitForSingleObjectEx(hObjectToWaitOn, dwMilliseconds, bAlertable); } #endif #endif // ------------------------------------------------------------------------------------------ static void NotifyStateChanged(PaWasapiStream *stream, UINT32 flags, HRESULT hr) { if (stream->fnStateHandler == NULL) return; if (FAILED(hr)) flags |= paWasapiStreamStateError; stream->fnStateHandler((PaStream *)stream, flags, hr, stream->pStateHandlerUserData); } // ------------------------------------------------------------------------------------------ static void FillBaseDeviceInfo(PaDeviceInfo *deviceInfo, PaHostApiIndex hostApiIndex) { deviceInfo->structVersion = 2; deviceInfo->hostApi = hostApiIndex; } // ------------------------------------------------------------------------------------------ static PaError FillInactiveDeviceInfo(PaWasapiHostApiRepresentation *paWasapi, PaDeviceInfo *deviceInfo) { if (deviceInfo->name == NULL) deviceInfo->name = (char *)PaUtil_GroupAllocateMemory(paWasapi->allocations, 1); if (deviceInfo->name != NULL) { ((char *)deviceInfo->name)[0] = 0; } else return paInsufficientMemory; return paNoError; } // ------------------------------------------------------------------------------------------ static PaError FillDeviceInfo(PaWasapiHostApiRepresentation *paWasapi, void *pEndPoints, INT32 index, const WCHAR *defaultRenderId, const WCHAR *defaultCaptureId, PaDeviceInfo *deviceInfo, PaWasapiDeviceInfo *wasapiDeviceInfo #ifdef PA_WINRT , PaWasapiWinrtDeviceListContext *deviceListContext #endif ) { HRESULT hr; PaError result; PaUtilHostApiRepresentation *hostApi = (PaUtilHostApiRepresentation *)paWasapi; #ifdef PA_WINRT PaWasapiWinrtDeviceListContextEntry *listEntry = &deviceListContext->devices[index]; (void)pEndPoints; (void)defaultRenderId; (void)defaultCaptureId; #endif #ifndef PA_WINRT hr = IMMDeviceCollection_Item((IMMDeviceCollection *)pEndPoints, index, &wasapiDeviceInfo->device); IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); // Get device Id { WCHAR *deviceId; hr = IMMDevice_GetId(wasapiDeviceInfo->device, &deviceId); IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); wcsncpy(wasapiDeviceInfo->deviceId, deviceId, PA_WASAPI_DEVICE_ID_LEN - 1); CoTaskMemFree(deviceId); } // Get state of the device hr = IMMDevice_GetState(wasapiDeviceInfo->device, &wasapiDeviceInfo->state); IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); if (wasapiDeviceInfo->state != DEVICE_STATE_ACTIVE) { PRINT(("WASAPI device: %d is not currently available (state:%d)\n", index, wasapiDeviceInfo->state)); } // Get basic device info { IPropertyStore *pProperty; IMMEndpoint *endpoint; PROPVARIANT value; hr = IMMDevice_OpenPropertyStore(wasapiDeviceInfo->device, STGM_READ, &pProperty); IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); // "Friendly" Name { PropVariantInit(&value); hr = IPropertyStore_GetValue(pProperty, &PKEY_Device_FriendlyName, &value); IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); if ((deviceInfo->name = (char *)PaUtil_GroupAllocateMemory(paWasapi->allocations, PA_WASAPI_DEVICE_NAME_LEN)) == NULL) { result = paInsufficientMemory; PropVariantClear(&value); goto error; } if (value.pwszVal) WideCharToMultiByte(CP_UTF8, 0, value.pwszVal, (INT32)wcslen(value.pwszVal), (char *)deviceInfo->name, PA_WASAPI_DEVICE_NAME_LEN - 1, 0, 0); else _snprintf((char *)deviceInfo->name, PA_WASAPI_DEVICE_NAME_LEN - 1, "baddev%d", index); PropVariantClear(&value); PA_DEBUG(("WASAPI:%d| name[%s]\n", index, deviceInfo->name)); } // Default format { PropVariantInit(&value); hr = IPropertyStore_GetValue(pProperty, &PKEY_AudioEngine_DeviceFormat, &value); IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); memcpy(&wasapiDeviceInfo->DefaultFormat, value.blob.pBlobData, min(sizeof(wasapiDeviceInfo->DefaultFormat), value.blob.cbSize)); PropVariantClear(&value); } // Form factor { PropVariantInit(&value); hr = IPropertyStore_GetValue(pProperty, &PKEY_AudioEndpoint_FormFactor, &value); IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); // set #if defined(DUMMYUNIONNAME) && defined(NONAMELESSUNION) // avoid breaking strict-aliasing rules in such line: (EndpointFormFactor)(*((UINT *)(((WORD *)&value.wReserved3)+1))); UINT v; memcpy(&v, (((WORD *)&value.wReserved3) + 1), sizeof(v)); wasapiDeviceInfo->formFactor = (EndpointFormFactor)v; #else wasapiDeviceInfo->formFactor = (EndpointFormFactor)value.uintVal; #endif PA_DEBUG(("WASAPI:%d| form-factor[%d]\n", index, wasapiDeviceInfo->formFactor)); PropVariantClear(&value); } // Data flow (Renderer or Capture) hr = IMMDevice_QueryInterface(wasapiDeviceInfo->device, &pa_IID_IMMEndpoint, (void **)&endpoint); if (SUCCEEDED(hr)) { hr = IMMEndpoint_GetDataFlow(endpoint, &wasapiDeviceInfo->flow); SAFE_RELEASE(endpoint); } SAFE_RELEASE(pProperty); } #else // Set device Id wcsncpy(wasapiDeviceInfo->deviceId, listEntry->info->id, PA_WASAPI_DEVICE_ID_LEN - 1); // Set device name if ((deviceInfo->name = (char *)PaUtil_GroupAllocateMemory(paWasapi->allocations, PA_WASAPI_DEVICE_NAME_LEN)) == NULL) { result = paInsufficientMemory; goto error; } ((char *)deviceInfo->name)[0] = 0; if (listEntry->info->name[0] != 0) WideCharToMultiByte(CP_UTF8, 0, listEntry->info->name, (INT32)wcslen(listEntry->info->name), (char *)deviceInfo->name, PA_WASAPI_DEVICE_NAME_LEN - 1, 0, 0); if (deviceInfo->name[0] == 0) // fallback if WideCharToMultiByte is failed, or listEntry is nameless _snprintf((char *)deviceInfo->name, PA_WASAPI_DEVICE_NAME_LEN - 1, "WASAPI_%s:%d", (listEntry->flow == eRender ? "Output" : "Input"), index); // Form-factor wasapiDeviceInfo->formFactor = listEntry->info->formFactor; // Set data flow wasapiDeviceInfo->flow = listEntry->flow; #endif // Set default Output/Input devices if ((defaultRenderId != NULL) && (wcsncmp(wasapiDeviceInfo->deviceId, defaultRenderId, PA_WASAPI_DEVICE_NAME_LEN - 1) == 0)) hostApi->info.defaultOutputDevice = hostApi->info.deviceCount; if ((defaultCaptureId != NULL) && (wcsncmp(wasapiDeviceInfo->deviceId, defaultCaptureId, PA_WASAPI_DEVICE_NAME_LEN - 1) == 0)) hostApi->info.defaultInputDevice = hostApi->info.deviceCount; // Get a temporary IAudioClient for more details { IAudioClient *tmpClient; WAVEFORMATEX *mixFormat; hr = ActivateAudioInterface(wasapiDeviceInfo, NULL, &tmpClient); IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); // Get latency hr = IAudioClient_GetDevicePeriod(tmpClient, &wasapiDeviceInfo->DefaultDevicePeriod, &wasapiDeviceInfo->MinimumDevicePeriod); if (FAILED(hr)) { PA_DEBUG(("WASAPI:%d| failed getting min/default periods by IAudioClient::GetDevicePeriod() with error[%08X], will use 30000/100000 hns\n", index, (UINT32)hr)); // assign WASAPI common values wasapiDeviceInfo->DefaultDevicePeriod = 100000; wasapiDeviceInfo->MinimumDevicePeriod = 30000; // ignore error, let continue further without failing with paInternalError hr = S_OK; } // Get mix format hr = IAudioClient_GetMixFormat(tmpClient, &mixFormat); if (SUCCEEDED(hr)) { memcpy(&wasapiDeviceInfo->MixFormat, mixFormat, min(sizeof(wasapiDeviceInfo->MixFormat), (sizeof(*mixFormat) + mixFormat->cbSize))); CoTaskMemFree(mixFormat); } // Register WINRT device #ifdef PA_WINRT if (SUCCEEDED(hr)) { // Set state wasapiDeviceInfo->state = DEVICE_STATE_ACTIVE; // Default format (Shared mode) is always a mix format wasapiDeviceInfo->DefaultFormat = wasapiDeviceInfo->MixFormat; } #endif // Release tmp client SAFE_RELEASE(tmpClient); if (hr != S_OK) { //davidv: this happened with my hardware, previously for that same device in DirectSound: //Digital Output (Realtek AC'97 Audio)'s GUID: {0x38f2cf50,0x7b4c,0x4740,0x86,0xeb,0xd4,0x38,0x66,0xd8,0xc8, 0x9f} //so something must be _really_ wrong with this device, TODO handle this better. We kind of need GetMixFormat LogHostError(hr); result = paInternalError; goto error; } } // Fill basic device data deviceInfo->maxInputChannels = 0; deviceInfo->maxOutputChannels = 0; deviceInfo->defaultSampleRate = wasapiDeviceInfo->MixFormat.Format.nSamplesPerSec; switch (wasapiDeviceInfo->flow) { case eRender: { deviceInfo->maxOutputChannels = wasapiDeviceInfo->MixFormat.Format.nChannels; deviceInfo->defaultHighOutputLatency = nano100ToSeconds(wasapiDeviceInfo->DefaultDevicePeriod); deviceInfo->defaultLowOutputLatency = nano100ToSeconds(wasapiDeviceInfo->MinimumDevicePeriod); PA_DEBUG(("WASAPI:%d| def.SR[%d] max.CH[%d] latency{hi[%f] lo[%f]}\n", index, (UINT32)deviceInfo->defaultSampleRate, deviceInfo->maxOutputChannels, (float)deviceInfo->defaultHighOutputLatency, (float)deviceInfo->defaultLowOutputLatency)); break;} case eCapture: { deviceInfo->maxInputChannels = wasapiDeviceInfo->MixFormat.Format.nChannels; deviceInfo->defaultHighInputLatency = nano100ToSeconds(wasapiDeviceInfo->DefaultDevicePeriod); deviceInfo->defaultLowInputLatency = nano100ToSeconds(wasapiDeviceInfo->MinimumDevicePeriod); PA_DEBUG(("WASAPI:%d| def.SR[%d] max.CH[%d] latency{hi[%f] lo[%f]}\n", index, (UINT32)deviceInfo->defaultSampleRate, deviceInfo->maxInputChannels, (float)deviceInfo->defaultHighInputLatency, (float)deviceInfo->defaultLowInputLatency)); break; } default: PRINT(("WASAPI:%d| bad Data Flow!\n", index)); result = paInternalError; goto error; } return paNoError; error: PRINT(("WASAPI: failed filling device info for device index[%d] - error[%d|%s]\n", index, result, Pa_GetErrorText(result))); return result; } // ------------------------------------------------------------------------------------------ static PaDeviceInfo *AllocateDeviceListMemory(PaWasapiHostApiRepresentation *paWasapi) { PaUtilHostApiRepresentation *hostApi = (PaUtilHostApiRepresentation *)paWasapi; PaDeviceInfo *deviceInfoArray = NULL; if ((paWasapi->devInfo = (PaWasapiDeviceInfo *)PaUtil_GroupAllocateMemory(paWasapi->allocations, sizeof(PaWasapiDeviceInfo) * paWasapi->deviceCount)) == NULL) { return NULL; } memset(paWasapi->devInfo, 0, sizeof(PaWasapiDeviceInfo) * paWasapi->deviceCount); if (paWasapi->deviceCount != 0) { UINT32 i; UINT32 deviceCount = paWasapi->deviceCount; #if defined(PA_WASAPI_MAX_CONST_DEVICE_COUNT) && (PA_WASAPI_MAX_CONST_DEVICE_COUNT > 0) if (deviceCount < PA_WASAPI_MAX_CONST_DEVICE_COUNT) deviceCount = PA_WASAPI_MAX_CONST_DEVICE_COUNT; #endif if ((hostApi->deviceInfos = (PaDeviceInfo **)PaUtil_GroupAllocateMemory(paWasapi->allocations, sizeof(PaDeviceInfo *) * deviceCount)) == NULL) { return NULL; } for (i = 0; i < deviceCount; ++i) hostApi->deviceInfos[i] = NULL; // Allocate all device info structs in a contiguous block if ((deviceInfoArray = (PaDeviceInfo *)PaUtil_GroupAllocateMemory(paWasapi->allocations, sizeof(PaDeviceInfo) * deviceCount)) == NULL) { return NULL; } memset(deviceInfoArray, 0, sizeof(PaDeviceInfo) * deviceCount); } return deviceInfoArray; } // ------------------------------------------------------------------------------------------ static PaError CreateDeviceList(PaWasapiHostApiRepresentation *paWasapi, PaHostApiIndex hostApiIndex) { PaUtilHostApiRepresentation *hostApi = (PaUtilHostApiRepresentation *)paWasapi; PaError result = paNoError; PaDeviceInfo *deviceInfoArray = NULL; UINT32 i; WCHAR *defaultRenderId = NULL; WCHAR *defaultCaptureId = NULL; #ifndef PA_WINRT HRESULT hr; IMMDeviceCollection *pEndPoints = NULL; IMMDeviceEnumerator *pEnumerator = NULL; #else void *pEndPoints = NULL; IAudioClient *tmpClient; PaWasapiWinrtDeviceListContext deviceListContext = { 0 }; PaWasapiWinrtDeviceInfo defaultRender = { 0 }; PaWasapiWinrtDeviceInfo defaultCapture = { 0 }; #endif // Make sure device list empty if ((paWasapi->deviceCount != 0) || (hostApi->info.deviceCount != 0)) return paInternalError; #ifndef PA_WINRT hr = CoCreateInstance(&pa_CLSID_IMMDeviceEnumerator, NULL, CLSCTX_INPROC_SERVER, &pa_IID_IMMDeviceEnumerator, (void **)&pEnumerator); IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); // Get default render and capture devices { IMMDevice *device; hr = IMMDeviceEnumerator_GetDefaultAudioEndpoint(pEnumerator, eRender, eMultimedia, &device); if (hr != S_OK) { if (hr != E_NOTFOUND) { IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); } } else { hr = IMMDevice_GetId(device, &defaultRenderId); IMMDevice_Release(device); IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); } hr = IMMDeviceEnumerator_GetDefaultAudioEndpoint(pEnumerator, eCapture, eMultimedia, &device); if (hr != S_OK) { if (hr != E_NOTFOUND) { IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); } } else { hr = IMMDevice_GetId(device, &defaultCaptureId); IMMDevice_Release(device); IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); } } // Get all currently active devices hr = IMMDeviceEnumerator_EnumAudioEndpoints(pEnumerator, eAll, DEVICE_STATE_ACTIVE, &pEndPoints); IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); // Get device count hr = IMMDeviceCollection_GetCount(pEndPoints, &paWasapi->deviceCount); IF_FAILED_INTERNAL_ERROR_JUMP(hr, result, error); #else WinRT_GetDefaultDeviceId(defaultRender.id, STATIC_ARRAY_SIZE(defaultRender.id) - 1, eRender); defaultRenderId = defaultRender.id; WinRT_GetDefaultDeviceId(defaultCapture.id, STATIC_ARRAY_SIZE(defaultCapture.id) - 1, eCapture); defaultCaptureId = defaultCapture.id; if (g_DeviceListInfo.render.deviceCount == 0) { if (SUCCEEDED(WinRT_ActivateAudioInterface(defaultRenderId, GetAudioClientIID(), &tmpClient))) { deviceListContext.devices[paWasapi->deviceCount].info = &defaultRender; deviceListContext.devices[paWasapi->deviceCount].flow = eRender; paWasapi->deviceCount++; SAFE_RELEASE(tmpClient); } } else { for (i = 0; i < g_DeviceListInfo.render.deviceCount; ++i) { deviceListContext.devices[paWasapi->deviceCount].info = &g_DeviceListInfo.render.devices[i]; deviceListContext.devices[paWasapi->deviceCount].flow = eRender; paWasapi->deviceCount++; } } if (g_DeviceListInfo.capture.deviceCount == 0) { if (SUCCEEDED(WinRT_ActivateAudioInterface(defaultCaptureId, GetAudioClientIID(), &tmpClient))) { deviceListContext.devices[paWasapi->deviceCount].info = &defaultCapture; deviceListContext.devices[paWasapi->deviceCount].flow = eCapture; paWasapi->deviceCount++; SAFE_RELEASE(tmpClient); } } else { for (i = 0; i < g_DeviceListInfo.capture.deviceCount; ++i) { deviceListContext.devices[paWasapi->deviceCount].info = &g_DeviceListInfo.capture.devices[i]; deviceListContext.devices[paWasapi->deviceCount].flow = eCapture; paWasapi->deviceCount++; } } #endif // Allocate memory for the device list if ((paWasapi->deviceCount != 0) && ((deviceInfoArray = AllocateDeviceListMemory(paWasapi)) == NULL)) { result = paInsufficientMemory; goto error; } // Fill WASAPI device info for (i = 0; i < paWasapi->deviceCount; ++i) { PaDeviceInfo *deviceInfo = &deviceInfoArray[i]; PA_DEBUG(("WASAPI: device idx: %02d\n", i)); PA_DEBUG(("WASAPI: ---------------\n")); FillBaseDeviceInfo(deviceInfo, hostApiIndex); if ((result = FillDeviceInfo(paWasapi, pEndPoints, i, defaultRenderId, defaultCaptureId, deviceInfo, &paWasapi->devInfo[i] #ifdef PA_WINRT , &deviceListContext #endif )) != paNoError) { // Faulty device is made inactive if ((result = FillInactiveDeviceInfo(paWasapi, deviceInfo)) != paNoError) goto error; } hostApi->deviceInfos[i] = deviceInfo; ++hostApi->info.deviceCount; } // Fill the remaining slots with inactive device info #if defined(PA_WASAPI_MAX_CONST_DEVICE_COUNT) && (PA_WASAPI_MAX_CONST_DEVICE_COUNT > 0) if ((hostApi->info.deviceCount != 0) && (hostApi->info.deviceCount < PA_WASAPI_MAX_CONST_DEVICE_COUNT)) { for (i = hostApi->info.deviceCount; i < PA_WASAPI_MAX_CONST_DEVICE_COUNT; ++i) { PaDeviceInfo *deviceInfo = &deviceInfoArray[i]; FillBaseDeviceInfo(deviceInfo, hostApiIndex); if ((result = FillInactiveDeviceInfo(paWasapi, deviceInfo)) != paNoError) goto error; hostApi->deviceInfos[i] = deviceInfo; ++hostApi->info.deviceCount; } } #endif // Clear any non-fatal errors result = paNoError; PRINT(("WASAPI: device list ok - found %d devices\n", paWasapi->deviceCount)); done: #ifndef PA_WINRT CoTaskMemFree(defaultRenderId); CoTaskMemFree(defaultCaptureId); SAFE_RELEASE(pEndPoints); SAFE_RELEASE(pEnumerator); #endif return result; error: // Safety if error was not set so that we do not think initialize was a success if (result == paNoError) result = paInternalError; PRINT(("WASAPI: failed to create device list - error[%d|%s]\n", result, Pa_GetErrorText(result))); goto done; } // ------------------------------------------------------------------------------------------ PaError PaWasapi_Initialize( PaUtilHostApiRepresentation **hostApi, PaHostApiIndex hostApiIndex ) { PaError result; PaWasapiHostApiRepresentation *paWasapi; #ifndef PA_WINRT if (!SetupAVRT()) { PRINT(("WASAPI: No AVRT! (not VISTA?)