From f9fc4d26ec5fca9ee175c8a6fbcdd0fa36f10947 Mon Sep 17 00:00:00 2001 From: sanine Date: Thu, 16 Nov 2023 14:50:00 -0600 Subject: clear out js files --- src/mind/topology.js | 183 --------------------------------------------------- 1 file changed, 183 deletions(-) delete mode 100644 src/mind/topology.js (limited to 'src/mind/topology.js') diff --git a/src/mind/topology.js b/src/mind/topology.js deleted file mode 100644 index 946dd86..0000000 --- a/src/mind/topology.js +++ /dev/null @@ -1,183 +0,0 @@ -'use strict'; - -import { create } from '../util.js'; - - -const DEFAULT_WEIGHT_MAX = 4; - - -// prototype for network objects -const network_proto = { - connect: function(source, sink, weight) { - return network_connect(this, source, sink, weight); - }, - compute: function(inputs, state) { - return network_compute(this, inputs, state); - }, -}; - - -// create a new network -export function network(input_count, internal_count, output_count, weight_max = 4) { - const count = input_count + internal_count + output_count; - const n = create({ - input_count, - output_count, - adjacency: new Array(count).fill([]), - weight: [], - }, network_proto); - return n; -} - - -// check index is an input -function is_input(n, index) { - return index < n.input_count; -} -// check if index is an output -function is_output(n, index) { - return index >= (n.adjacency.length - n.output_count); -} -// check if index is a hidden neuron -function is_hidden(n, index) { - return (!is_input(n, index)) && (!is_output(n, index)); -} - - -// returns a new network with an edge between the given nodes -// with the given weight -export function network_connect(n, source, sink, weight) { - if (is_input(n, sink)) { - // inputs cannot be sinks - throw new Error(`attempt to use input as sink (${source} -> ${sink})`); - } - if (is_output(n, source)) { - // outputs cannot be sources - throw new Error(`attempt to use output as source (${source} -> ${sink})`); - } - - return create({ - ...n, - adjacency: n.adjacency.map((row, i) => { - if (i === source && i === sink) { - // self-loop - return [...row, 2]; - } else if (i === source) { - return [...row, 1]; - } else if (i === sink) { - return [...row, -1]; - } else { - return [...row, 0]; - } - }), - weight: [...n.weight, weight], - }, network_proto); -} - - -// gets the indices of the edges incident on the given adjacency list -function incident_edges(n, adj) { - const incident = adj - .map((edge, index) => (edge < 0) || (edge === 2) ? index : null) - .filter(index => index !== null); - - return incident; -} - - -// get the indices of the ends of an edge -// in the case of self-loops, both values are the same -function edge_ends(n, edge) { - const ends = n.adjacency - .map((adj, index) => adj[edge] !== 0 ? index : null) - .filter(index => index != null); - - ends.sort((a, b) => n.adjacency[a][edge] < n.adjacency[b][edge] ? -1 : 1); - - if (ends.length === 1) { - return { source: ends[0], sink: ends[0] }; - } else if (ends.length === 2) { - return { source: ends[1], sink: ends[0] }; - } else { - throw new Error("something bad happened with the ends"); - } -} - - -// recursively get the value of a node from the input nodes, -// optionally caching the computed values -function get_value(n, index, input, prev, cache) { - // check if value is cached - if (cache !== undefined && cache[index]) { - return cache[index]; - } - // check if value is input - if (is_input(n, index)) { - return input[index]; - } - - const adj = n.adjacency[index]; // get adjacency list - const incident = incident_edges(n, adj); // get incident edges - const weight = incident.map(x => n.weight[x]); // edge weights - const sources = incident // get ancestor nodes - .map(x => edge_ends(n, x).source); - - // get the value of each ancestor - const values = sources - .map(x => x === index // if the ancestor is this node - ? prev[x - n.input_count] // then the value is the previous value - : get_value(n, x, input, prev, cache)); // else recurse - - const sum = values // compute the weighted sum of the values - .reduce((acc, x, i) => acc + (weight[i] * x), 0); - - if (sum !== sum) { // NaN test - console.log(n); - console.log(sources); - console.log(input); - throw new Error(`failed to get output for index ${index}`); - } - - // compute result - const value = Math.tanh(sum); - - // !!! impure caching !!! - // cache result - if (cache !== undefined) { - cache[index] = value; - } - - return value; -} - - -// compute a network's output and new hidden state -// given the input and previous hidden state -export function network_compute(n, input, state) { - // validate input - if (input.length !== n.input_count) { - throw new Error("incorrect number of input elements"); - } - // validate state - const hidden_count = n.adjacency.length - n.input_count - n.output_count; - if (state.length !== hidden_count) { - throw new Error("incorrect number of state elements"); - } - - // !!! impure caching !!! - const value_cache = {}; - - const result = Object.freeze(n.adjacency - .map((x, i) => is_output(n, i) ? i : null) // output index or null - .filter(i => i !== null) // remove nulls - .map(x => get_value(n, x, input, state, value_cache)) // map to computed value - ); - - const newstate = Object.freeze(n.adjacency - .map((x, i) => is_hidden(n, i) ? i : null) // hidden index or null - .filter(i => i !== null) // remove nulls - .map(x => get_value(n, x, input, state, value_cache)) // map to computed value (using cache) - ); - - return Object.freeze([result, newstate]); -} -- cgit v1.2.1