'use strict'; import { mutation_type, mutate, get_size, parse_genome, } from './genome'; test('basic gene mutations', () => { expect(mutate([0, 1, 2], mutation_type.none, 0)).toEqual([0, 1, 2]); expect(mutate([0, 1, 2], mutation_type.source, 0.2)).toEqual([0, 1, 2]); expect(mutate([1, 1, 2], mutation_type.source, 0.2)).toEqual([0, 1, 2]); expect(mutate([0, 1, 2], mutation_type.source, 0.8)).toEqual([1, 1, 2]); expect(mutate([0, 1, 2], mutation_type.sink, 0.2)).toEqual([0, 0, 2]); expect(mutate([0, 1, 2], mutation_type.sink, 0.8)).toEqual([0, 2, 2]); expect(mutate([0, 0, 2], mutation_type.sink, 0.2)).toEqual([0, 0, 2]); expect(mutate([0, 1, 2], mutation_type.weight, 0.5)).toEqual([0, 1, 1]); expect(mutate([0, 1, 2], mutation_type.weight, 0.0)).toEqual([0, 1, -1]); expect(mutate([0, 1, 2], mutation_type.weight, 1.0)).toEqual([0, 1, 3]); }); test('genome validation and size', () => { expect(get_size(0, 0, [ [ 0, 0, 1.0 ] ])).toBe(1); expect(get_size(2, 1, [ [ 0, 2, 1 ] ])).toBe(3); expect(get_size(2, 1, [ [ 0, 1, 1 ] ])).toBe(-1); expect(get_size(2, 1, [ [ 0, 2, 5 ] ])).toBe(-1); }); test('parse a genome into a neural net', () => { const n = parse_genome(1, 1, [ [0, 1, 1], [1, 1, 1], [1, 2, 1] ]); console.log(n); expect(n.input_count).toBe(1); expect(n.output_count).toBe(1); expect(n.compute([2], [-1])).toEqual([ [ Math.tanh( Math.tanh( 2-1 ) ) ], [ Math.tanh( 2-1 ) ], ]); });