\n")); return paNoError; } #endif paWasapi = (PaWasapiHostApiRepresentation *)PaUtil_AllocateMemory(sizeof(PaWasapiHostApiRepresentation)); if (paWasapi == NULL) { result = paInsufficientMemory; goto error; } memset(paWasapi, 0, sizeof(PaWasapiHostApiRepresentation)); /* ensure all fields are zeroed. especially paWasapi->allocations */ // Initialize COM subsystem result = PaWinUtil_CoInitialize(paWASAPI, &paWasapi->comInitializationResult); if (result != paNoError) goto error; // Create memory group paWasapi->allocations = PaUtil_CreateAllocationGroup(); if (paWasapi->allocations == NULL) { result = paInsufficientMemory; goto error; } // Fill basic interface info *hostApi = &paWasapi->inheritedHostApiRep; (*hostApi)->info.structVersion = 1; (*hostApi)->info.type = paWASAPI; (*hostApi)->info.name = "Windows WASAPI"; (*hostApi)->info.deviceCount = 0; (*hostApi)->info.defaultInputDevice = paNoDevice; (*hostApi)->info.defaultOutputDevice = paNoDevice; (*hostApi)->Terminate = Terminate; (*hostApi)->OpenStream = OpenStream; (*hostApi)->IsFormatSupported = IsFormatSupported; // Fill the device list if ((result = CreateDeviceList(paWasapi, hostApiIndex)) != paNoError) goto error; // Detect if platform workaround is required paWasapi->useWOW64Workaround = UseWOW64Workaround(); // Initialize time getter SystemTimer_InitializeTimeGetter(); PaUtil_InitializeStreamInterface( &paWasapi->callbackStreamInterface, CloseStream, StartStream, StopStream, AbortStream, IsStreamStopped, IsStreamActive, GetStreamTime, GetStreamCpuLoad, PaUtil_DummyRead, PaUtil_DummyWrite, PaUtil_DummyGetReadAvailable, PaUtil_DummyGetWriteAvailable ); PaUtil_InitializeStreamInterface( &paWasapi->blockingStreamInterface, CloseStream, StartStream, StopStream, AbortStream, IsStreamStopped, IsStreamActive, GetStreamTime, PaUtil_DummyGetCpuLoad, ReadStream, WriteStream, GetStreamReadAvailable, GetStreamWriteAvailable ); PRINT(("WASAPI: initialized ok\n")); return paNoError; error: PRINT(("WASAPI: failed %s error[%d|%s]\n", __FUNCTION__, result, Pa_GetErrorText(result))); Terminate((PaUtilHostApiRepresentation *)paWasapi); return result; } // ------------------------------------------------------------------------------------------ static void ReleaseWasapiDeviceInfoList( PaWasapiHostApiRepresentation *paWasapi ) { UINT32 i; // Release device info bound objects for (i = 0; i < paWasapi->deviceCount; ++i) { #ifndef PA_WINRT SAFE_RELEASE(paWasapi->devInfo[i].device); #endif } // Free device info if (paWasapi->allocations != NULL) PaUtil_GroupFreeMemory(paWasapi->allocations, paWasapi->devInfo); // Be ready for a device list reinitialization and if its creation is failed pointers must not be dangling paWasapi->devInfo = NULL; paWasapi->deviceCount = 0; } // ------------------------------------------------------------------------------------------ static void Terminate( PaUtilHostApiRepresentation *hostApi ) { PaWasapiHostApiRepresentation *paWasapi = (PaWasapiHostApiRepresentation*)hostApi; if (paWasapi == NULL) return; // Release device list ReleaseWasapiDeviceInfoList(paWasapi); // Free allocations and memory group itself if (paWasapi->allocations != NULL) { PaUtil_FreeAllAllocations(paWasapi->allocations); PaUtil_DestroyAllocationGroup(paWasapi->allocations); } // Release COM subsystem PaWinUtil_CoUninitialize(paWASAPI, &paWasapi->comInitializationResult); // Free API representation PaUtil_FreeMemory(paWasapi); // Close AVRT CloseAVRT(); } // ------------------------------------------------------------------------------------------ static PaWasapiHostApiRepresentation *_GetHostApi(PaError *ret) { PaError error; PaUtilHostApiRepresentation *pApi; if ((error = PaUtil_GetHostApiRepresentation(&pApi, paWASAPI)) != paNoError) { if (ret != NULL) (*ret) = error; return NULL; } return (PaWasapiHostApiRepresentation *)pApi; } // ------------------------------------------------------------------------------------------ static PaError UpdateDeviceList() { int i; PaError ret; PaWasapiHostApiRepresentation *paWasapi; PaUtilHostApiRepresentation *hostApi; // Get API hostApi = (PaUtilHostApiRepresentation *)(paWasapi = _GetHostApi(&ret)); if (paWasapi == NULL) return paNotInitialized; // Make sure initialized properly if (paWasapi->allocations == NULL) return paNotInitialized; // Release WASAPI internal device info list ReleaseWasapiDeviceInfoList(paWasapi); // Release external device info list if (hostApi->deviceInfos != NULL) { for (i = 0; i < hostApi->info.deviceCount; ++i) { PaUtil_GroupFreeMemory(paWasapi->allocations, (void *)hostApi->deviceInfos[i]->name); } PaUtil_GroupFreeMemory(paWasapi->allocations, hostApi->deviceInfos[0]); PaUtil_GroupFreeMemory(paWasapi->allocations, hostApi->deviceInfos); // Be ready for a device list reinitialization and if its creation is failed pointers must not be dangling hostApi->deviceInfos = NULL; hostApi->info.deviceCount = 0; hostApi->info.defaultInputDevice = paNoDevice; hostApi->info.defaultOutputDevice = paNoDevice; } // Fill possibly updated device list if ((ret = CreateDeviceList(paWasapi, Pa_HostApiTypeIdToHostApiIndex(paWASAPI))) != paNoError) return ret; return paNoError; } // ------------------------------------------------------------------------------------------ PaError PaWasapi_UpdateDeviceList() { #if defined(PA_WASAPI_MAX_CONST_DEVICE_COUNT) && (PA_WASAPI_MAX_CONST_DEVICE_COUNT > 0) return UpdateDeviceList(); #else return paInternalError; #endif } // ------------------------------------------------------------------------------------------ int PaWasapi_GetDeviceCurrentFormat( PaStream *pStream, void *pFormat, unsigned int formatSize, int bOutput ) { UINT32 size; WAVEFORMATEXTENSIBLE *format; PaWasapiStream *stream = (PaWasapiStream *)pStream; if (stream == NULL) return paBadStreamPtr; format = (bOutput == TRUE ? &stream->out.wavex : &stream->in.wavex); size = min(formatSize, (UINT32)sizeof(*format)); memcpy(pFormat, format, size); return size; } // ------------------------------------------------------------------------------------------ static PaError _GetWasapiDeviceInfoByDeviceIndex( PaWasapiDeviceInfo **info, PaDeviceIndex device ) { PaError ret; PaDeviceIndex index; // Get API PaWasapiHostApiRepresentation *paWasapi = _GetHostApi(&ret); if (paWasapi == NULL) return paNotInitialized; // Get device index if ((ret = PaUtil_DeviceIndexToHostApiDeviceIndex(&index, device, &paWasapi->inheritedHostApiRep)) != paNoError) return ret; // Validate index if ((UINT32)index >= paWasapi->deviceCount) return paInvalidDevice; (*info) = &paWasapi->devInfo[ index ]; return paNoError; } // ------------------------------------------------------------------------------------------ int PaWasapi_GetDeviceDefaultFormat( void *pFormat, unsigned int formatSize, PaDeviceIndex device ) { PaError ret; PaWasapiDeviceInfo *deviceInfo; UINT32 size; if (pFormat == NULL) return paBadBufferPtr; if (formatSize <= 0) return paBufferTooSmall; if ((ret = _GetWasapiDeviceInfoByDeviceIndex(&deviceInfo, device)) != paNoError) return ret; size = min(formatSize, (UINT32)sizeof(deviceInfo->DefaultFormat)); memcpy(pFormat, &deviceInfo->DefaultFormat, size); return size; } // ------------------------------------------------------------------------------------------ int PaWasapi_GetDeviceMixFormat( void *pFormat, unsigned int formatSize, PaDeviceIndex device ) { PaError ret; PaWasapiDeviceInfo *deviceInfo; UINT32 size; if (pFormat == NULL) return paBadBufferPtr; if (formatSize <= 0) return paBufferTooSmall; if ((ret = _GetWasapiDeviceInfoByDeviceIndex(&deviceInfo, device)) != paNoError) return ret; size = min(formatSize, (UINT32)sizeof(deviceInfo->MixFormat)); memcpy(pFormat, &deviceInfo->MixFormat, size); return size; } // ------------------------------------------------------------------------------------------ int PaWasapi_GetDeviceRole( PaDeviceIndex device ) { PaError ret; PaWasapiDeviceInfo *deviceInfo; if ((ret = _GetWasapiDeviceInfoByDeviceIndex(&deviceInfo, device)) != paNoError) return ret; return deviceInfo->formFactor; } // ------------------------------------------------------------------------------------------ PaError PaWasapi_GetIMMDevice( PaDeviceIndex device, void **pIMMDevice ) { #ifndef PA_WINRT PaError ret; PaWasapiDeviceInfo *deviceInfo; if (pIMMDevice == NULL) return paBadBufferPtr; if ((ret = _GetWasapiDeviceInfoByDeviceIndex(&deviceInfo, device)) != paNoError) return ret; (*pIMMDevice) = deviceInfo->device; return paNoError; #else (void)device; (void)pIMMDevice; return paIncompatibleStreamHostApi; #endif } // ------------------------------------------------------------------------------------------ PaError PaWasapi_GetFramesPerHostBuffer( PaStream *pStream, unsigned int *pInput, unsigned int *pOutput ) { PaWasapiStream *stream = (PaWasapiStream *)pStream; if (stream == NULL) return paBadStreamPtr; if (pInput != NULL) (*pInput) = stream->in.framesPerHostCallback; if (pOutput != NULL) (*pOutput) = stream->out.framesPerHostCallback; return paNoError; } // ------------------------------------------------------------------------------------------ static void LogWAVEFORMATEXTENSIBLE(const WAVEFORMATEXTENSIBLE *in) { const WAVEFORMATEX *old = (WAVEFORMATEX *)in; switch (old->wFormatTag) { case WAVE_FORMAT_EXTENSIBLE: { PRINT(("wFormatTag =WAVE_FORMAT_EXTENSIBLE\n")); if (IsEqualGUID(&in->SubFormat, &pa_KSDATAFORMAT_SUBTYPE_IEEE_FLOAT)) { PRINT(("SubFormat =KSDATAFORMAT_SUBTYPE_IEEE_FLOAT\n")); } else if (IsEqualGUID(&in->SubFormat, &pa_KSDATAFORMAT_SUBTYPE_PCM)) { PRINT(("SubFormat =KSDATAFORMAT_SUBTYPE_PCM\n")); } else { PRINT(("SubFormat =CUSTOM GUID{%d:%d:%d:%d%d%d%d%d%d%d%d}\n", in->SubFormat.Data1, in->SubFormat.Data2, in->SubFormat.Data3, (int)in->SubFormat.Data4[0], (int)in->SubFormat.Data4[1], (int)in->SubFormat.Data4[2], (int)in->SubFormat.Data4[3], (int)in->SubFormat.Data4[4], (int)in->SubFormat.Data4[5], (int)in->SubFormat.Data4[6], (int)in->SubFormat.Data4[7])); } PRINT(("Samples.wValidBitsPerSample =%d\n", in->Samples.wValidBitsPerSample)); PRINT(("dwChannelMask =0x%X\n",in->dwChannelMask)); break; } case WAVE_FORMAT_PCM: PRINT(("wFormatTag =WAVE_FORMAT_PCM\n")); break; case WAVE_FORMAT_IEEE_FLOAT: PRINT(("wFormatTag =WAVE_FORMAT_IEEE_FLOAT\n")); break; default: PRINT(("wFormatTag =UNKNOWN(%d)\n",old->wFormatTag)); break; } PRINT(("nChannels =%d\n",old->nChannels)); PRINT(("nSamplesPerSec =%d\n",old->nSamplesPerSec)); PRINT(("nAvgBytesPerSec=%d\n",old->nAvgBytesPerSec)); PRINT(("nBlockAlign =%d\n",old->nBlockAlign)); PRINT(("wBitsPerSample =%d\n",old->wBitsPerSample)); PRINT(("cbSize =%d\n",old->cbSize)); } // ------------------------------------------------------------------------------------------ PaSampleFormat WaveToPaFormat(const WAVEFORMATEXTENSIBLE *fmtext) { const WAVEFORMATEX *fmt = (WAVEFORMATEX *)fmtext; switch (fmt->wFormatTag) { case WAVE_FORMAT_EXTENSIBLE: { if (IsEqualGUID(&fmtext->SubFormat, &pa_KSDATAFORMAT_SUBTYPE_IEEE_FLOAT)) { if (fmtext->Samples.wValidBitsPerSample == 32) return paFloat32; } else if (IsEqualGUID(&fmtext->SubFormat, &pa_KSDATAFORMAT_SUBTYPE_PCM)) { switch (fmt->wBitsPerSample) { case 32: return paInt32; case 24: return paInt24; case 16: return paInt16; case 8: return paUInt8; } } break; } case WAVE_FORMAT_IEEE_FLOAT: return paFloat32; case WAVE_FORMAT_PCM: { switch (fmt->wBitsPerSample) { case 32: return paInt32; case 24: return paInt24; case 16: return paInt16; case 8: return paUInt8; } break; } } return paCustomFormat; } // ------------------------------------------------------------------------------------------ static PaError MakeWaveFormatFromParams(WAVEFORMATEXTENSIBLE *wavex, const PaStreamParameters *params, double sampleRate, BOOL packedOnly) { WORD bitsPerSample; WAVEFORMATEX *old; DWORD channelMask = 0; BOOL useExtensible = (params->channelCount > 2); // format is always forced for >2 channels format PaWasapiStreamInfo *streamInfo = (PaWasapiStreamInfo *)params->hostApiSpecificStreamInfo; // Convert PaSampleFormat to valid data bits if ((bitsPerSample = PaSampleFormatToBitsPerSample(params->sampleFormat)) == 0) return paSampleFormatNotSupported; // Use user assigned channel mask if ((streamInfo != NULL) && (streamInfo->flags & paWinWasapiUseChannelMask)) { channelMask = streamInfo->channelMask; useExtensible = TRUE; } memset(wavex, 0, sizeof(*wavex)); old = (WAVEFORMATEX *)wavex; old->nChannels = (WORD)params->channelCount; old->nSamplesPerSec = (DWORD)sampleRate; old->wBitsPerSample = bitsPerSample; // according to MSDN for WAVEFORMATEX structure for WAVE_FORMAT_PCM: // "If wFormatTag is WAVE_FORMAT_PCM, then wBitsPerSample should be equal to 8 or 16." if ((bitsPerSample != 8) && (bitsPerSample != 16)) { // Normally 20 or 24 bits must go in 32 bit containers (ints) but in Exclusive mode some devices require // packed version of the format, e.g. for example 24-bit in 3-bytes old->wBitsPerSample = (packedOnly ? bitsPerSample : 32); useExtensible = TRUE; } // WAVEFORMATEX if (!useExtensible) { old->wFormatTag = WAVE_FORMAT_PCM; } // WAVEFORMATEXTENSIBLE else { old->wFormatTag = WAVE_FORMAT_EXTENSIBLE; old->cbSize = sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX); if ((params->sampleFormat & ~paNonInterleaved) == paFloat32) wavex->SubFormat = pa_KSDATAFORMAT_SUBTYPE_IEEE_FLOAT; else wavex->SubFormat = pa_KSDATAFORMAT_SUBTYPE_PCM; wavex->Samples.wValidBitsPerSample = bitsPerSample; // Set channel mask if (channelMask != 0) { wavex->dwChannelMask = channelMask; } else { switch (params->channelCount) { case 1: wavex->dwChannelMask = PAWIN_SPEAKER_MONO; break; case 2: wavex->dwChannelMask = PAWIN_SPEAKER_STEREO; break; case 3: wavex->dwChannelMask = PAWIN_SPEAKER_STEREO|SPEAKER_LOW_FREQUENCY; break; case 4: wavex->dwChannelMask = PAWIN_SPEAKER_QUAD; break; case 5: wavex->dwChannelMask = PAWIN_SPEAKER_QUAD|SPEAKER_LOW_FREQUENCY; break; #ifdef PAWIN_SPEAKER_5POINT1_SURROUND case 6: wavex->dwChannelMask = PAWIN_SPEAKER_5POINT1_SURROUND; break; #else case 6: wavex->dwChannelMask = PAWIN_SPEAKER_5POINT1; break; #endif #ifdef PAWIN_SPEAKER_5POINT1_SURROUND case 7: wavex->dwChannelMask = PAWIN_SPEAKER_5POINT1_SURROUND|SPEAKER_BACK_CENTER; break; #else case 7: wavex->dwChannelMask = PAWIN_SPEAKER_5POINT1|SPEAKER_BACK_CENTER; break; #endif #ifdef PAWIN_SPEAKER_7POINT1_SURROUND case 8: wavex->dwChannelMask = PAWIN_SPEAKER_7POINT1_SURROUND; break; #else case 8: wavex->dwChannelMask = PAWIN_SPEAKER_7POINT1; break; #endif default: wavex->dwChannelMask = 0; } } } old->nBlockAlign = old->nChannels * (old->wBitsPerSample / 8); old->nAvgBytesPerSec = old->nSamplesPerSec * old->nBlockAlign; return paNoError; } // ------------------------------------------------------------------------------------------ static HRESULT GetAlternativeSampleFormatExclusive(IAudioClient *client, double sampleRate, const PaStreamParameters *params, WAVEFORMATEXTENSIBLE *outWavex, BOOL packedSampleFormatOnly) { HRESULT hr = !S_OK; AUDCLNT_SHAREMODE shareMode = AUDCLNT_SHAREMODE_EXCLUSIVE; WAVEFORMATEXTENSIBLE testFormat; PaStreamParameters testParams; int i; static const PaSampleFormat bestToWorst[] = { paInt32, paInt24, paFloat32, paInt16 }; // Try combination Stereo (2 channels) and then we will use our custom mono-stereo mixer if (params->channelCount == 1) { testParams = (*params); testParams.channelCount = 2; if (MakeWaveFormatFromParams(&testFormat, &testParams, sampleRate, packedSampleFormatOnly) == paNoError) { if ((hr = IAudioClient_IsFormatSupported(client, shareMode, &testFormat.Format, NULL)) == S_OK) { (*outWavex) = testFormat; return hr; } } // Try selecting suitable sample type for (i = 0; i < STATIC_ARRAY_SIZE(bestToWorst); ++i) { testParams.sampleFormat = bestToWorst[i]; if (MakeWaveFormatFromParams(&testFormat, &testParams, sampleRate, packedSampleFormatOnly) == paNoError) { if ((hr = IAudioClient_IsFormatSupported(client, shareMode, &testFormat.Format, NULL)) == S_OK) { (*outWavex) = testFormat; return hr; } } } } // Try selecting suitable sample type testParams = (*params); for (i = 0; i < STATIC_ARRAY_SIZE(bestToWorst); ++i) { testParams.sampleFormat = bestToWorst[i]; if (MakeWaveFormatFromParams(&testFormat, &testParams, sampleRate, packedSampleFormatOnly) == paNoError) { if ((hr = IAudioClient_IsFormatSupported(client, shareMode, &testFormat.Format, NULL)) == S_OK) { (*outWavex) = testFormat; return hr; } } } return hr; } // ------------------------------------------------------------------------------------------ static PaError GetClosestFormat(IAudioClient *client, double sampleRate, const PaStreamParameters *_params, AUDCLNT_SHAREMODE shareMode, WAVEFORMATEXTENSIBLE *outWavex, BOOL output) { PaWasapiStreamInfo *streamInfo = (PaWasapiStreamInfo *)_params->hostApiSpecificStreamInfo; WAVEFORMATEX *sharedClosestMatch = NULL; HRESULT hr = !S_OK; PaStreamParameters params = (*_params); const BOOL explicitFormat = (streamInfo != NULL) && ((streamInfo->flags & paWinWasapiExplicitSampleFormat) == paWinWasapiExplicitSampleFormat); (void)output; /* It was not noticed that 24-bit Input producing no output while device accepts this format. To fix this issue let's ask for 32-bits and let PA converters convert host 32-bit data to 24-bit for user-space. The bug concerns Vista, if Windows 7 supports 24-bits for Input please report to PortAudio developers to exclude Windows 7. */ /*if ((params.sampleFormat == paInt24) && (output == FALSE)) params.sampleFormat = paFloat32;*/ // <<< The silence was due to missing Int32_To_Int24_Dither implementation // Try standard approach, e.g. if data is > 16 bits it will be packed into 32-bit containers MakeWaveFormatFromParams(outWavex, ¶ms, sampleRate, FALSE); // If built-in PCM converter requested then shared mode format will always succeed if ((GetWindowsVersion() >= WINDOWS_7_SERVER2008R2) && (shareMode == AUDCLNT_SHAREMODE_SHARED) && ((streamInfo != NULL) && (streamInfo->flags & paWinWasapiAutoConvert))) return paFormatIsSupported; hr = IAudioClient_IsFormatSupported(client, shareMode, &outWavex->Format, (shareMode == AUDCLNT_SHAREMODE_SHARED ? &sharedClosestMatch : NULL)); // Exclusive mode can require packed format for some devices if ((hr != S_OK) && (shareMode == AUDCLNT_SHAREMODE_EXCLUSIVE)) { // Enforce packed only format, e.g. data bits will not be packed into 32-bit containers in any case MakeWaveFormatFromParams(outWavex, ¶ms, sampleRate, TRUE); hr = IAudioClient_IsFormatSupported(client, shareMode, &outWavex->Format, NULL); } if (hr == S_OK) { return paFormatIsSupported; } else if (sharedClosestMatch != NULL) { WORD bitsPerSample; if (sharedClosestMatch->wFormatTag == WAVE_FORMAT_EXTENSIBLE) memcpy(outWavex, sharedClosestMatch, sizeof(WAVEFORMATEXTENSIBLE)); else memcpy(outWavex, sharedClosestMatch, sizeof(WAVEFORMATEX)); CoTaskMemFree(sharedClosestMatch); sharedClosestMatch = NULL; // Validate SampleRate if ((DWORD)sampleRate != outWavex->Format.nSamplesPerSec) return