'use strict'; import { get_size, parse_genome, mut_gene_source, mut_gene_sink, mut_gene_weight, } from './genome'; test('genome validation and size', () => { expect(get_size(0, 0, [ [ 0, 0, 1.0 ] ])).toBe(1); expect(get_size(2, 1, [ [ 0, 2, 1 ] ])).toBe(3); expect(get_size(2, 1, [ [ 0, 1, 1 ] ])).toBe(-1); expect(get_size(2, 1, [ [ 0, 2, 5 ] ])).toBe(-1); }); test('parse a genome into a neural net', () => { const n = parse_genome(1, 1, [ [0, 1, 1], [1, 1, 1], [1, 2, 1] ]); expect(n.input_count).toBe(1); expect(n.output_count).toBe(1); expect(n.compute([2], [-1])).toEqual([ [ Math.tanh( Math.tanh( 2-1 ) ) ], [ Math.tanh( 2-1 ) ], ]); }); test('mutate gene source', () => { const n_input = 3; const n_internal = 4; const n_output = 5; expect(mut_gene_source( n_input, n_internal, n_output, [0, 4, 0], 0.0 )).toEqual([0, 4, 0]); expect(mut_gene_source( n_input, n_internal, n_output, [0, 4, 0], 1.0 )).toEqual([1, 4, 0]); expect(mut_gene_source( n_input, n_internal, n_output, [6, 4, 0], 0.0 )).toEqual([5, 4, 0]); expect(mut_gene_source( n_input, n_internal, n_output, [6, 4, 0], 1.0 )).toEqual([6, 4, 0]); }); test('mutate gene sink', () => { const n_input = 3; const n_internal = 4; const n_output = 5; expect(mut_gene_sink( n_input, n_internal, n_output, [0, 7, 0], 0.0 )).toEqual([0, 7, 0]); expect(mut_gene_sink( n_input, n_internal, n_output, [0, 7, 0], 1.0 )).toEqual([0, 8, 0]); expect(mut_gene_sink( n_input, n_internal, n_output, [6, 11, 0], 0.0 )).toEqual([6, 10, 0]); expect(mut_gene_sink( n_input, n_internal, n_output, [6, 11, 0], 1.0 )).toEqual([6, 11, 0]); }); test('mutate gene weight', () => { const weight_max = 4.0; expect(mut_gene_weight( weight_max, [0, 0, 1], 0.0 )).toEqual([0, 0, (2 - 4)/3]); expect(mut_gene_weight( weight_max, [0, 0, -4], 1.0 )).toEqual([0, 0, (-8 + 4)/3]); expect(mut_gene_weight( weight_max, [0, 0, 3], 0.5 )).toEqual([0, 0, (6+0)/3]); });