paInvalidSampleRate; // Validate Channel count if ((WORD)params.channelCount != outWavex->Format.nChannels) { // If mono, then driver does not support 1 channel, we use internal workaround // of tiny software mixing functionality, e.g. we provide to user buffer 1 channel // but then mix into 2 for device buffer if ((params.channelCount == 1) && (outWavex->Format.nChannels == 2)) return paFormatIsSupported; else return paInvalidChannelCount; } // Validate Sample format if ((bitsPerSample = PaSampleFormatToBitsPerSample(params.sampleFormat)) == 0) return paSampleFormatNotSupported; // Accepted format return paFormatIsSupported; } else if ((shareMode == AUDCLNT_SHAREMODE_EXCLUSIVE) && !explicitFormat) { // Try standard approach, e.g. if data is > 16 bits it will be packed into 32-bit containers if ((hr = GetAlternativeSampleFormatExclusive(client, sampleRate, ¶ms, outWavex, FALSE)) == S_OK) return paFormatIsSupported; // Enforce packed only format, e.g. data bits will not be packed into 32-bit containers in any case if ((hr = GetAlternativeSampleFormatExclusive(client, sampleRate, ¶ms, outWavex, TRUE)) == S_OK) return paFormatIsSupported; // Log failure LogHostError(hr); } else { // Exclusive mode and requested strict format, WASAPI did not accept this sample format LogHostError(hr); } return paInvalidSampleRate; } // ------------------------------------------------------------------------------------------ static PaError IsStreamParamsValid(struct PaUtilHostApiRepresentation *hostApi, const PaStreamParameters *inputParameters, const PaStreamParameters *outputParameters, double sampleRate) { if (hostApi == NULL) return paHostApiNotFound; if ((UINT32)sampleRate == 0) return paInvalidSampleRate; if (inputParameters != NULL) { /* all standard sample formats are supported by the buffer adapter, this implementation doesn't support any custom sample formats */ // Note: paCustomFormat is now 8.24 (24-bits in 32-bit containers) //if (inputParameters->sampleFormat & paCustomFormat) // return paSampleFormatNotSupported; /* unless alternate device specification is supported, reject the use of paUseHostApiSpecificDeviceSpecification */ if (inputParameters->device == paUseHostApiSpecificDeviceSpecification) return paInvalidDevice; /* check that input device can support inputChannelCount */ if (inputParameters->channelCount > hostApi->deviceInfos[ inputParameters->device ]->maxInputChannels) return paInvalidChannelCount; /* validate inputStreamInfo */ if (inputParameters->hostApiSpecificStreamInfo) { PaWasapiStreamInfo *inputStreamInfo = (PaWasapiStreamInfo *)inputParameters->hostApiSpecificStreamInfo; if ((inputStreamInfo->size != sizeof(PaWasapiStreamInfo)) || (inputStreamInfo->version != 1) || (inputStreamInfo->hostApiType != paWASAPI)) { return paIncompatibleHostApiSpecificStreamInfo; } } return paNoError; } if (outputParameters != NULL) { /* all standard sample formats are supported by the buffer adapter, this implementation doesn't support any custom sample formats */ // Note: paCustomFormat is now 8.24 (24-bits in 32-bit containers) //if (outputParameters->sampleFormat & paCustomFormat) // return paSampleFormatNotSupported; /* unless alternate device specification is supported, reject the use of paUseHostApiSpecificDeviceSpecification */ if (outputParameters->device == paUseHostApiSpecificDeviceSpecification) return paInvalidDevice; /* check that output device can support outputChannelCount */ if (outputParameters->channelCount > hostApi->deviceInfos[ outputParameters->device ]->maxOutputChannels) return paInvalidChannelCount; /* validate outputStreamInfo */ if(outputParameters->hostApiSpecificStreamInfo) { PaWasapiStreamInfo *outputStreamInfo = (PaWasapiStreamInfo *)outputParameters->hostApiSpecificStreamInfo; if ((outputStreamInfo->size != sizeof(PaWasapiStreamInfo)) || (outputStreamInfo->version != 1) || (outputStreamInfo->hostApiType != paWASAPI)) { return paIncompatibleHostApiSpecificStreamInfo; } } return paNoError; } return (inputParameters || outputParameters ? paNoError : paInternalError); } // ------------------------------------------------------------------------------------------ static PaError IsFormatSupported( struct PaUtilHostApiRepresentation *hostApi, const PaStreamParameters *inputParameters, const PaStreamParameters *outputParameters, double sampleRate ) { IAudioClient *tmpClient = NULL; PaWasapiHostApiRepresentation *paWasapi = (PaWasapiHostApiRepresentation*)hostApi; PaWasapiStreamInfo *inputStreamInfo = NULL, *outputStreamInfo = NULL; // Validate PaStreamParameters PaError error; if ((error = IsStreamParamsValid(hostApi, inputParameters, outputParameters, sampleRate)) != paNoError) return error; if (inputParameters != NULL) { WAVEFORMATEXTENSIBLE wavex; HRESULT hr; PaError answer; AUDCLNT_SHAREMODE shareMode = AUDCLNT_SHAREMODE_SHARED; inputStreamInfo = (PaWasapiStreamInfo *)inputParameters->hostApiSpecificStreamInfo; if (inputStreamInfo && (inputStreamInfo->flags & paWinWasapiExclusive)) shareMode = AUDCLNT_SHAREMODE_EXCLUSIVE; hr = ActivateAudioInterface(&paWasapi->devInfo[inputParameters->device], inputStreamInfo, &tmpClient); if (hr != S_OK) { LogHostError(hr); return paInvalidDevice; } answer = GetClosestFormat(tmpClient, sampleRate, inputParameters, shareMode, &wavex, FALSE); SAFE_RELEASE(tmpClient); if (answer != paFormatIsSupported) return answer; } if (outputParameters != NULL) { HRESULT hr; WAVEFORMATEXTENSIBLE wavex; PaError answer; AUDCLNT_SHAREMODE shareMode = AUDCLNT_SHAREMODE_SHARED; outputStreamInfo = (PaWasapiStreamInfo *)outputParameters->hostApiSpecificStreamInfo; if (outputStreamInfo && (outputStreamInfo->flags & paWinWasapiExclusive)) shareMode = AUDCLNT_SHAREMODE_EXCLUSIVE; hr = ActivateAudioInterface(&paWasapi->devInfo[outputParameters->device], outputStreamInfo, &tmpClient); if (hr != S_OK) { LogHostError(hr); return paInvalidDevice; } answer = GetClosestFormat(tmpClient, sampleRate, outputParameters, shareMode, &wavex, TRUE); SAFE_RELEASE(tmpClient); if (answer != paFormatIsSupported) return answer; } return paFormatIsSupported; } // ------------------------------------------------------------------------------------------ static PaUint32 _GetFramesPerHostBuffer(PaUint32 userFramesPerBuffer, PaTime suggestedLatency, double sampleRate, PaUint32 TimerJitterMs) { PaUint32 frames = userFramesPerBuffer + max( userFramesPerBuffer, (PaUint32)(suggestedLatency * sampleRate) ); frames += (PaUint32)((sampleRate * 0.001) * TimerJitterMs); return frames; } // ------------------------------------------------------------------------------------------ static void _RecalculateBuffersCount(PaWasapiSubStream *sub, UINT32 userFramesPerBuffer, UINT32 framesPerLatency, BOOL fullDuplex, BOOL output) { // Count buffers (must be at least 1) sub->buffers = (userFramesPerBuffer != 0 ? framesPerLatency / userFramesPerBuffer : 1); if (sub->buffers == 0) sub->buffers = 1; // Determine number of buffers used: // - Full-duplex mode will lead to period difference, thus only 1 // - Input mode, only 1, as WASAPI allows extraction of only 1 packet // - For Shared mode we use double buffering if ((sub->shareMode == AUDCLNT_SHAREMODE_EXCLUSIVE) || fullDuplex) { BOOL eventMode = ((sub->streamFlags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK) == AUDCLNT_STREAMFLAGS_EVENTCALLBACK); // Exclusive mode does not allow >1 buffers be used for Event interface, e.g. GetBuffer // call must acquire max buffer size and it all must be processed. if (eventMode) sub->userBufferAndHostMatch = 1; // Full-duplex or Event mode: prefer paUtilBoundedHostBufferSize because exclusive mode will starve // and produce glitchy audio // Output Polling mode: prefer paUtilFixedHostBufferSize (buffers != 1) for polling mode is it allows // to consume user data by fixed size data chunks and thus lowers memory movement (less CPU usage) if (fullDuplex || eventMode || !output) sub->buffers = 1; } } // ------------------------------------------------------------------------------------------ static void _CalculateAlignedPeriod(PaWasapiSubStream *pSub, UINT32 *nFramesPerLatency, ALIGN_FUNC pAlignFunc) { // Align frames to HD Audio packet size of 128 bytes for Exclusive mode only. // Not aligning on Windows Vista will cause Event timeout, although Windows 7 will // return AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED error to realign buffer. Aligning is necessary // for Exclusive mode only! when audio data is fed directly to hardware. if (pSub->shareMode == AUDCLNT_SHAREMODE_EXCLUSIVE) { (*nFramesPerLatency) = AlignFramesPerBuffer((*nFramesPerLatency), pSub->wavex.Format.nBlockAlign, pAlignFunc); } // Calculate period pSub->period = MakeHnsPeriod((*nFramesPerLatency), pSub->wavex.Format.nSamplesPerSec); } // ------------------------------------------------------------------------------------------ static void _CalculatePeriodicity(PaWasapiSubStream *pSub, BOOL output, REFERENCE_TIME *periodicity) { // Note: according to Microsoft docs for IAudioClient::Initialize we can set periodicity of the buffer // only for Exclusive mode. By setting periodicity almost equal to the user buffer frames we can // achieve high quality (less glitchy) low-latency audio. if (pSub->shareMode == AUDCLNT_SHAREMODE_EXCLUSIVE) { const PaWasapiDeviceInfo *pInfo = pSub->params.device_info; // By default periodicity equals to the full buffer (legacy PA WASAPI's behavior) (*periodicity) = pSub->period; // Try make buffer ready for I/O once we request the buffer readiness for it. Only Polling mode // because for Event mode buffer size and periodicity must be equal according to Microsoft // documentation for IAudioClient::Initialize. // // TO-DO: try spread to capture and full-duplex cases (not tested and therefore disabled) // if (((pSub->streamFlags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK) == 0) && (output && !pSub->params.full_duplex)) { UINT32 alignedFrames; REFERENCE_TIME userPeriodicity; // Align frames backwards, so device will likely make buffer read ready when we are ready // to read it (our scheduling will wait for amount of millisoconds of frames_per_buffer) alignedFrames = AlignFramesPerBuffer(pSub->params.frames_per_buffer, pSub->wavex.Format.nBlockAlign, ALIGN_BWD); userPeriodicity = MakeHnsPeriod(alignedFrames, pSub->wavex.Format.nSamplesPerSec); // Must not be larger than buffer size if (userPeriodicity > pSub->period) userPeriodicity = pSub->period; // Must not be smaller than minimum supported by the device if (userPeriodicity < pInfo->MinimumDevicePeriod) userPeriodicity = pInfo->MinimumDevicePeriod; (*periodicity) = userPeriodicity; } } else (*periodicity) = 0; } // ------------------------------------------------------------------------------------------ static HRESULT CreateAudioClient(PaWasapiStream *pStream, PaWasapiSubStream *pSub, BOOL output, PaError *pa_error) { PaError error; HRESULT hr; const PaWasapiDeviceInfo *pInfo = pSub->params.device_info; const PaStreamParameters *params = &pSub->params.stream_params; const double sampleRate = pSub->params.sample_rate; const BOOL fullDuplex = pSub->params.full_duplex; const UINT32 userFramesPerBuffer = pSub->params.frames_per_buffer; UINT32 framesPerLatency = userFramesPerBuffer; IAudioClient *audioClient = NULL; REFERENCE_TIME eventPeriodicity = 0; // Assume default failure due to some reason (*pa_error) = paInvalidDevice; // Validate parameters if (!pSub || !pInfo || !params) { (*pa_error) = paBadStreamPtr; return E_POINTER; } if ((UINT32)sampleRate == 0) { (*pa_error) = paInvalidSampleRate; return E_INVALIDARG; } // Get the audio client if (FAILED(hr = ActivateAudioInterface(pInfo, &pSub->params.wasapi_params, &audioClient))) { (*pa_error) = paInsufficientMemory; LogHostError(hr); goto done; } // Get closest format if ((error = GetClosestFormat(audioClient, sampleRate, params, pSub->shareMode, &pSub->wavex, output)) != paFormatIsSupported) { (*pa_error) = error; LogHostError(hr = AUDCLNT_E_UNSUPPORTED_FORMAT); goto done; // fail, format not supported } // Check for Mono <<>> Stereo workaround if ((params->channelCount == 1) && (pSub->wavex.Format.nChannels == 2)) { // select mixer pSub->monoMixer = GetMonoToStereoMixer(&pSub->wavex, (pInfo->flow == eRender ? MIX_DIR__1TO2 : MIX_DIR__2TO1_L)); if (pSub->monoMixer == NULL) { (*pa_error) = paInvalidChannelCount; LogHostError(hr = AUDCLNT_E_UNSUPPORTED_FORMAT); goto done; // fail, no mixer for format } } // Calculate host buffer size if ((pSub->shareMode != AUDCLNT_SHAREMODE_EXCLUSIVE) && (!pSub->streamFlags || ((pSub->streamFlags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK) == 0))) { framesPerLatency = _GetFramesPerHostBuffer(userFramesPerBuffer, params->suggestedLatency, pSub->wavex.Format.nSamplesPerSec, 0/*, (pSub->streamFlags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK ? 0 : 1)*/); } else { #ifdef PA_WASAPI_FORCE_POLL_IF_LARGE_BUFFER REFERENCE_TIME overall; #endif // Work 1:1 with user buffer (only polling allows to use >1) framesPerLatency += MakeFramesFromHns(SecondsTonano100(params->suggestedLatency), pSub->wavex.Format.nSamplesPerSec); // Force Polling if overall latency is >= 21.33ms as it allows to use 100% CPU in a callback, // or user specified latency parameter. #ifdef PA_WASAPI_FORCE_POLL_IF_LARGE_BUFFER overall = MakeHnsPeriod(framesPerLatency, pSub->wavex.Format.nSamplesPerSec); if (overall >= (106667 * 2)/*21.33ms*/) { framesPerLatency = _GetFramesPerHostBuffer(userFramesPerBuffer, params->suggestedLatency, pSub->wavex.Format.nSamplesPerSec, 0/*, (streamFlags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK ? 0 : 1)*/); // Use Polling interface pSub->streamFlags &= ~AUDCLNT_STREAMFLAGS_EVENTCALLBACK; PRINT(("WASAPI: CreateAudioClient: forcing POLL mode\n")); } #endif } // For full-duplex output resize buffer to be the same as for input if (output && fullDuplex) framesPerLatency = pStream->in.framesPerHostCallback; // Avoid 0 frames if (framesPerLatency == 0) framesPerLatency = MakeFramesFromHns(pInfo->DefaultDevicePeriod, pSub->wavex.Format.nSamplesPerSec); // Exclusive Input stream renders data in 6 packets, we must set then the size of // single packet, total buffer size, e.g. required latency will be PacketSize * 6 if (!output && (pSub->shareMode == AUDCLNT_SHAREMODE_EXCLUSIVE)) { // Do it only for Polling mode if ((pSub->streamFlags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK) == 0) framesPerLatency /= WASAPI_PACKETS_PER_INPUT_BUFFER; } // Calculate aligned period _CalculateAlignedPeriod(pSub, &framesPerLatency, ALIGN_BWD); /*! Enforce min/max period for device in Shared mode to avoid bad audio quality. Avoid doing so for Exclusive mode as alignment will suffer. */ if (pSub->shareMode == AUDCLNT_SHAREMODE_SHARED) { if (pSub->period < pInfo->DefaultDevicePeriod) { pSub->period = pInfo->DefaultDevicePeriod; // Recalculate aligned period framesPerLatency = MakeFramesFromHns(pSub->period, pSub->wavex.Format.nSamplesPerSec); _CalculateAlignedPeriod(pSub, &framesPerLatency, ALIGN_BWD); } } else { if (pSub->period < pInfo->MinimumDevicePeriod) { pSub->period = pInfo->MinimumDevicePeriod; // Recalculate aligned period framesPerLatency = MakeFramesFromHns(pSub->period, pSub->wavex.Format.nSamplesPerSec); _CalculateAlignedPeriod(pSub, &framesPerLatency, ALIGN_FWD); } } /*! Windows 7 does not allow to set latency lower than minimal device period and will return error: AUDCLNT_E_INVALID_DEVICE_PERIOD. Under Vista we enforce the same behavior manually for unified behavior on all platforms. */ { /*! AUDCLNT_E_BUFFER_SIZE_ERROR: Applies to Windows 7 and later. Indicates that the buffer duration value requested by an exclusive-mode client is out of range. The requested duration value for pull mode must not be greater than 500 milliseconds; for push mode the duration value must not be greater than 2 seconds. */ if (pSub->shareMode == AUDCLNT_SHAREMODE_EXCLUSIVE) { static const REFERENCE_TIME MAX_BUFFER_EVENT_DURATION = 500 * 10000; static const REFERENCE_TIME MAX_BUFFER_POLL_DURATION = 2000 * 10000; // Pull mode, max 500ms if (pSub->streamFlags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK) { if (pSub->period > MAX_BUFFER_EVENT_DURATION) { pSub->period = MAX_BUFFER_EVENT_DURATION; // Recalculate aligned period framesPerLatency = MakeFramesFromHns(pSub->period, pSub->wavex.Format.nSamplesPerSec); _CalculateAlignedPeriod(pSub, &framesPerLatency, ALIGN_BWD); } } // Push mode, max 2000ms else { if (pSub->period > MAX_BUFFER_POLL_DURATION) { pSub->period = MAX_BUFFER_POLL_DURATION; // Recalculate aligned period framesPerLatency = MakeFramesFromHns(pSub->period, pSub->wavex.Format.nSamplesPerSec); _CalculateAlignedPeriod(pSub, &framesPerLatency, ALIGN_BWD); } } } } // Set device scheduling period (always 0 in Shared mode according to Microsoft docs) _CalculatePeriodicity(pSub, output, &eventPeriodicity); // Open the stream and associate it with an audio session hr = IAudioClient_Initialize(audioClient, pSub->shareMode, pSub->streamFlags, pSub->period, eventPeriodicity, &pSub->wavex.Format, NULL); // [Output only] Check if buffer size is the one we requested in Exclusive mode, for UAC1 USB DACs WASAPI // can allocate internal buffer equal to 8 times of pSub->period that has to be corrected in order to match // the requested latency if (output && SUCCEEDED(hr) && (pSub->shareMode == AUDCLNT_SHAREMODE_EXCLUSIVE)) { UINT32 maxBufferFrames; if (FAILED(hr = IAudioClient_GetBufferSize(audioClient, &maxBufferFrames))) { (*pa_error) = paInvalidDevice; LogHostError(hr); goto done; } // For Exclusive mode for UAC1 devices maxBufferFrames may be framesPerLatency * 8 but check any difference // to be able to guarantee the latency user requested and also resulted framesPerLatency may be bigger than // 2 seconds that will cause audio client not operational (GetCurrentPadding() will return always 0) if (maxBufferFrames >= (framesPerLatency * 2)) { UINT32 ratio = maxBufferFrames / framesPerLatency; PRINT(("WASAPI: CreateAudioClient: detected %d times larger buffer than requested, correct to match user latency\n", ratio)); // Get new aligned frames lowered by calculated ratio framesPerLatency = MakeFramesFromHns(pSub->period / ratio, pSub->wavex.Format.nSamplesPerSec); _CalculateAlignedPeriod(pSub, &framesPerLatency, ALIGN_BWD); // Make sure we are not below the minimum period if (pSub->period < pInfo->MinimumDevicePeriod) pSub->period = pInfo->MinimumDevicePeriod; // Release previous client SAFE_RELEASE(audioClient); // Create a new audio client if (FAILED(hr = ActivateAudioInterface(pInfo, &pSub->params.wasapi_params, &audioClient))) { (*pa_error) = paInsufficientMemory; LogHostError(hr); goto done; } // Set device scheduling period (always 0 in Shared mode according to Microsoft docs) _CalculatePeriodicity(pSub, output, &eventPeriodicity); // Open the stream and associate it with an audio session hr = IAudioClient_Initialize(audioClient, pSub->shareMode, pSub->streamFlags, pSub->period, eventPeriodicity, &pSub->wavex.Format, NULL); } } /*! WASAPI is tricky on large device buffer, sometimes 2000ms can be allocated sometimes less. There is no known guaranteed level thus we make subsequent tries by decreasing buffer by 100ms per try. */ while ((hr == E_OUTOFMEMORY) && (pSub->period > (100 * 10000))) { PRINT(("WASAPI: CreateAudioClient: decreasing buffer size to %d milliseconds\n", (pSub->period / 10000))); // Decrease by 100ms and try again pSub->period -= (100 * 10000); // Recalculate aligned period framesPerLatency = MakeFramesFromHns(pSub->period, pSub->wavex.Format.nSamplesPerSec); _CalculateAlignedPeriod(pSub, &framesPerLatency, ALIGN_BWD); // Release the previous allocations SAFE_RELEASE(audioClient); // Create a new audio client if (FAILED(hr = ActivateAudioInterface(pInfo, &pSub->params.wasapi_params, &audioClient))) { (*pa_error) = paInsufficientMemory; LogHostError(hr); goto done; } // Set device scheduling period (always 0 in Shared mode according to Microsoft docs) _CalculatePeriodicity(pSub, output, &eventPeriodicity); // Open the stream and associate it with an audio session hr = IAudioClient_Initialize(audioClient, pSub->shareMode, pSub->streamFlags, pSub->period, eventPeriodicity, &pSub->wavex.Format, NULL); } /*! WASAPI buffer size or alignment failure. Fallback to using default size and alignment. */ if ((hr == AUDCLNT_E_BUFFER_SIZE_ERROR) || (hr == AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED)) { // Use default pSub->period = pInfo->DefaultDevicePeriod; PRINT(("WASAPI: CreateAudioClient: correcting buffer size/alignment to device default\n")); // Release the previous allocations SAFE_RELEASE(audioClient); // Create a new audio client if (FAILED(hr = ActivateAudioInterface(pInfo, &pSub->params.wasapi_params, &audioClient))) { (*pa_error) = paInsufficientMemory; LogHostError(hr); goto done; } // Set device scheduling period (always 0 in Shared mode according to Microsoft docs) _CalculatePeriodicity(pSub, output, &eventPeriodicity); // Open the stream and associate it with an audio session hr = IAudioClient_Initialize(audioClient, pSub->shareMode, pSub->streamFlags, pSub->period, eventPeriodicity, &pSub->wavex.Format, NULL); } // Error has no workaround, fail completely if (FAILED(hr)) { (*pa_error) = paInvalidDevice; LogHostError(hr); goto done; } // Set client pSub->clientParent = audioClient; IAudioClient_AddRef(pSub->clientParent); // Recalculate buffers count _RecalculateBuffersCount(pSub, userFramesPerBuffer, MakeFramesFromHns(pSub->period, pSub->wavex.Format.nSamplesPerSec), fullDuplex, output); // No error, client is successfully created (*pa_error) = paNoError; done: // Clean up SAFE_RELEASE(audioClient); return hr; } // ------------------------------------------------------------------------------------------ static PaError ActivateAudioClientOutput(PaWasapiStream *stream) { HRESULT hr; PaError result; UINT32 maxBufferSize; PaTime bufferLatency; const UINT32 framesPerBuffer = stream->out.params.frames_per_buffer; // Create Audio client if (FAILED(hr = CreateAudioClient(stream, &stream->out, TRUE, &result))) { LogPaError(result); goto error; } LogWAVEFORMATEXTENSIBLE(&stream->out.wavex); // Activate volume stream->outVol = NULL; /*hr = info->device->Activate( __uuidof(IAudioEndpointVolume), CLSCTX_INPROC_SERVER, NULL, (void**)&stream->outVol); if (hr != S_OK) return paInvalidDevice;*/ // Get max possible buffer size to check if it is not less than that we request if (FAILED(hr = IAudioClient_GetBufferSize(stream->out.clientParent, &maxBufferSize))) { LogHostError(hr); LogPaError(result = paInvalidDevice); goto error; } // Correct buffer to max size if it maxed out result of GetBufferSize stream->out.bufferSize = maxBufferSize; // Number of frames that are required at each period stream->out.framesPerHostCallback = maxBufferSize; // Calculate frames per single buffer, if buffers > 1 then always framesPerBuffer stream->out.framesPerBuffer = (stream->out.userBufferAndHostMatch ? stream->out.framesPerHostCallback : framesPerBuffer); // Calculate buffer latency bufferLatency = (PaTime)maxBufferSize / stream->out.wavex.Format.nSamplesPerSec; // Append buffer latency to interface latency in shared mode (see GetStreamLatency notes) stream->out.latencySeconds = bufferLatency; PRINT(("WASAPI::OpenStream(output): framesPerUser[ %d ] framesPerHost[ %d ] latency[ %.02fms ] exclusive[ %s ] wow64_fix[ %s ] mode[ %s ]\n", (UINT32)framesPerBuffer, (UINT32)stream->out.framesPerHostCallback, (float)(stream->out.latencySeconds*1000.0f), (stream->out.shareMode == AUDCLNT_SHAREMODE_EXCLUSIVE ? "YES" : "NO"), (stream->out.params.wow64_workaround ? "YES" : "NO"), (stream->out.streamFlags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK ? "EVENT" : "POLL"))); return paNoError; error: return result; } // ------------------------------------------------------------------------------------------ static PaError ActivateAudioClientInput(PaWasapiStream *stream) { HRESULT hr; PaError result; UINT32 maxBufferSize; PaTime bufferLatency; const UINT32 framesPerBuffer = stream->in.params.frames_per_buffer; // Create Audio client if (FAILED(hr = CreateAudioClient(stream, &stream->in, FALSE, &result))) { LogPaError(result); goto error; } LogWAVEFORMATEXTENSIBLE(&stream->in.wavex); // Create volume mgr stream->inVol = NULL; /*hr = info->device->Activate( __uuidof(IAudioEndpointVolume), CLSCTX_INPROC_SERVER, NULL, (void**)&stream->inVol); if (hr != S_OK) return paInvalidDevice;*/ // Get max possible buffer size to check if it is not less than that we request if (FAILED(hr = IAudioClient_GetBufferSize(stream->in.clientParent, &maxBufferSize))) { LogHostError(hr); LogPaError(result = paInvalidDevice); goto error; } // Correct buffer to max size if it maxed out result of GetBufferSize stream->in.bufferSize = maxBufferSize; // Get interface latency (actually unneeded as we calculate latency from the size // of maxBufferSize). if (FAILED(hr = IAudioClient_GetStreamLatency(stream->in.clientParent, &stream->in.deviceLatency))) { LogHostError(hr); LogPaError(result = paInvalidDevice); goto error; } //stream->in.latencySeconds = nano100ToSeconds(stream->in.deviceLatency); // Number of frames that are required at each period stream->in.framesPerHostCallback = maxBufferSize; // Calculate frames per single buffer, if buffers > 1 then always framesPerBuffer stream->in.framesPerBuffer = (stream->in.userBufferAndHostMatch ? stream->in.framesPerHostCallback : framesPerBuffer); // Calculate buffer latency bufferLatency = (PaTime)maxBufferSize / stream->in.wavex.Format.nSamplesPerSec; // Append buffer latency to interface latency in shared mode (see GetStreamLatency notes) stream->in.latencySeconds = bufferLatency; PRINT(("WASAPI::OpenStream(input): framesPerUser[ %d ] framesPerHost[ %d ] latency[ %.02fms ] exclusive[ %s ] wow64_fix[ %s ] mode[ %s ]\n", (UINT32)framesPerBuffer, (UINT32)stream->in.framesPerHostCallback, (float)(stream->in.latencySeconds*1000.0f), (stream->in.shareMode == AUDCLNT_SHAREMODE_EXCLUSIVE ? "YES" : "NO"), (stream->in.params.wow64_workaround ? "YES" : "NO"), (stream->in.streamFlags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK ? "EVENT" : "POLL"))); return paNoError; error: return result; } // ------------------------------------------------------------------------------------------ static PaError OpenStream( struct PaUtilHostApiRepresentation *hostApi, PaStream** s, const PaStreamParameters *inputParameters, const PaStreamParameters *outputParameters, double sampleRate, unsigned long framesPerBuffer, PaStreamFlags streamFlags, PaStreamCallback *streamCallback, void *userData ) { PaError result = paNoError; HRESULT hr; PaWasapiHostApiRepresentation *paWasapi = (PaWasapiHostApiRepresentation*)hostApi; PaWasapiStream *stream = NULL; int inputChannelCount, outputChannelCount; PaSampleFormat inputSampleFormat, outputSampleFormat; PaSampleFormat hostInputSampleFormat, hostOutputSampleFormat; PaWasapiStreamInfo *inputStreamInfo = NULL, *outputStreamInfo = NULL; PaWasapiDeviceInfo *info = NULL; ULONG framesPerHostCallback; PaUtilHostBufferSizeMode bufferMode; const BOOL fullDuplex = ((inputParameters != NULL) && (outputParameters != NULL)); BOOL useInputBufferProcessor = (inputParameters != NULL), useOutputBufferProcessor = (outputParameters != NULL); // validate PaStreamParameters if ((result = IsStreamParamsValid(hostApi, inputParameters, outputParameters, sampleRate)) != paNoError) return LogPaError(result); // Validate platform specific flags if ((streamFlags & paPlatformSpecificFlags) != 0) { LogPaError(result = paInvalidFlag); /* unexpected platform specific flag */ goto error; } // Allocate memory for PaWasapiStream if ((stream = (PaWasapiStream *)PaUtil_AllocateMemory(sizeof(PaWasapiStream))) == NULL) { LogPaError(result = paInsufficientMemory); goto error; } // Default thread priority is Audio: for exclusive mode we will use Pro Audio. stream->nThreadPriority = eThreadPriorityAudio; // Set default number of frames: paFramesPerBufferUnspecified if (framesPerBuffer == paFramesPerBufferUnspecified) { UINT32 framesPerBufferIn = 0, framesPerBufferOut = 0; if (inputParameters != NULL) { info = &paWasapi->devInfo[inputParameters->device]; framesPerBufferIn = MakeFramesFromHns(info->DefaultDevicePeriod, (UINT32)sampleRate); } if (outputParameters != NULL) { info = &paWasapi->devInfo[outputParameters->device]; framesPerBufferOut = MakeFramesFromHns(info->DefaultDevicePeriod, (UINT32)sampleRate); } // choosing maximum default size framesPerBuffer = max(framesPerBufferIn, framesPerBufferOut); } if (framesPerBuffer == 0) framesPerBuffer = ((UINT32)sampleRate / 100) * 2; // Try create device: Input if (inputParameters != NULL) { inputChannelCount = inputParameters->channelCount; inputSampleFormat = GetSampleFormatForIO(inputParameters->sampleFormat); info = &paWasapi->devInfo[inputParameters->device]; // default Shared Mode stream->in.shareMode = AUDCLNT_SHAREMODE_SHARED; // PaWasapiStreamInfo if (inputParameters->hostApiSpecificStreamInfo != NULL) { memcpy(&stream->in.params.wasapi_params, inputParameters->hostApiSpecificStreamInfo, min(sizeof(stream->in.params.wasapi_params), ((PaWasapiStreamInfo *)inputParameters->hostApiSpecificStreamInfo)->size)); stream->in.params.wasapi_params.size = sizeof(stream->in.params.wasapi_params); stream->in.params.stream_params.hostApiSpecificStreamInfo = &stream->in.params.wasapi_params; inputStreamInfo = &stream->in.params.wasapi_params; stream->in.flags = inputStreamInfo->flags; // Exclusive Mode if (inputStreamInfo->flags & paWinWasapiExclusive) { // Boost thread priority stream->nThreadPriority = eThreadPriorityProAudio; // Make Exclusive stream->in.shareMode = AUDCLNT_SHAREMODE_EXCLUSIVE; } // explicit thread priority level if (inputStreamInfo->flags & paWinWasapiThreadPriority) { if ((inputStreamInfo->threadPriority > eThreadPriorityNone) && (inputStreamInfo->threadPriority <= eThreadPriorityWindowManager)) stream->nThreadPriority = inputStreamInfo->threadPriority; } // redirect processing to custom user callback, ignore PA buffer processor useInputBufferProcessor = !(inputStreamInfo->flags & paWinWasapiRedirectHostProcessor); } // Choose processing mode stream->in.streamFlags = (stream->in.shareMode == AUDCLNT_SHAREMODE_EXCLUSIVE ? AUDCLNT_STREAMFLAGS_EVENTCALLBACK : 0); if (paWasapi->useWOW64Workaround) stream->in.streamFlags = 0; // polling interface else if (streamCallback == NULL) stream->in.streamFlags = 0; // polling interface else if ((inputStreamInfo != NULL) && (inputStreamInfo->flags & paWinWasapiPolling)) stream->in.streamFlags = 0; // polling interface else if (fullDuplex) stream->in.streamFlags = 0; // polling interface is implemented for full-duplex mode also // Use built-in PCM converter (channel count and sample rate) if requested if ((GetWindowsVersion() >= WINDOWS_7_SERVER2008R2) && (stream->in.shareMode == AUDCLNT_SHAREMODE_SHARED) && ((inputStreamInfo != NULL) && (inputStreamInfo->flags & paWinWasapiAutoConvert))) stream->in.streamFlags |= (AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM | AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY); // Fill parameters for Audio Client creation stream->in.params.device_info = info; stream->in.params.stream_params = (*inputParameters); stream->in.params.frames_per_buffer = framesPerBuffer; stream->in.params.sample_rate = sampleRate; stream->in.params.blocking = (streamCallback == NULL); stream->in.params.full_duplex = fullDuplex; stream->in.params.wow64_workaround = paWasapi->useWOW64Workaround; // Create and activate audio client if ((result = ActivateAudioClientInput(stream)) != paNoError) { LogPaError(result); goto error; } // Get closest format hostInputSampleFormat = PaUtil_SelectClosestAvailableFormat(WaveToPaFormat(&stream->in.wavex), inputSampleFormat); // Set user-side custom host processor if ((inputStreamInfo != NULL) && (inputStreamInfo->flags & paWinWasapiRedirectHostProcessor)) { stream->hostProcessOverrideInput.processor = inputStreamInfo->hostProcessorInput; stream->hostProcessOverrideInput.userData = userData; } // Only get IAudioCaptureClient input once here instead of getting it at multiple places based on the use if (FAILED(hr = IAudioClient_GetService(stream->in.clientParent, &pa_IID_IAudioCaptureClient, (void **)&stream->captureClientParent))) { LogHostError(hr); LogPaError(result = paUnanticipatedHostError); goto error; } // Create ring buffer for blocking mode (It is needed because we fetch Input packets, not frames, // and thus we have to save partial packet if such remains unread) if (stream->in.params.blocking == TRUE) { UINT32 bufferFrames = ALIGN_NEXT_POW2((stream->in.framesPerHostCallback / WASAPI_PACKETS_PER_INPUT_BUFFER) * 2); UINT32 frameSize = stream->in.wavex.Format.nBlockAlign; // buffer if ((stream->in.tailBuffer = PaUtil_AllocateMemory(sizeof(PaUtilRingBuffer))) == NULL) { LogPaError(result = paInsufficientMemory); goto error; } memset(stream->in.tailBuffer, 0, sizeof(PaUtilRingBuffer)); // buffer memory region stream->in.tailBufferMemory = PaUtil_AllocateMemory(frameSize * bufferFrames); if (stream->in.tailBufferMemory == NULL) { LogPaError(result = paInsufficientMemory); goto error; } // initialize if (PaUtil_InitializeRingBuffer(stream->in.tailBuffer, frameSize, bufferFrames, stream->in.tailBufferMemory) != 0) { LogPaError(result = paInternalError); goto error; } } } else { inputChannelCount = 0; inputSampleFormat = hostInputSampleFormat = paInt16; /* Suppress 'uninitialised var' warnings. */ } // Try create device: Output if (outputParameters != NULL) { outputChannelCount = outputParameters->channelCount; outputSampleFormat = GetSampleFormatForIO(outputParameters->sampleFormat); info = &paWasapi->devInfo[outputParameters->device]; // default Shared Mode stream->out.shareMode = AUDCLNT_SHAREMODE_SHARED; // set PaWasapiStreamInfo if (outputParameters->hostApiSpecificStreamInfo != NULL) { memcpy(&stream->out.params.wasapi_params, outputParameters->hostApiSpecificStreamInfo, min(sizeof(stream->out.params.wasapi_params), ((PaWasapiStreamInfo *)outputParameters->hostApiSpecificStreamInfo)->size)); stream->out.params.wasapi_params.size = sizeof(stream->out.params.wasapi_params); stream->out.params.stream_params.hostApiSpecificStreamInfo = &stream->out.params.wasapi_params; outputStreamInfo = &stream->out.params.wasapi_params; stream->out.flags = outputStreamInfo->flags; // Exclusive Mode if (outputStreamInfo->flags & paWinWasapiExclusive) { // Boost thread priority stream->nThreadPriority = eThreadPriorityProAudio; // Make Exclusive stream->out.shareMode = AUDCLNT_SHAREMODE_EXCLUSIVE; } // explicit thread priority level if (outputStreamInfo->flags & paWinWasapiThreadPriority) { if ((outputStreamInfo->threadPriority > eThreadPriorityNone) && (outputStreamInfo->threadPriority <= eThreadPriorityWindowManager)) stream->nThreadPriority = outputStreamInfo->threadPriority; } // redirect processing to custom user callback, ignore PA buffer processor useOutputBufferProcessor = !(outputStreamInfo->flags & paWinWasapiRedirectHostProcessor); } // Choose processing mode stream->out.streamFlags = (stream->out.shareMode == AUDCLNT_SHAREMODE_EXCLUSIVE ? AUDCLNT_STREAMFLAGS_EVENTCALLBACK : 0); if (paWasapi->useWOW64Workaround) stream->out.streamFlags = 0; // polling interface else if (streamCallback == NULL) stream->out.streamFlags = 0; // polling interface else if ((outputStreamInfo != NULL) && (outputStreamInfo->flags & paWinWasapiPolling)) stream->out.streamFlags = 0; // polling interface else if (fullDuplex) stream->out.streamFlags = 0; // polling interface is implemented for full-duplex mode also // Use built-in PCM converter (channel count and sample rate) if requested if ((GetWindowsVersion() >= WINDOWS_7_SERVER2008R2) && (stream->out.shareMode == AUDCLNT_SHAREMODE_SHARED) && ((outputStreamInfo != NULL) && (outputStreamInfo->flags & paWinWasapiAutoConvert))) stream->out.streamFlags |= (AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM | AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY); // Fill parameters for Audio Client creation stream->out.params.device_info = info; stream->out.params.stream_params = (*outputParameters); stream->out.params.frames_per_buffer = framesPerBuffer; stream->out.params.sample_rate = sampleRate; stream->out.params.blocking = (streamCallback == NULL); stream->out.params.full_duplex = fullDuplex; stream->out.params.wow64_workaround = paWasapi->useWOW64Workaround; // Create and activate audio client if ((result = ActivateAudioClientOutput(stream)) != paNoError) { LogPaError(result); goto error; } // Get closest format hostOutputSampleFormat = PaUtil_SelectClosestAvailableFormat(WaveToPaFormat(&stream->out.wavex), outputSampleFormat); // Set user-side custom host processor if ((outputStreamInfo != NULL) && (outputStreamInfo->flags & paWinWasapiRedirectHostProcessor)) { stream->hostProcessOverrideOutput.processor = outputStreamInfo->hostProcessorOutput; stream->hostProcessOverrideOutput.userData = userData; } // Only get IAudioCaptureClient output once here instead of getting it at multiple places based on the use if (FAILED(hr = IAudioClient_GetService(stream->out.clientParent, &pa_IID_IAudioRenderClient, (void **)&stream->renderClientParent))) { LogHostError(hr); LogPaError(result = paUnanticipatedHostError); goto error; } } else { outputChannelCount = 0; outputSampleFormat = hostOutputSampleFormat = paInt16; /* Suppress 'uninitialized var' warnings. */ } // log full-duplex if (fullDuplex) PRINT(("WASAPI::OpenStream: full-duplex mode\n")); // paWinWasapiPolling must be on/or not on both streams if ((inputParameters != NULL) && (outputParameters != NULL)) { if ((inputStreamInfo != NULL) && (outputStreamInfo != NULL)) { if (((inputStreamInfo->flags & paWinWasapiPolling) && !(outputStreamInfo->flags & paWinWasapiPolling)) || (!(inputStreamInfo->flags & paWinWasapiPolling) && (outputStreamInfo->flags & paWinWasapiPolling))) { LogPaError(result = paInvalidFlag); goto error; } } } // Initialize stream representation if (streamCallback) { stream->bBlocking = FALSE; PaUtil_InitializeStreamRepresentation(&stream->streamRepresentation, &paWasapi->callbackStreamInterface, streamCallback, userData); } else { stream->bBlocking = TRUE; PaUtil_InitializeStreamRepresentation(&stream->streamRepresentation, &paWasapi->blockingStreamInterface, streamCallback, userData); } // Initialize CPU measurer PaUtil_InitializeCpuLoadMeasurer(&stream->cpuLoadMeasurer, sampleRate); if (outputParameters && inputParameters) { // serious problem #1 - No, Not a problem, especially concerning Exclusive mode. // Input device in exclusive mode somehow is getting large buffer always, thus we // adjust Output latency to reflect it, thus period will differ but playback will be // normal. /*if (stream->in.period != stream->out.period) { PRINT(("WASAPI: OpenStream: period discrepancy\n")); LogPaError(result = paBadIODeviceCombination); goto error; }*/ // serious problem #2 - No, Not a problem, as framesPerHostCallback take into account // sample size while it is not a problem for PA full-duplex, we must care of // period only! /*if (stream->out.framesPerHostCallback != stream->in.framesPerHostCallback) { PRINT(("WASAPI: OpenStream: framesPerHostCallback discrepancy\n")); goto error; }*/ } // Calculate frames per host for processor framesPerHostCallback = (outputParameters ? stream->out.framesPerBuffer : stream->in.framesPerBuffer); // Choose correct mode of buffer processing: // Exclusive/Shared non paWinWasapiPolling mode: paUtilFixedHostBufferSize - always fixed // Exclusive/Shared paWinWasapiPolling mode: paUtilBoundedHostBufferSize - may vary for Exclusive or Full-duplex bufferMode = paUtilFixedHostBufferSize; if (inputParameters) // !!! WASAPI IAudioCaptureClient::GetBuffer extracts not number of frames but 1 packet, thus we always must adapt bufferMode = paUtilBoundedHostBufferSize; else if (outputParameters) { if ((stream->out.buffers == 1) && (!stream->out.streamFlags || ((stream->out.streamFlags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK) == 0))) bufferMode = paUtilBoundedHostBufferSize; } stream->bufferMode = bufferMode; // Initialize buffer processor if (useInputBufferProcessor || useOutputBufferProcessor) { result = PaUtil_InitializeBufferProcessor( &stream->bufferProcessor, inputChannelCount, inputSampleFormat, hostInputSampleFormat, outputChannelCount, outputSampleFormat, hostOutputSampleFormat, sampleRate, streamFlags, framesPerBuffer, framesPerHostCallback, bufferMode, streamCallback, userData); if (result != paNoError) { LogPaError(result); goto error; } } // Set Input latency stream->streamRepresentation.streamInfo.inputLatency = (useInputBufferProcessor ? PaUtil_GetBufferProcessorInputLatencyFrames(&stream->bufferProcessor) / sampleRate : 0) + (inputParameters != NULL ? stream->in.latencySeconds : 0); // Set Output latency stream->streamRepresentation.streamInfo.outputLatency = (useOutputBufferProcessor ? PaUtil_GetBufferProcessorOutputLatencyFrames(&stream->bufferProcessor) / sampleRate : 0) + (outputParameters != NULL ? stream->out.latencySeconds : 0); // Set SR stream->streamRepresentation.streamInfo.sampleRate = sampleRate; (*s) = (PaStream *)stream; return result; error: if (stream != NULL) CloseStream(stream); return result; } // ------------------------------------------------------------------------------------------ static PaError CloseStream( PaStream* s ) { PaError result = paNoError; PaWasapiStream *stream = (PaWasapiStream*)s; // abort active stream if (IsStreamActive(s)) { result = AbortStream(s); } SAFE_RELEASE(stream->captureClientParent); SAFE_RELEASE(stream->renderClientParent); SAFE_RELEASE(stream->out.clientParent); SAFE_RELEASE(stream->in.clientParent); SAFE_RELEASE(stream->inVol); SAFE_RELEASE(stream->outVol); CloseHandle(stream->event[S_INPUT]); CloseHandle(stream->event[S_OUTPUT]); _StreamCleanup(stream); PaWasapi_FreeMemory(stream->in.monoBuffer); PaWasapi_FreeMemory(stream->out.monoBuffer); PaUtil_FreeMemory(stream->in.tailBuffer); PaUtil_FreeMemory(stream->in.tailBufferMemory); PaUtil_FreeMemory(stream->out.tailBuffer); PaUtil_FreeMemory(stream->out.tailBufferMemory); PaUtil_TerminateBufferProcessor(&stream->bufferProcessor); PaUtil_TerminateStreamRepresentation(&stream->streamRepresentation); PaUtil_FreeMemory(stream); return result; } // ------------------------------------------------------------------------------------------ HRESULT UnmarshalSubStreamComPointers(PaWasapiSubStream *substream) { #ifndef PA_WINRT HRESULT hResult = S_OK; HRESULT hFirstBadResult = S_OK; substream->clientProc = NULL; // IAudioClient hResult = CoGetInterfaceAndReleaseStream(substream->clientStream, GetAudioClientIID(), (LPVOID*)&substream->clientProc); substream->clientStream = NULL; if (hResult != S_OK) { hFirstBadResult = (hFirstBadResult == S_OK) ? hResult : hFirstBadResult; } return hFirstBadResult; #else (void)substream; return S_OK; #endif } // ------------------------------------------------------------------------------------------ HRESULT UnmarshalStreamComPointers(PaWasapiStream *stream) { #ifndef PA_WINRT HRESULT hResult = S_OK; HRESULT hFirstBadResult = S_OK; stream->captureClient = NULL; stream->renderClient = NULL; stream->in.clientProc = NULL; stream->out.clientProc = NULL; if (NULL != stream->in.clientParent) { // SubStream pointers hResult = UnmarshalSubStreamComPointers(&stream->in); if (hResult != S_OK) { hFirstBadResult = (hFirstBadResult == S_OK) ? hResult : hFirstBadResult; } // IAudioCaptureClient hResult = CoGetInterfaceAndReleaseStream(stream->captureClientStream, &pa_IID_IAudioCaptureClient, (LPVOID*)&stream->captureClient); stream->captureClientStream = NULL; if (hResult != S_OK) { hFirstBadResult = (hFirstBadResult == S_OK) ? hResult : hFirstBadResult; } } if (NULL != stream->out.clientParent) { // SubStream pointers hResult = UnmarshalSubStreamComPointers(&stream->out); if (hResult != S_OK) { hFirstBadResult = (hFirstBadResult == S_OK) ? hResult : hFirstBadResult; } // IAudioRenderClient hResult = CoGetInterfaceAndReleaseStream(stream->renderClientStream, &pa_IID_IAudioRenderClient, (LPVOID*)&stream->renderClient); stream->renderClientStream = NULL; if (hResult != S_OK) { hFirstBadResult = (hFirstBadResult == S_OK) ? hResult : hFirstBadResult; } } return hFirstBadResult; #else if (stream->in.clientParent != NULL) { stream->in.clientProc = stream->in.clientParent; IAudioClient_AddRef(stream->in.clientParent); } if (stream->out.clientParent != NULL) { stream->out.clientProc = stream->out.clientParent; IAudioClient_AddRef(stream->out.clientParent); } if (stream->renderClientParent != NULL) { stream->renderClient = stream->renderClientParent; IAudioRenderClient_AddRef(stream->renderClientParent); } if (stream->captureClientParent != NULL) { stream->captureClient = stream->captureClientParent; IAudioCaptureClient_AddRef(stream->captureClientParent); } return S_OK; #endif } // ----------------------------------------------------------------------------------------- void ReleaseUnmarshaledSubComPointers(PaWasapiSubStream *substream) { SAFE_RELEASE(substream->clientProc); } // ----------------------------------------------------------------------------------------- void ReleaseUnmarshaledComPointers(PaWasapiStream *stream) { // Release AudioClient services first SAFE_RELEASE(stream->captureClient); SAFE_RELEASE(stream->renderClient); // Release AudioClients ReleaseUnmarshaledSubComPointers(&stream->in); ReleaseUnmarshaledSubComPointers(&stream->out); } // ------------------------------------------------------------------------------------------ HRESULT MarshalSubStreamComPointers(PaWasapiSubStream *substream) { #ifndef PA_WINRT HRESULT hResult; substream->clientStream = NULL; // IAudioClient hResult = CoMarshalInterThreadInterfaceInStream(GetAudioClientIID(), (LPUNKNOWN)substream->clientParent, &substream->clientStream); if (hResult != S_OK) goto marshal_sub_error; return hResult; // If marshaling error occurred, make sure to release everything. marshal_sub_error: UnmarshalSubStreamComPointers(substream); ReleaseUnmarshaledSubComPointers(substream); return hResult; #else (void)substream; return S_OK; #endif } // ------------------------------------------------------------------------------------------ HRESULT MarshalStreamComPointers(PaWasapiStream *stream) { #ifndef PA_WINRT HRESULT hResult = S_OK; stream->captureClientStream = NULL; stream->in.clientStream = NULL; stream->renderClientStream = NULL; stream->out.clientStream = NULL; if (NULL != stream->in.clientParent) { // SubStream pointers hResult = MarshalSubStreamComPointers(&stream->in); if (hResult != S_OK) goto marshal_error; // IAudioCaptureClient hResult = CoMarshalInterThreadInterfaceInStream(&pa_IID_IAudioCaptureClient, (LPUNKNOWN)stream->captureClientParent, &stream->captureClientStream); if (hResult != S_OK) goto marshal_error; } if (NULL != stream->out.clientParent) { // SubStream pointers hResult = MarshalSubStreamComPointers(&stream->out); if (hResult != S_OK) goto marshal_error; // IAudioRenderClient hResult = CoMarshalInterThreadInterfaceInStream(&pa_IID_IAudioRenderClient, (LPUNKNOWN)stream->renderClientParent, &stream->renderClientStream); if (hResult != S_OK) goto marshal_error; } return hResult; // If marshaling error occurred, make sure to release everything. marshal_error: UnmarshalStreamComPointers(stream); ReleaseUnmarshaledComPointers(stream); return hResult; #else (void)stream; return S_OK; #endif } // ------------------------------------------------------------------------------------------ static PaError StartStream( PaStream *s ) { HRESULT hr; PaWasapiStream *stream = (PaWasapiStream*)s; PaError result = paNoError; // check if stream is active already if (IsStreamActive(s)) return paStreamIsNotStopped; PaUtil_ResetBufferProcessor(&stream->bufferProcessor); // Cleanup handles (may be necessary if stream was stopped by itself due to error) _StreamCleanup(stream); // Create close event if ((stream->hCloseRequest = CreateEvent(NULL, TRUE, FALSE, NULL)) == NULL) { result = paInsufficientMemory; goto start_error; } // Create thread if (!stream->bBlocking) { // Create thread events stream->hThreadStart = CreateEvent(NULL, TRUE, FALSE, NULL); stream->hThreadExit = CreateEvent(NULL, TRUE, FALSE, NULL); if ((stream->hThreadStart == NULL) || (stream->hThreadExit == NULL)) { result = paInsufficientMemory; goto start_error; } // Marshal WASAPI interface pointers for safe use in thread created below. if ((hr = MarshalStreamComPointers(stream)) != S_OK) { PRINT(("Failed marshaling stream COM pointers.")); result = paUnanticipatedHostError; goto nonblocking_start_error; } if ((stream->in.clientParent && (stream->in.streamFlags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK)) || (stream->out.clientParent && (stream->out.streamFlags & AUDCLNT_STREAMFLAGS_EVENTCALLBACK))) { if ((stream->hThread = CREATE_THREAD(ProcThreadEvent)) == NULL) { PRINT(("Failed creating thread: ProcThreadEvent.")); result = paUnanticipatedHostError; goto nonblocking_start_error; } } else { if ((stream->hThread = CREATE_THREAD(ProcThreadPoll)) == NULL) { PRINT(("Failed creating thread: ProcThreadPoll.")); result = paUnanticipatedHostError; goto nonblocking_start_error; } } // Wait for thread to start if (WaitForSingleObject(stream->hThreadStart, 60*1000) == WAIT_TIMEOUT) { PRINT(("Failed starting thread: timeout.")); result = paUnanticipatedHostError; goto nonblocking_start_error; } } else { // Create blocking operation events (non-signaled event means - blocking operation is pending) if (stream->out.clientParent != NULL) { if ((stream->hBlockingOpStreamWR = CreateEvent(NULL, TRUE, TRUE, NULL)) == NULL) { result = paInsufficientMemory; goto start_error; } } if (stream->in.clientParent != NULL) { if ((stream->hBlockingOpStreamRD = CreateEvent(NULL, TRUE, TRUE, NULL)) == NULL) { result = paInsufficientMemory; goto start_error; } } // Initialize event & start INPUT stream if (stream->in.clientParent != NULL) { if ((hr = IAudioClient_Start(stream->in.clientParent)) != S_OK) { LogHostError(hr); result = paUnanticipatedHostError; goto start_error; } } // Initialize event & start OUTPUT stream if (stream->out.clientParent != NULL) { // Start if ((hr = IAudioClient_Start(stream->out.clientParent)) != S_OK) { LogHostError(hr); result = paUnanticipatedHostError; goto start_error; } } // Set parent to working pointers to use shared functions. stream->captureClient = stream->captureClientParent; stream->renderClient = stream->renderClientParent; stream->in.clientProc = stream->in.clientParent; stream->out.clientProc = stream->out.clientParent; // Signal: stream running. stream->running = TRUE; } return result; nonblocking_start_error: // Set hThreadExit event to prevent blocking during cleanup SetEvent(stream->hThreadExit); UnmarshalStreamComPointers(stream); ReleaseUnmarshaledComPointers(stream); start_error: StopStream(s); return result; } // ------------------------------------------------------------------------------------------ void _StreamFinish(PaWasapiStream *stream) { // Issue command to thread to stop processing and wait for thread exit if (!stream->bBlocking) { SignalObjectAndWait(stream->hCloseRequest, stream->hThreadExit, INFINITE, FALSE); } else // Blocking mode does not own thread { // Signal close event and wait for each of 2 blocking operations to complete if (stream->out.clientParent) SignalObjectAndWait(stream->hCloseRequest, stream->hBlockingOpStreamWR, INFINITE, TRUE); if (stream->out.clientParent) SignalObjectAndWait(stream->hCloseRequest, stream->hBlockingOpStreamRD, INFINITE, TRUE); // Process stop _StreamOnStop(stream); } // Cleanup handles _StreamCleanup(stream); stream->running = FALSE; } // ------------------------------------------------------------------------------------------ void _StreamCleanup(PaWasapiStream *stream) { // Close thread handles to allow restart SAFE_CLOSE(stream->hThread); SAFE_CLOSE(stream->hThreadStart); SAFE_CLOSE(stream->hThreadExit); SAFE_CLOSE(stream->hCloseRequest); SAFE_CLOSE(stream->hBlockingOpStreamRD); SAFE_CLOSE(stream->hBlockingOpStreamWR); } // ------------------------------------------------------------------------------------------ static PaError StopStream( PaStream *s ) { // Finish stream _StreamFinish((PaWasapiStream *)s); return paNoError; } // ------------------------------------------------------------------------------------------ static PaError AbortStream( PaStream *s ) { // Finish stream _StreamFinish((PaWasapiStream *)s); return paNoError; } // ------------------------------------------------------------------------------------------ static PaError IsStreamStopped( PaStream *s ) { return !((PaWasapiStream *)s)->running; } // ------------------------------------------------------------------------------------------ static PaError IsStreamActive( PaStream *s ) { return ((PaWasapiStream *)s)->running; } // ------------------------------------------------------------------------------------------ static PaTime GetStreamTime( PaStream *s ) { PaWasapiStream *stream = (PaWasapiStream*)s; /* suppress unused variable warnings */ (void) stream; return PaUtil_GetTime(); } // ------------------------------------------------------------------------------------------ static double GetStreamCpuLoad( PaStream* s ) { return PaUtil_GetCpuLoad(&((PaWasapiStream *)s)->cpuLoadMeasurer); } // ------------------------------------------------------------------------------------------ static PaError ReadStream( PaStream* s, void *_buffer, unsigned long frames ) { PaWasapiStream *stream = (PaWasapiStream*)s; HRESULT hr = S_OK; BYTE *user_buffer = (BYTE *)_buffer; BYTE *wasapi_buffer = NULL; DWORD flags = 0; UINT32 i, available, sleep = 0; unsigned long processed; ThreadIdleScheduler sched; // validate if (!stream->running) return paStreamIsStopped; if (stream->captureClient == NULL) return paBadStreamPtr; // Notify blocking op has begun ResetEvent(stream->hBlockingOpStreamRD); // Use thread scheduling for 500 microseconds (emulated) when wait time for frames is less than // 1 milliseconds, emulation helps to normalize CPU consumption and avoids too busy waiting ThreadIdleScheduler_Setup(&sched, 1, 250/* microseconds */); // Make a local copy of the user buffer pointer(s), this is necessary // because PaUtil_CopyOutput() advances these pointers every time it is called if (!stream->bufferProcessor.userInputIsInterleaved) { user_buffer = (BYTE *)alloca(sizeof(BYTE *) * stream->bufferProcessor.inputChannelCount); if (user_buffer == NULL) return paInsufficientMemory; for (i = 0; i < stream->bufferProcessor.inputChannelCount; ++i) ((BYTE **)user_buffer)[i] = ((BYTE **)_buffer)[i]; } // Find out if there are tail frames, flush them all before reading hardware if ((available = PaUtil_GetRingBufferReadAvailable(stream->in.tailBuffer)) != 0) { ring_buffer_size_t buf1_size = 0, buf2_size = 0, read, desired; void *buf1 = NULL, *buf2 = NULL; // Limit desired to amount of requested frames desired = available; if ((UINT32)desired > frames) desired = frames; // Get pointers to read regions read = PaUtil_GetRingBufferReadRegions(stream->in.tailBuffer, desired, &buf1, &buf1_size, &buf2, &buf2_size); if (buf1 != NULL) { // Register available frames to processor PaUtil_SetInputFrameCount(&stream->bufferProcessor, buf1_size); // Register host buffer pointer to processor PaUtil_SetInterleavedInputChannels(&stream->bufferProcessor, 0, buf1, stream->bufferProcessor.inputChannelCount); // Copy user data to host buffer (with conversion if applicable) processed = PaUtil_CopyInput(&stream->bufferProcessor, (void **)&user_buffer, buf1_size); frames -= processed; } if (buf2 != NULL) { // Register available frames to processor PaUtil_SetInputFrameCount(&stream->bufferProcessor, buf2_size); // Register host buffer pointer to processor PaUtil_SetInterleavedInputChannels(&stream->bufferProcessor, 0, buf2, stream->bufferProcessor.inputChannelCount); // Copy user data to host buffer (with conversion if applicable) processed = PaUtil_CopyInput(&stream->bufferProcessor, (void **)&user_buffer, buf2_size); frames -= processed; } // Advance PaUtil_AdvanceRingBufferReadIndex(stream->in.tailBuffer, read); } // Read hardware while (frames != 0) { // Check if blocking call must be interrupted if (WaitForSingleObject(stream->hCloseRequest, sleep) != WAIT_TIMEOUT) break; // Get available frames (must be finding out available frames before call to IAudioCaptureClient_GetBuffer // othervise audio glitches will occur inExclusive mode as it seems that WASAPI has some scheduling/ // processing problems when such busy polling with IAudioCaptureClient_GetBuffer occurs) if ((hr = _PollGetInputFramesAvailable(stream, &available)) != S_OK) { LogHostError(hr); return paUnanticipatedHostError; } // Wait for more frames to become available if (available == 0) { // Exclusive mode may require latency of 1 millisecond, thus we shall sleep // around 500 microseconds (emulated) to collect packets in time if (stream->in.shareMode != AUDCLNT_SHAREMODE_EXCLUSIVE) { UINT32 sleep_frames = (frames < stream->in.framesPerHostCallback ? frames : stream->in.framesPerHostCallback); sleep = GetFramesSleepTime(sleep_frames, stream->in.wavex.Format.nSamplesPerSec); sleep /= 4; // wait only for 1/4 of the buffer // WASAPI input provides packets, thus expiring packet will result in bad audio // limit waiting time to 2 seconds (will always work for smallest buffer in Shared) if (sleep > 2) sleep = 2; // Avoid busy waiting, schedule next 1 millesecond wait if (sleep == 0) sleep = ThreadIdleScheduler_NextSleep(&sched); } else { if ((sleep = ThreadIdleScheduler_NextSleep(&sched)) != 0) { Sleep(sleep); sleep = 0; } } continue; } // Get the available data in the shared buffer. if ((hr = IAudioCaptureClient_GetBuffer(stream->captureClient, &wasapi_buffer, &available, &flags, NULL, NULL)) != S_OK) { // Buffer size is too small, waiting if (hr != AUDCLNT_S_BUFFER_EMPTY) { LogHostError(hr); goto end; } continue; } // Register available frames to processor PaUtil_SetInputFrameCount(&stream->bufferProcessor, available); // Register host buffer pointer to processor PaUtil_SetInterleavedInputChannels(&stream->bufferProcessor, 0, wasapi_buffer, stream->bufferProcessor.inputChannelCount); // Copy user data to host buffer (with conversion if applicable) processed = PaUtil_CopyInput(&stream->bufferProcessor, (void **)&user_buffer, frames); frames -= processed; // Save tail into buffer if ((frames == 0) && (available > processed)) { UINT32 bytes_processed = processed * stream->in.wavex.Format.nBlockAlign; UINT32 frames_to_save = available - processed; PaUtil_WriteRingBuffer(stream->in.tailBuffer, wasapi_buffer + bytes_processed, frames_to_save); } // Release host buffer if ((hr = IAudioCaptureClient_ReleaseBuffer(stream->captureClient, available)) != S_OK) { LogHostError(hr); goto end; } } end: // Notify blocking op has ended SetEvent(stream->hBlockingOpStreamRD); return (hr != S_OK ? paUnanticipatedHostError : paNoError); } // ------------------------------------------------------------------------------------------ static PaError WriteStream( PaStream* s, const void *_buffer, unsigned long frames ) { PaWasapiStream *stream = (PaWasapiStream*)s; //UINT32 frames; const BYTE *user_buffer = (const BYTE *)_buffer; BYTE *wasapi_buffer; HRESULT hr = S_OK; UINT32 i, available, sleep = 0; unsigned long processed; ThreadIdleScheduler sched; // validate if (!stream->running) return paStreamIsStopped; if (stream->renderClient == NULL) return paBadStreamPtr; // Notify blocking op has begun ResetEvent(stream->hBlockingOpStreamWR); // Use thread scheduling for 500 microseconds (emulated) when wait time for frames is less than // 1 milliseconds, emulation helps to normalize CPU consumption and avoids too busy waiting ThreadIdleScheduler_Setup(&sched, 1, 500/* microseconds */); // Make a local copy of the user buffer pointer(s), this is necessary // because PaUtil_CopyOutput() advances these pointers every time it is called if (!stream->bufferProcessor.userOutputIsInterleaved) { user_buffer = (const BYTE *)alloca(sizeof(const BYTE *) * stream->bufferProcessor.outputChannelCount); if (user_buffer == NULL) return paInsufficientMemory; for (i = 0; i < stream->bufferProcessor.outputChannelCount; ++i) ((const BYTE **)user_buffer)[i] = ((const BYTE **)_buffer)[i]; } // Blocking (potentially, until 'frames' are consumed) loop while (frames != 0) { // Check if blocking call must be interrupted if (WaitForSingleObject(stream->hCloseRequest, sleep) != WAIT_TIMEOUT) break; // Get frames available if ((hr = _PollGetOutputFramesAvailable(stream, &available)) != S_OK) { LogHostError(hr); goto end; } // Wait for more frames to become available if (available == 0) { UINT32 sleep_frames = (frames < stream->out.framesPerHostCallback ? frames : stream->out.framesPerHostCallback); sleep = GetFramesSleepTime(sleep_frames, stream->out.wavex.Format.nSamplesPerSec); sleep /= 2; // wait only for half of the buffer // Avoid busy waiting, schedule next 1 millesecond wait if (sleep == 0) sleep = ThreadIdleScheduler_NextSleep(&sched); continue; } // Keep in 'frames' range if (available > frames) available = frames; // Get pointer to host buffer if ((hr = IAudioRenderClient_GetBuffer(stream->renderClient, available, &wasapi_buffer)) != S_OK) { // Buffer size is too big, waiting if (hr == AUDCLNT_E_BUFFER_TOO_LARGE) continue; LogHostError(hr); goto end; } // Keep waiting again (on Vista it was noticed that WASAPI could SOMETIMES return NULL pointer // to buffer without returning AUDCLNT_E_BUFFER_TOO_LARGE instead) if (wasapi_buffer == NULL) continue; // Register available frames to processor PaUtil_SetOutputFrameCount(&stream->bufferProcessor, available); // Register host buffer pointer to processor PaUtil_SetInterleavedOutputChannels(&stream->bufferProcessor, 0, wasapi_buffer, stream->bufferProcessor.outputChannelCount); // Copy user data to host buffer (with conversion if applicable), this call will advance // pointer 'user_buffer' to consumed portion of data processed = PaUtil_CopyOutput(&stream->bufferProcessor, (const void **)&user_buffer, frames); frames -= processed; // Release host buffer if ((hr = IAudioRenderClient_ReleaseBuffer(stream->renderClient, available, 0)) != S_OK) { LogHostError(hr); goto end; } } end: // Notify blocking op has ended SetEvent(stream->hBlockingOpStreamWR); return (hr != S_OK ? paUnanticipatedHostError : paNoError); } unsigned long PaUtil_GetOutputFrameCount( PaUtilBufferProcessor* bp ) { return bp->hostOutputFrameCount[0]; } // ------------------------------------------------------------------------------------------ static signed long GetStreamReadAvailable( PaStream* s ) { PaWasapiStream *stream = (PaWasapiStream*)s; HRESULT hr; UINT32 available = 0; // validate if (!stream->running) return paStreamIsStopped; if (stream->captureClient == NULL) return paBadStreamPtr; // available in hardware buffer if ((hr = _PollGetInputFramesAvailable(stream, &available)) != S_OK) { LogHostError(hr); return paUnanticipatedHostError; } // available in software tail buffer available += PaUtil_GetRingBufferReadAvailable(stream->in.tailBuffer); return available; } // ------------------------------------------------------------------------------------------ static signed long GetStreamWriteAvailable( PaStream* s ) { PaWasapiStream *stream = (PaWasapiStream*)s; HRESULT hr; UINT32 available = 0; // validate if (!stream->running) return paStreamIsStopped; if (stream->renderClient == NULL) return paBadStreamPtr; if ((hr = _PollGetOutputFramesAvailable(stream, &available)) != S_OK) { LogHostError(hr); return paUnanticipatedHostError; } return (signed long)available; } // ------------------------------------------------------------------------------------------ static void WaspiHostProcessingLoop( void *inputBuffer, long inputFrames, void *outputBuffer, long outputFrames, void *userData ) { PaWasapiStream *stream = (PaWasapiStream*)userData; PaStreamCallbackTimeInfo timeInfo = {0,0,0}; PaStreamCallbackFlags flags = 0; int callbackResult; unsigned long framesProcessed; HRESULT hr; UINT32 pending; PaUtil_BeginCpuLoadMeasurement( &stream->cpuLoadMeasurer ); /* Pa_GetStreamTime: - generate timing information - handle buffer slips */ timeInfo.currentTime = PaUtil_GetTime(); // Query input latency if (stream->in.clientProc != NULL) { PaTime pending_time; if ((hr = IAudioClient_GetCurrentPadding(stream->in.clientProc, &pending)) == S_OK) pending_time = (PaTime)pending / (PaTime)stream->in.wavex.Format.nSamplesPerSec; else pending_time = (PaTime)stream->in.latencySeconds; timeInfo.inputBufferAdcTime = timeInfo.currentTime + pending_time; } // Query output current latency if (stream->out.clientProc != NULL) { PaTime pending_time; if ((hr = IAudioClient_GetCurrentPadding(stream->out.clientProc, &pending)) == S_OK) pending_time = (PaTime)pending / (PaTime)stream->out.wavex.Format.nSamplesPerSec; else pending_time = (PaTime)stream->out.latencySeconds; timeInfo.outputBufferDacTime = timeInfo.currentTime + pending_time; } /* If you need to byte swap or shift inputBuffer to convert it into a portaudio format, do it here. */ PaUtil_BeginBufferProcessing( &stream->bufferProcessor, &timeInfo, flags ); /* depending on whether the host buffers are interleaved, non-interleaved or a mixture, you will want to call PaUtil_SetInterleaved*Channels(), PaUtil_SetNonInterleaved*Channel() or PaUtil_Set*Channel() here. */ if (stream->bufferProcessor.inputChannelCount > 0) { PaUtil_SetInputFrameCount( &stream->bufferProcessor, inputFrames ); PaUtil_SetInterleavedInputChannels( &stream->bufferProcessor, 0, /* first channel of inputBuffer is channel 0 */ inputBuffer, 0 ); /* 0 - use inputChannelCount passed to init buffer processor */ } if (stream->bufferProcessor.outputChannelCount > 0) { PaUtil_SetOutputFrameCount( &stream->bufferProcessor, outputFrames); PaUtil_SetInterleavedOutputChannels( &stream->bufferProcessor, 0, /* first channel of outputBuffer is channel 0 */ outputBuffer, 0 ); /* 0 - use outputChannelCount passed to init buffer processor */ } /* you must pass a valid value of callback result to PaUtil_EndBufferProcessing() in general you would pass paContinue for normal operation, and paComplete to drain the buffer processor's internal output buffer. You can check whether the buffer processor's output buffer is empty using PaUtil_IsBufferProcessorOuputEmpty( bufferProcessor ) */ callbackResult = paContinue; framesProcessed = PaUtil_EndBufferProcessing( &stream->bufferProcessor, &callbackResult ); /* If you need to byte swap or shift outputBuffer to convert it to host format, do it here. */ PaUtil_EndCpuLoadMeasurement( &stream->cpuLoadMeasurer, framesProcessed ); if (callbackResult == paContinue) { /* nothing special to do */ } else if (callbackResult == paAbort) { // stop stream SetEvent(stream->hCloseRequest); } else { // stop stream SetEvent(stream->hCloseRequest); } } // ------------------------------------------------------------------------------------------ #ifndef PA_WINRT static PaError MMCSS_activate(PaWasapiThreadPriority nPriorityClass, HANDLE *ret) { static const char *mmcs_name[] = { NULL, "Audio", "Capture", "Distribution", "Games", "Playback", "Pro Audio", "Window Manager" }; DWORD task_idx = 0; HANDLE hTask; if ((UINT32)nPriorityClass >= STATIC_ARRAY_SIZE(mmcs_name)) return paUnanticipatedHostError; if ((hTask = pAvSetMmThreadCharacteristics(mmcs_name[nPriorityClass], &task_idx)) == NULL) { PRINT(("WASAPI: AvSetMmThreadCharacteristics failed: error[%d]\n", GetLastError())); return paUnanticipatedHostError; } /*BOOL priority_ok = pAvSetMmThreadPriority(hTask, AVRT_PRIORITY_NORMAL); if (priority_ok == FALSE) { PRINT(("WASAPI: AvSetMmThreadPriority failed!\n")); }*/ // debug { int cur_priority = GetThreadPriority(GetCurrentThread()); DWORD cur_priority_class = GetPriorityClass(GetCurrentProcess()); PRINT(("WASAPI: thread[ priority-0x%X class-0x%X ]\n", cur_priority, cur_priority_class)); } (*ret) = hTask; return paNoError; } #endif // ------------------------------------------------------------------------------------------ #ifndef PA_WINRT static void MMCSS_deactivate(HANDLE hTask) { if (pAvRevertMmThreadCharacteristics(hTask) == FALSE) { PRINT(("WASAPI: AvRevertMmThreadCharacteristics failed!\n")); } } #endif // ------------------------------------------------------------------------------------------ PaError PaWasapi_ThreadPriorityBoost(void **pTask, PaWasapiThreadPriority priorityClass) { HANDLE task; PaError ret; if (pTask == NULL) return paUnanticipatedHostError; #ifndef PA_WINRT if ((ret = MMCSS_activate(priorityClass, &task)) != paNoError) return ret; #else switch (priorityClass) { case eThreadPriorityAudio: case eThreadPriorityProAudio: { // Save previous thread priority intptr_t priority_prev = GetThreadPriority(GetCurrentThread()); // Try set new thread priority if (SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST) == FALSE) return paUnanticipatedHostError; // Memorize prev priority (pretend to be non NULL pointer by adding 0x80000000 mask) task = (HANDLE)(priority_prev | 0x80000000); ret = paNoError; break; } default: return paUnanticipatedHostError; } #endif (*pTask) = task; return ret; } // ------------------------------------------------------------------------------------------ PaError PaWasapi_ThreadPriorityRevert(void *pTask) { if (pTask == NULL) return paUnanticipatedHostError; #ifndef PA_WINRT MMCSS_deactivate((HANDLE)pTask); #else // Revert previous priority by removing 0x80000000 mask if (SetThreadPriority(GetCurrentThread(), (int)((intptr_t)pTask & ~0x80000000)) == FALSE) return paUnanticipatedHostError; #endif return paNoError; } // ------------------------------------------------------------------------------------------ // Described at: // http://msdn.microsoft.com/en-us/library/dd371387(v=VS.85).aspx PaError PaWasapi_GetJackCount(PaDeviceIndex device, int *pJackCount) { #ifndef PA_WINRT PaError ret; HRESULT hr = S_OK; PaWasapiDeviceInfo *deviceInfo; IDeviceTopology *pDeviceTopology = NULL; IConnector *pConnFrom = NULL; IConnector *pConnTo = NULL; IPart *pPart = NULL; IKsJackDescription *pJackDesc = NULL; UINT jackCount = 0; if (pJackCount == NULL) return paUnanticipatedHostError; if ((ret = _GetWasapiDeviceInfoByDeviceIndex(&deviceInfo, device)) != paNoError) return ret; // Get the endpoint device's IDeviceTopology interface hr = IMMDevice_Activate(deviceInfo->device, &pa_IID_IDeviceTopology, CLSCTX_INPROC_SERVER, NULL, (void**)&pDeviceTopology); IF_FAILED_JUMP(hr, error); // The device topology for an endpoint device always contains just one connector (connector number 0) hr = IDeviceTopology_GetConnector(pDeviceTopology, 0, &pConnFrom); IF_FAILED_JUMP(hr, error); // Step across the connection to the jack on the adapter hr = IConnector_GetConnectedTo(pConnFrom, &pConnTo); if (HRESULT_FROM_WIN32(ERROR_PATH_NOT_FOUND) == hr) { // The adapter device is not currently active hr = E_NOINTERFACE; } IF_FAILED_JUMP(hr, error); // Get the connector's IPart interface hr = IConnector_QueryInterface(pConnTo, &pa_IID_IPart, (void**)&pPart); IF_FAILED_JUMP(hr, error); // Activate the connector's IKsJackDescription interface hr = IPart_Activate(pPart, CLSCTX_INPROC_SERVER, &pa_IID_IKsJackDescription, (void**)&pJackDesc); IF_FAILED_JUMP(hr, error); // Return jack count for this device hr = IKsJackDescription_GetJackCount(pJackDesc, &jackCount); IF_FAILED_JUMP(hr, error); // Set. (*pJackCount) = jackCount; // Ok. ret = paNoError; error: SAFE_RELEASE(pDeviceTopology); SAFE_RELEASE(pConnFrom); SAFE_RELEASE(pConnTo); SAFE_RELEASE(pPart); SAFE_RELEASE(pJackDesc); LogHostError(hr); return paNoError; #else (void)device; (void)pJackCount; return paUnanticipatedHostError; #endif } // ------------------------------------------------------------------------------------------ #ifndef PA_WINRT static PaWasapiJackConnectionType _ConvertJackConnectionTypeWASAPIToPA(int connType) { switch (connType) { case eConnTypeUnknown: return eJackConnTypeUnknown; #ifdef _KS_ case eConnType3Point5mm: return eJackConnType3Point5mm; #else case eConnTypeEighth: return eJackConnType3Point5mm; #endif case eConnTypeQuarter: return eJackConnTypeQuarter; case eConnTypeAtapiInternal: return eJackConnTypeAtapiInternal; case eConnTypeRCA: return eJackConnTypeRCA; case eConnTypeOptical: return eJackConnTypeOptical; case eConnTypeOtherDigital: return eJackConnTypeOtherDigital; case eConnTypeOtherAnalog: return eJackConnTypeOtherAnalog; case eConnTypeMultichannelAnalogDIN: return eJackConnTypeMultichannelAnalogDIN; case eConnTypeXlrProfessional: return eJackConnTypeXlrProfessional; case eConnTypeRJ11Modem: return eJackConnTypeRJ11Modem; case eConnTypeCombination: return eJackConnTypeCombination; } return eJackConnTypeUnknown; } #endif // ------------------------------------------------------------------------------------------ #ifndef PA_WINRT static PaWasapiJackGeoLocation _ConvertJackGeoLocationWASAPIToPA(int geoLoc) { switch (geoLoc) { case eGeoLocRear: return eJackGeoLocRear; case eGeoLocFront: return eJackGeoLocFront; case eGeoLocLeft: return eJackGeoLocLeft; case eGeoLocRight: return eJackGeoLocRight; case eGeoLocTop: return eJackGeoLocTop; case eGeoLocBottom: return eJackGeoLocBottom; #ifdef _KS_ case eGeoLocRearPanel: return eJackGeoLocRearPanel; #else case eGeoLocRearOPanel: return eJackGeoLocRearPanel; #endif case eGeoLocRiser: return eJackGeoLocRiser; case eGeoLocInsideMobileLid: return eJackGeoLocInsideMobileLid; case eGeoLocDrivebay: return eJackGeoLocDrivebay; case eGeoLocHDMI: return eJackGeoLocHDMI; case eGeoLocOutsideMobileLid: return eJackGeoLocOutsideMobileLid; case eGeoLocATAPI: return eJackGeoLocATAPI; } return eJackGeoLocUnk; } #endif // ------------------------------------------------------------------------------------------ #ifndef PA_WINRT static PaWasapiJackGenLocation _ConvertJackGenLocationWASAPIToPA(int genLoc) { switch (genLoc) { case eGenLocPrimaryBox: return eJackGenLocPrimaryBox; case eGenLocInternal: return eJackGenLocInternal; #ifdef _KS_ case eGenLocSeparate: return eJackGenLocSeparate; #else case eGenLocSeperate: return eJackGenLocSeparate; #endif case eGenLocOther: return eJackGenLocOther; } return eJackGenLocPrimaryBox; } #endif // ------------------------------------------------------------------------------------------ #ifndef PA_WINRT static PaWasapiJackPortConnection _ConvertJackPortConnectionWASAPIToPA(int portConn) { switch (portConn) { case ePortConnJack: return eJackPortConnJack; case ePortConnIntegratedDevice: return eJackPortConnIntegratedDevice; case ePortConnBothIntegratedAndJack: return eJackPortConnBothIntegratedAndJack; case ePortConnUnknown: return eJackPortConnUnknown; } return eJackPortConnJack; } #endif // ------------------------------------------------------------------------------------------ // Described at: // http://msdn.microsoft.com/en-us/library/dd371387(v=VS.85).aspx PaError PaWasapi_GetJackDescription(PaDeviceIndex device, int jackIndex, PaWasapiJackDescription *pJackDescription) { #ifndef PA_WINRT PaError ret; HRESULT hr = S_OK; PaWasapiDeviceInfo *deviceInfo; IDeviceTopology *pDeviceTopology = NULL; IConnector *pConnFrom = NULL; IConnector *pConnTo = NULL; IPart *pPart = NULL; IKsJackDescription *pJackDesc = NULL; KSJACK_DESCRIPTION jack = { 0 }; if ((ret = _GetWasapiDeviceInfoByDeviceIndex(&deviceInfo, device)) != paNoError) return ret; // Get the endpoint device's IDeviceTopology interface hr = IMMDevice_Activate(deviceInfo->device, &pa_IID_IDeviceTopology, CLSCTX_INPROC_SERVER, NULL, (void**)&pDeviceTopology); IF_FAILED_JUMP(hr, error); // The device topology for an endpoint device always contains just one connector (connector number 0) hr = IDeviceTopology_GetConnector(pDeviceTopology, 0, &pConnFrom); IF_FAILED_JUMP(hr, error); // Step across the connection to the jack on the adapter hr = IConnector_GetConnectedTo(pConnFrom, &pConnTo); if (HRESULT_FROM_WIN32(ERROR_PATH_NOT_FOUND) == hr) { // The adapter device is not currently active hr = E_NOINTERFACE; } IF_FAILED_JUMP(hr, error); // Get the connector's IPart interface hr = IConnector_QueryInterface(pConnTo, &pa_IID_IPart, (void**)&pPart); IF_FAILED_JUMP(hr, error); // Activate the connector's IKsJackDescription interface hr = IPart_Activate(pPart, CLSCTX_INPROC_SERVER, &pa_IID_IKsJackDescription, (void**)&pJackDesc); IF_FAILED_JUMP(hr, error); // Test to return jack description struct for index 0 hr = IKsJackDescription_GetJackDescription(pJackDesc, jackIndex, &jack); IF_FAILED_JUMP(hr, error); // Convert WASAPI values to PA format pJackDescription->channelMapping = jack.ChannelMapping; pJackDescription->color = jack.Color; pJackDescription->connectionType = _ConvertJackConnectionTypeWASAPIToPA(jack.ConnectionType); pJackDescription->genLocation = _ConvertJackGenLocationWASAPIToPA(jack.GenLocation); pJackDescription->geoLocation = _ConvertJackGeoLocationWASAPIToPA(jack.GeoLocation); pJackDescription->isConnected = jack.IsConnected; pJackDescription->portConnection = _ConvertJackPortConnectionWASAPIToPA(jack.PortConnection); // Ok ret = paNoError; error: SAFE_RELEASE(pDeviceTopology); SAFE_RELEASE(pConnFrom); SAFE_RELEASE(pConnTo); SAFE_RELEASE(pPart); SAFE_RELEASE(pJackDesc); LogHostError(hr); return ret; #else (void)device; (void)jackIndex; (void)pJackDescription; return paUnanticipatedHostError; #endif } // ------------------------------------------------------------------------------------------ PaError PaWasapi_GetAudioClient(PaStream *pStream, void **pAudioClient, int bOutput) { PaWasapiStream *stream = (PaWasapiStream *)pStream; if (stream == NULL) return paBadStreamPtr; if (pAudioClient == NULL) return paUnanticipatedHostError; (*pAudioClient) = (bOutput == TRUE ? stream->out.clientParent : stream->in.clientParent); return paNoError; } // ------------------------------------------------------------------------------------------ #ifdef PA_WINRT static void CopyNameOrIdString(WCHAR *dst, const UINT32 dstMaxCount, const WCHAR *src) { UINT32 i; for (i = 0; i < dstMaxCount; ++i) dst[i] = 0; if (src != NULL) { for (i = 0; (src[i] != 0) && (i < dstMaxCount); ++i) dst[i] = src[i]; } } #endif // ------------------------------------------------------------------------------------------ PaError PaWasapiWinrt_SetDefaultDeviceId( const unsigned short *pId, int bOutput ) { #ifdef PA_WINRT INT32 i; PaWasapiWinrtDeviceListRole *role = (bOutput ? &g_DeviceListInfo.render : &g_DeviceListInfo.capture); assert(STATIC_ARRAY_SIZE(role->defaultId) == PA_WASAPI_DEVICE_ID_LEN); // Validate Id length if (pId != NULL) { for (i = 0; pId[i] != 0; ++i) { if (i >= PA_WASAPI_DEVICE_ID_LEN) return paBufferTooBig; } } // Set Id (or reset to all 0 if NULL is provided) CopyNameOrIdString(role->defaultId, STATIC_ARRAY_SIZE(role->defaultId), pId); return paNoError; #else return paIncompatibleStreamHostApi; #endif } // ------------------------------------------------------------------------------------------ PaError PaWasapiWinrt_PopulateDeviceList( const unsigned short **pId, const unsigned short **pName, const PaWasapiDeviceRole *pRole, unsigned int count, int bOutput ) { #ifdef PA_WINRT UINT32 i, j; PaWasapiWinrtDeviceListRole *role = (bOutput ? &g_DeviceListInfo.render : &g_DeviceListInfo.capture); memset(&role->devices, 0, sizeof(role->devices)); role->deviceCount = 0; if (count == 0) return paNoError; else if (count > PA_WASAPI_DEVICE_MAX_COUNT) return paBufferTooBig; // pName or pRole are optional if (pId == NULL) return paInsufficientMemory; // Validate Id and Name lengths for (i = 0; i < count; ++i) { const unsigned short *id = pId[i]; const unsigned short *name = pName[i]; for (j = 0; id[j] != 0; ++j) { if (j >= PA_WASAPI_DEVICE_ID_LEN) return paBufferTooBig; } for (j = 0; name[j] != 0; ++j) { if (j >= PA_WASAPI_DEVICE_NAME_LEN) return paBufferTooBig; } } // Set Id and Name (or reset to all 0 if NULL is provided) for (i = 0; i < count; ++i) { CopyNameOrIdString(role->devices[i].id, STATIC_ARRAY_SIZE(role->devices[i].id), pId[i]); CopyNameOrIdString(role->devices[i].name, STATIC_ARRAY_SIZE(role->devices[i].name), pName[i]); role->devices[i].formFactor = (pRole != NULL ? (EndpointFormFactor)pRole[i] : UnknownFormFactor); // Count device if it has at least the Id role->deviceCount += (role->devices[i].id[0] != 0); } return paNoError; #else return paIncompatibleStreamHostApi; #endif } // ------------------------------------------------------------------------------------------ PaError PaWasapi_SetStreamStateHandler( PaStream *pStream, PaWasapiStreamStateCallback fnStateHandler, void *pUserData ) { PaWasapiStream *stream = (PaWasapiStream *)pStream; if (stream == NULL) return paBadStreamPtr; stream->fnStateHandler = fnStateHandler; stream->pStateHandlerUserData = pUserData; return paNoError; } // ------------------------------------------------------------------------------------------ HRESULT _PollGetOutputFramesAvailable(PaWasapiStream *stream, UINT32 *available) { HRESULT hr; UINT32 frames = stream->out.framesPerHostCallback, padding = 0; (*available) = 0; // get read position if ((hr = IAudioClient_GetCurrentPadding(stream->out.clientProc, &padding)) != S_OK) return LogHostError(hr); // get available frames -= padding; // set (*available) = frames; return hr; } // ------------------------------------------------------------------------------------------ HRESULT _PollGetInputFramesAvailable(PaWasapiStream *stream, UINT32 *available) { HRESULT hr; (*available) = 0; // GetCurrentPadding() has opposite meaning to Output stream if ((hr = IAudioClient_GetCurrentPadding(stream->in.clientProc, available)) != S_OK) return LogHostError(hr); return hr; } // ------------------------------------------------------------------------------------------ static HRESULT ProcessOutputBuffer(PaWasapiStream *stream, PaWasapiHostProcessor *processor, UINT32 frames) { HRESULT hr; BYTE *data = NULL; // Get buffer if ((hr = IAudioRenderClient_GetBuffer(stream->renderClient, frames, &data)) != S_OK) { // Both modes, Shared and Exclusive, can fail with AUDCLNT_E_BUFFER_TOO_LARGE error #if 0 if (stream->out.shareMode == AUDCLNT_SHAREMODE_SHARED) { // Using GetCurrentPadding to overcome AUDCLNT_E_BUFFER_TOO_LARGE in // shared mode results in no sound in Event-driven mode (MSDN does not // document this, or is it WASAPI bug?), thus we better // try to acquire buffer next time when GetBuffer allows to do so. #if 0 // Get Read position UINT32 padding = 0; hr = IAudioClient_GetCurrentPadding(stream->out.clientProc, &padding); if (hr != S_OK) return LogHostError(hr); // Get frames to write frames -= padding; if (frames == 0) return S_OK; if ((hr = IAudioRenderClient_GetBuffer(stream->renderClient, frames, &data)) != S_OK) return LogHostError(hr); #else if (hr == AUDCLNT_E_BUFFER_TOO_LARGE) return S_OK; // be silent in shared mode, try again next time #endif } else return LogHostError(hr); #else if (hr == AUDCLNT_E_BUFFER_TOO_LARGE) return S_OK; // try again next time return LogHostError(hr); #endif } // Process data if (stream->out.monoMixer != NULL) { // expand buffer UINT32 mono_frames_size = frames * (stream->out.wavex.Format.wBitsPerSample / 8); if (mono_frames_size > stream->out.monoBufferSize) { stream->out.monoBuffer = PaWasapi_ReallocateMemory(stream->out.monoBuffer, (stream->out.monoBufferSize = mono_frames_size)); if (stream->out.monoBuffer == NULL) { hr = E_OUTOFMEMORY; LogHostError(hr); return hr; } } // process processor[S_OUTPUT].processor(NULL, 0, (BYTE *)stream->out.monoBuffer, frames, processor[S_OUTPUT].userData); // mix 1 to 2 channels stream->out.monoMixer(data, stream->out.monoBuffer, frames); } else { processor[S_OUTPUT].processor(NULL, 0, data, frames, processor[S_OUTPUT].userData); } // Release buffer if ((hr = IAudioRenderClient_ReleaseBuffer(stream->renderClient, frames, 0)) != S_OK) LogHostError(hr); return hr; } // ------------------------------------------------------------------------------------------ static HRESULT ProcessInputBuffer(PaWasapiStream *stream, PaWasapiHostProcessor *processor) { HRESULT hr = S_OK; UINT32 frames; BYTE *data = NULL; DWORD flags = 0; for (;;) { // Check if blocking call must be interrupted if (WaitForSingleObject(stream->hCloseRequest, 0) != WAIT_TIMEOUT) break; // Find out if any frames available frames = 0; if ((hr = _PollGetInputFramesAvailable(stream, &frames)) != S_OK) return hr; // Empty/consumed buffer if (frames == 0) break; // Get the available data in the shared buffer. if ((hr = IAudioCaptureClient_GetBuffer(stream->captureClient, &data, &frames, &flags, NULL, NULL)) != S_OK) { if (hr == AUDCLNT_S_BUFFER_EMPTY) { hr = S_OK; break; // Empty/consumed buffer } return LogHostError(hr); break; } // Detect silence // if (flags & AUDCLNT_BUFFERFLAGS_SILENT) // data = NULL; // Process data if (stream->in.monoMixer != NULL) { // expand buffer UINT32 mono_frames_size = frames * (stream->in.wavex.Format.wBitsPerSample / 8); if (mono_frames_size > stream->in.monoBufferSize) { stream->in.monoBuffer = PaWasapi_ReallocateMemory(stream->in.monoBuffer, (stream->in.monoBufferSize = mono_frames_size)); if (stream->in.monoBuffer == NULL) { hr = E_OUTOFMEMORY; LogHostError(hr); return hr; } } // mix 1 to 2 channels stream->in.monoMixer(stream->in.monoBuffer, data, frames); // process processor[S_INPUT].processor((BYTE *)stream->in.monoBuffer, frames, NULL, 0, processor[S_INPUT].userData); } else { processor[S_INPUT].processor(data, frames, NULL, 0, processor[S_INPUT].userData); } // Release buffer if ((hr = IAudioCaptureClient_ReleaseBuffer(stream->captureClient, frames)) != S_OK) return LogHostError(hr); //break; } return hr; } // ------------------------------------------------------------------------------------------ void _StreamOnStop(PaWasapiStream *stream) { // Stop INPUT/OUTPUT clients if (!stream->bBlocking) { if (stream->in.clientProc != NULL) IAudioClient_Stop(stream->in.clientProc); if (stream->out.clientProc != NULL) IAudioClient_Stop(stream->out.clientProc); } else { if (stream->in.clientParent != NULL) IAudioClient_Stop(stream->in.clientParent); if (stream->out.clientParent != NULL) IAudioClient_Stop(stream->out.clientParent); } // Restore thread priority if (stream->hAvTask != NULL) { PaWasapi_ThreadPriorityRevert(stream->hAvTask); stream->hAvTask = NULL; } // Notify if (stream->streamRepresentation.streamFinishedCallback != NULL) stream->streamRepresentation.streamFinishedCallback(stream->streamRepresentation.userData); } // ------------------------------------------------------------------------------------------ static BOOL PrepareComPointers(PaWasapiStream *stream, BOOL *threadComInitialized) { HRESULT hr; /* If COM is already initialized CoInitialize will either return FALSE, or RPC_E_CHANGED_MODE if it was initialized in a different threading mode. In either case we shouldn't consider it an error but we need to be careful to not call CoUninitialize() if RPC_E_CHANGED_MODE was returned. */ hr = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED); if (FAILED(hr) && (hr != RPC_E_CHANGED_MODE)) { PRINT(("WASAPI: failed ProcThreadEvent CoInitialize")); return FALSE; } if (hr != RPC_E_CHANGED_MODE) *threadComInitialized = TRUE; // Unmarshal stream pointers for safe COM operation hr = UnmarshalStreamComPointers(stream); if (hr != S_OK) { PRINT(("WASAPI: Error unmarshaling stream COM pointers. HRESULT: %i\n", hr)); CoUninitialize(); return FALSE; } return TRUE; } // ------------------------------------------------------------------------------------------ static void FinishComPointers(PaWasapiStream *stream, BOOL threadComInitialized) { // Release unmarshaled COM pointers ReleaseUnmarshaledComPointers(stream); // Cleanup COM for this thread if (threadComInitialized == TRUE) CoUninitialize(); } // ------------------------------------------------------------------------------------------ PA_THREAD_FUNC ProcThreadEvent(void *param) { PaWasapiHostProcessor processor[S_COUNT]; HRESULT hr = S_OK; DWORD dwResult; PaWasapiStream *stream = (PaWasapiStream *)param; PaWasapiHostProcessor defaultProcessor; BOOL setEvent[S_COUNT] = { FALSE, FALSE }; BOOL waitAllEvents = FALSE; BOOL threadComInitialized = FALSE; SystemTimer timer; // Notify: state NotifyStateChanged(stream, paWasapiStreamStateThreadPrepare, ERROR_SUCCESS); // Prepare COM pointers if (!PrepareComPointers(stream, &threadComInitialized)) return (UINT32)paUnanticipatedHostError; // Request fine (1 ms) granularity of the system timer functions for precise operation of waitable timers SystemTimer_SetGranularity(&timer, 1); // Waiting on all events in case of Full-Duplex/Exclusive mode. if ((stream->in.clientProc != NULL) && (stream->out.clientProc != NULL)) { waitAllEvents = (stream->in.shareMode == AUDCLNT_SHAREMODE_EXCLUSIVE) && (stream->out.shareMode == AUDCLNT_SHAREMODE_EXCLUSIVE); } // Setup data processors defaultProcessor.processor = WaspiHostProcessingLoop; defaultProcessor.userData = stream; processor[S_INPUT] = (stream->hostProcessOverrideInput.processor != NULL ? stream->hostProcessOverrideInput : defaultProcessor); processor[S_OUTPUT] = (stream->hostProcessOverrideOutput.processor != NULL ? stream->hostProcessOverrideOutput : defaultProcessor); // Boost thread priority PaWasapi_ThreadPriorityBoost((void **)&stream->hAvTask, stream->nThreadPriority); // Create events if (stream->event[S_OUTPUT] == NULL) { stream->event[S_OUTPUT] = CreateEvent(NULL, FALSE, FALSE, NULL); setEvent[S_OUTPUT] = TRUE; } if (stream->event[S_INPUT] == NULL) { stream->event[S_INPUT] = CreateEvent(NULL, FALSE, FALSE, NULL); setEvent[S_INPUT] = TRUE; } if ((stream->event[S_OUTPUT] == NULL) || (stream->event[S_INPUT] == NULL)) { PRINT(("WASAPI Thread: failed creating Input/Output event handle\n")); goto thread_error; } // Signal: stream running stream->running = TRUE; // Notify: thread started SetEvent(stream->hThreadStart); // Initialize event & start INPUT stream if (stream->in.clientProc) { // Create & set handle if (setEvent[S_INPUT]) { if ((hr = IAudioClient_SetEventHandle(stream->in.clientProc, stream->event[S_INPUT])) != S_OK) { LogHostError(hr); goto thread_error; } } // Start if ((hr = IAudioClient_Start(stream->in.clientProc)) != S_OK) { LogHostError(hr); goto thread_error; } } // Initialize event & start OUTPUT stream if (stream->out.clientProc) { // Create & set handle if (setEvent[S_OUTPUT]) { if ((hr = IAudioClient_SetEventHandle(stream->out.clientProc, stream->event[S_OUTPUT])) != S_OK) { LogHostError(hr); goto thread_error; } } // Preload buffer before start if ((hr = ProcessOutputBuffer(stream, processor, stream->out.framesPerBuffer)) != S_OK) { LogHostError(hr); goto thread_error; } // Start if ((hr = IAudioClient_Start(stream->out.clientProc)) != S_OK) { LogHostError(hr); goto thread_error; } } // Notify: state NotifyStateChanged(stream, paWasapiStreamStateThreadStart, ERROR_SUCCESS); // Processing Loop for (;;) { // 10 sec timeout (on timeout stream will auto-stop when processed by WAIT_TIMEOUT case) dwResult = WaitForMultipleObjects(S_COUNT, stream->event, waitAllEvents, 10*1000); // Check for close event (after wait for buffers to avoid any calls to user // callback when hCloseRequest was set) if (WaitForSingleObject(stream->hCloseRequest, 0) != WAIT_TIMEOUT) break; // Process S_INPUT/S_OUTPUT switch (dwResult) { case WAIT_TIMEOUT: { PRINT(("WASAPI Thread: WAIT_TIMEOUT - probably bad audio driver or Vista x64 bug: use paWinWasapiPolling instead\n")); goto thread_end; break; } // Input stream case WAIT_OBJECT_0 + S_INPUT: { if (stream->captureClient == NULL) break; if ((hr = ProcessInputBuffer(stream, processor)) != S_OK) { LogHostError(hr); goto thread_error; } break; } // Output stream case WAIT_OBJECT_0 + S_OUTPUT: { if (stream->renderClient == NULL) break; if ((hr = ProcessOutputBuffer(stream, processor, stream->out.framesPerBuffer)) != S_OK) { LogHostError(hr); goto thread_error; } break; } } } thread_end: // Process stop _StreamOnStop(stream); // Release unmarshaled COM pointers FinishComPointers(stream, threadComInitialized); // Restore system timer granularity SystemTimer_RestoreGranularity(&timer); // Notify: not running stream->running = FALSE; // Notify: thread exited SetEvent(stream->hThreadExit); // Notify: state NotifyStateChanged(stream, paWasapiStreamStateThreadStop, hr); return 0; thread_error: // Prevent deadlocking in Pa_StreamStart SetEvent(stream->hThreadStart); // Exit goto thread_end; } // ------------------------------------------------------------------------------------------ static UINT32 GetSleepTime(PaWasapiStream *stream, UINT32 sleepTimeIn, UINT32 sleepTimeOut, UINT32 userFramesOut) { UINT32 sleepTime; // According to the issue [https://github.com/PortAudio/portaudio/issues/303] glitches may occur when user frames // equal to 1/2 of the host buffer frames, therefore the empirical workaround for this problem is to lower // the sleep time by 2 if (userFramesOut != 0) { UINT32 chunks = stream->out.framesPerHostCallback / userFramesOut; if (chunks <= 2) { sleepTimeOut /= 2; PRINT(("WASAPI: underrun workaround, sleep [%d] ms - 1/2 of the user buffer[%d] | host buffer[%d]\n", sleepTimeOut, userFramesOut, stream->out.framesPerHostCallback)); } } // Choose the smallest if ((sleepTimeIn != 0) && (sleepTimeOut != 0)) sleepTime = min(sleepTimeIn, sleepTimeOut); else sleepTime = (sleepTimeIn ? sleepTimeIn : sleepTimeOut); return sleepTime; } // ------------------------------------------------------------------------------------------ static UINT32 ConfigureLoopSleepTimeAndScheduler(PaWasapiStream *stream, ThreadIdleScheduler *scheduler) { UINT32 sleepTime, sleepTimeIn, sleepTimeOut; UINT32 userFramesIn = stream->in.framesPerHostCallback / WASAPI_PACKETS_PER_INPUT_BUFFER; UINT32 userFramesOut = stream->out.framesPerBuffer; // Adjust polling time for non-paUtilFixedHostBufferSize, input stream is not adjustable as it is being // polled according to its packet length if (stream->bufferMode != paUtilFixedHostBufferSize) { userFramesOut = (stream->bufferProcessor.framesPerUserBuffer ? stream->bufferProcessor.framesPerUserBuffer : stream->out.params.frames_per_buffer); } // Calculate timeout for the next polling attempt sleepTimeIn = GetFramesSleepTime(userFramesIn, stream->in.wavex.Format.nSamplesPerSec); sleepTimeOut = GetFramesSleepTime(userFramesOut, stream->out.wavex.Format.nSamplesPerSec); // WASAPI input packets tend to expire very easily, let's limit sleep time to 2 milliseconds // for all cases. Please propose better solution if any if (sleepTimeIn > 2) sleepTimeIn = 2; sleepTime = GetSleepTime(stream, sleepTimeIn, sleepTimeOut, userFramesOut); // Make sure not 0, othervise use ThreadIdleScheduler to bounce between [0, 1] ms to avoid too busy loop if (sleepTime == 0) { sleepTimeIn = GetFramesSleepTimeMicroseconds(userFramesIn, stream->in.wavex.Format.nSamplesPerSec); sleepTimeOut = GetFramesSleepTimeMicroseconds(userFramesOut, stream->out.wavex.Format.nSamplesPerSec); sleepTime = GetSleepTime(stream, sleepTimeIn, sleepTimeOut, userFramesOut); // Setup thread sleep scheduler ThreadIdleScheduler_Setup(scheduler, 1, sleepTime/* microseconds here */); sleepTime = 0; } return sleepTime; } // ------------------------------------------------------------------------------------------ static inline INT32 GetNextSleepTime(SystemTimer *timer, ThreadIdleScheduler *scheduler, LONGLONG startTime, UINT32 sleepTime) { INT32 nextSleepTime; INT32 procTime; // Get next sleep time if (sleepTime == 0) nextSleepTime = ThreadIdleScheduler_NextSleep(scheduler); else nextSleepTime = sleepTime; // Adjust next sleep time dynamically depending on how much time was spent in ProcessOutputBuffer/ProcessInputBuffer // therefore periodicity will not jitter or be increased for the amount of time spent in processing; // example when sleepTime is 10 ms where [] is polling time slot, {} processing time slot: // // [9],{2},[8],{1},[9],{1},[9],{3},[7],{2},[8],{3},[7],{2},[8],{2},[8],{3},[7],{2},[8],... // procTime = (INT32)(SystemTimer_GetTime(timer) - startTime); nextSleepTime -= procTime; if (nextSleepTime < timer->granularity) nextSleepTime = 0; else if (timer->granularity > 1) nextSleepTime = ALIGN_BWD(nextSleepTime, timer->granularity); #ifdef PA_WASAPI_LOG_TIME_SLOTS printf("{%d},", procTime); #endif return nextSleepTime; } // ------------------------------------------------------------------------------------------ PA_THREAD_FUNC ProcThreadPoll(void *param) { PaWasapiHostProcessor processor[S_COUNT]; HRESULT hr = S_OK; PaWasapiStream *stream = (PaWasapiStream *)param; PaWasapiHostProcessor defaultProcessor; INT32 i; ThreadIdleScheduler scheduler; SystemTimer timer; LONGLONG startTime; UINT32 sleepTime; INT32 nextSleepTime = 0; //! Do first loop without waiting as time could be spent when calling other APIs before ProcessXXXBuffer. BOOL threadComInitialized = FALSE; #ifdef PA_WASAPI_LOG_TIME_SLOTS LONGLONG startWaitTime; #endif // Notify: state NotifyStateChanged(stream, paWasapiStreamStateThreadPrepare, ERROR_SUCCESS); // Prepare COM pointers if (!PrepareComPointers(stream, &threadComInitialized)) return (UINT32)paUnanticipatedHostError; // Request fine (1 ms) granularity of the system timer functions to guarantee correct logic around WaitForSingleObject SystemTimer_SetGranularity(&timer, 1); // Calculate sleep time of the processing loop (inside WaitForSingleObject) sleepTime = ConfigureLoopSleepTimeAndScheduler(stream, &scheduler); // Setup data processors defaultProcessor.processor = WaspiHostProcessingLoop; defaultProcessor.userData = stream; processor[S_INPUT] = (stream->hostProcessOverrideInput.processor != NULL ? stream->hostProcessOverrideInput : defaultProcessor); processor[S_OUTPUT] = (stream->hostProcessOverrideOutput.processor != NULL ? stream->hostProcessOverrideOutput : defaultProcessor); // Boost thread priority PaWasapi_ThreadPriorityBoost((void **)&stream->hAvTask, stream->nThreadPriority); // Signal: stream running stream->running = TRUE; // Notify: thread started SetEvent(stream->hThreadStart); // Initialize event & start INPUT stream if (stream->in.clientProc) { if ((hr = IAudioClient_Start(stream->in.clientProc)) != S_OK) { LogHostError(hr); goto thread_error; } } // Initialize event & start OUTPUT stream if (stream->out.clientProc) { // Preload buffer (obligatory, othervise ->Start() will fail), avoid processing // when in full-duplex mode as it requires input processing as well if (!PA_WASAPI__IS_FULLDUPLEX(stream)) { UINT32 frames = 0; if ((hr = _PollGetOutputFramesAvailable(stream, &frames)) == S_OK) { if (stream->bufferMode == paUtilFixedHostBufferSize) { // It is important to preload whole host buffer to avoid underruns/glitches when stream is started, // for more details see the discussion: https://github.com/PortAudio/portaudio/issues/303 while (frames >= stream->out.framesPerBuffer) { if ((hr = ProcessOutputBuffer(stream, processor, stream->out.framesPerBuffer)) != S_OK) { LogHostError(hr); // not fatal, just log break; } frames -= stream->out.framesPerBuffer; } } else { // Some devices may not start (will get stuck with 0 ready frames) if data not prefetched if (frames == 0) frames = stream->out.framesPerBuffer; // USB DACs report large buffer in Exclusive mode and if it is filled fully will stuck in // non playing state, e.g. IAudioClient_GetCurrentPadding() will start reporting max buffer size // constantly, thus preload data size equal to the user buffer to allow process going if ((stream->out.shareMode == AUDCLNT_SHAREMODE_EXCLUSIVE) && (frames >= (stream->out.framesPerBuffer * 2))) frames -= stream->out.framesPerBuffer; if ((hr = ProcessOutputBuffer(stream, processor, frames)) != S_OK) { LogHostError(hr); // not fatal, just log } } } else { LogHostError(hr); // not fatal, just log } } // Start if ((hr = IAudioClient_Start(stream->out.clientProc)) != S_OK) { LogHostError(hr); goto thread_error; } } // Notify: state NotifyStateChanged(stream, paWasapiStreamStateThreadStart, ERROR_SUCCESS); #ifdef PA_WASAPI_LOG_TIME_SLOTS startWaitTime = SystemTimer_GetTime(&timer); #endif if (!PA_WASAPI__IS_FULLDUPLEX(stream)) { // Processing Loop while (WaitForSingleObject(stream->hCloseRequest, nextSleepTime) == WAIT_TIMEOUT) { startTime = SystemTimer_GetTime(&timer); #ifdef PA_WASAPI_LOG_TIME_SLOTS printf("[%d|%d],", nextSleepTime, (INT32)(startTime - startWaitTime)); #endif for (i = 0; i < S_COUNT; ++i) { // Process S_INPUT/S_OUTPUT switch (i) { // Input stream case S_INPUT: { if (stream->captureClient == NULL) break; if ((hr = ProcessInputBuffer(stream, processor)) != S_OK) { LogHostError(hr); goto thread_error; } break; } // Output stream case S_OUTPUT: { UINT32 framesAvail; if (stream->renderClient == NULL) break; // Get available frames if ((hr = _PollGetOutputFramesAvailable(stream, &framesAvail)) != S_OK) { LogHostError(hr); goto thread_error; } // Output data to the user callback if (stream->bufferMode == paUtilFixedHostBufferSize) { UINT32 framesProc = stream->out.framesPerBuffer; // If we got less frames avoid sleeping again as it might be the corner case and buffer // has sufficient number of frames now, in case 'out.framesPerBuffer' is 1/2 of the host // buffer sleeping again may cause underruns. Do short busy waiting (normally might take // 1-2 iterations) if (framesAvail < framesProc) { nextSleepTime = 0; continue; } while (framesAvail >= framesProc) { if ((hr = ProcessOutputBuffer(stream, processor, framesProc)) != S_OK) { LogHostError(hr); goto thread_error; } framesAvail -= framesProc; } } else if (framesAvail != 0) { if ((hr = ProcessOutputBuffer(stream, processor, framesAvail)) != S_OK) { LogHostError(hr); goto thread_error; } } break; } } } // Get next sleep time nextSleepTime = GetNextSleepTime(&timer, &scheduler, startTime, sleepTime); #ifdef PA_WASAPI_LOG_TIME_SLOTS startWaitTime = SystemTimer_GetTime(&timer); #endif } } else { // Processing Loop (full-duplex) while (WaitForSingleObject(stream->hCloseRequest, nextSleepTime) == WAIT_TIMEOUT) { UINT32 i_frames = 0, i_processed = 0, o_frames = 0; BYTE *i_data = NULL, *o_data = NULL, *o_data_host = NULL; DWORD i_flags = 0; startTime = SystemTimer_GetTime(&timer); #ifdef PA_WASAPI_LOG_TIME_SLOTS printf("[%d|%d],", nextSleepTime, (INT32)(startTime - startWaitTime)); #endif // get available frames if ((hr = _PollGetOutputFramesAvailable(stream, &o_frames)) != S_OK) { LogHostError(hr); break; } while (o_frames != 0) { // get host input buffer if ((hr = IAudioCaptureClient_GetBuffer(stream->captureClient, &i_data, &i_frames, &i_flags, NULL, NULL)) != S_OK) { if (hr == AUDCLNT_S_BUFFER_EMPTY) break; // no data in capture buffer LogHostError(hr); break; } // process equal amount of frames if (o_frames >= i_frames) { // process input amount of frames UINT32 o_processed = i_frames; // get host output buffer if ((hr = IAudioRenderClient_GetBuffer(stream->renderClient, o_processed, &o_data)) == S_OK) { // processed amount of i_frames i_processed = i_frames; o_data_host = o_data; // convert output mono if (stream->out.monoMixer) { UINT32 mono_frames_size = o_processed * (stream->out.wavex.Format.wBitsPerSample / 8); // expand buffer if (mono_frames_size > stream->out.monoBufferSize) { stream->out.monoBuffer = PaWasapi_ReallocateMemory(stream->out.monoBuffer, (stream->out.monoBufferSize = mono_frames_size)); if (stream->out.monoBuffer == NULL) { // release input buffer IAudioCaptureClient_ReleaseBuffer(stream->captureClient, 0); // release output buffer IAudioRenderClient_ReleaseBuffer(stream->renderClient, 0, 0); LogPaError(paInsufficientMemory); goto thread_error; } } // replace buffer pointer o_data = (BYTE *)stream->out.monoBuffer; } // convert input mono if (stream->in.monoMixer) { UINT32 mono_frames_size = i_processed * (stream->in.wavex.Format.wBitsPerSample / 8); // expand buffer if (mono_frames_size > stream->in.monoBufferSize) { stream->in.monoBuffer = PaWasapi_ReallocateMemory(stream->in.monoBuffer, (stream->in.monoBufferSize = mono_frames_size)); if (stream->in.monoBuffer == NULL) { // release input buffer IAudioCaptureClient_ReleaseBuffer(stream->captureClient, 0); // release output buffer IAudioRenderClient_ReleaseBuffer(stream->renderClient, 0, 0); LogPaError(paInsufficientMemory); goto thread_error; } } // mix 2 to 1 input channels stream->in.monoMixer(stream->in.monoBuffer, i_data, i_processed); // replace buffer pointer i_data = (BYTE *)stream->in.monoBuffer; } // process processor[S_FULLDUPLEX].processor(i_data, i_processed, o_data, o_processed, processor[S_FULLDUPLEX].userData); // mix 1 to 2 output channels if (stream->out.monoBuffer) stream->out.monoMixer(o_data_host, stream->out.monoBuffer, o_processed); // release host output buffer if ((hr = IAudioRenderClient_ReleaseBuffer(stream->renderClient, o_processed, 0)) != S_OK) LogHostError(hr); o_frames -= o_processed; } else { if (stream->out.shareMode != AUDCLNT_SHAREMODE_SHARED) LogHostError(hr); // be silent in shared mode, try again next time } } else { i_processed = 0; goto fd_release_buffer_in; } fd_release_buffer_in: // release host input buffer if ((hr = IAudioCaptureClient_ReleaseBuffer(stream->captureClient, i_processed)) != S_OK) { LogHostError(hr); break; } // break processing, input hasn't been accumulated yet if (i_processed == 0) break; } // Get next sleep time nextSleepTime = GetNextSleepTime(&timer, &scheduler, startTime, sleepTime); #ifdef PA_WASAPI_LOG_TIME_SLOTS startWaitTime = SystemTimer_GetTime(&timer); #endif } } thread_end: // Process stop _StreamOnStop(stream); // Release unmarshaled COM pointers FinishComPointers(stream, threadComInitialized); // Restore system timer granularity SystemTimer_RestoreGranularity(&timer); // Notify: not running stream->running = FALSE; // Notify: thread exited SetEvent(stream->hThreadExit); // Notify: state NotifyStateChanged(stream, paWasapiStreamStateThreadStop, hr); return 0; thread_error: // Prevent deadlocking in Pa_StreamStart SetEvent(stream->hThreadStart); // Exit goto thread_end; } // ------------------------------------------------------------------------------------------ void *PaWasapi_ReallocateMemory(void *prev, size_t size) { void *ret = realloc(prev, size); if (ret == NULL) { PaWasapi_FreeMemory(prev); return NULL; } return ret; } // ------------------------------------------------------------------------------------------ void PaWasapi_FreeMemory(void *ptr) { free(ptr); }