module MindTest (suite) where import Test.Tasty import Test.Tasty.HUnit import Mind suite :: TestTree suite = testGroup "mind tests" $ [ neuronIndexTests , networkTests ] neuronIndexTests :: TestTree neuronIndexTests = testGroup "neuron index tests" $ [ testCase "get input index" $ getNeuronIndex (Input 4) @?= 4 , testCase "get internal index" $ getNeuronIndex (Internal 12) @?= 12 , testCase "get output index" $ getNeuronIndex (Output 0) @?= 0 ] networkTests :: TestTree networkTests = testGroup "network tests" $ [ testCase "create empty network" $ (createEmptyNetwork 3 2 1) @?= Network 3 [[], []] [[]] -- neuron connections , testCase "output network connection" $ let network = Network 3 [[], []] [[]] in (connectNeurons network (Input 0) (Output 0) (negate 1.0)) @?= (Just $ Network 3 [[], []] [[Edge (Input 0, (negate 1.0))]]) , testCase "internal network connection" $ let network = Network 3 [[], []] [[]] in (connectNeurons network (Internal 0) (Internal 1) (negate 1.0)) @?= (Just $ Network 3 [[], [Edge (Internal 0, negate 1.0)]] [[]]) , testCase "internal self-connection" $ let network = Network 3 [[], []] [[]] in (connectNeurons network (Internal 0) (Internal 0) (negate 1.0)) @?= (Just $ Network 3 [[Edge (Internal 0, negate 1.0)], []] [[]]) , testCase "internal source out of range" $ let network = Network 3 [[], []] [[]] in (connectNeurons network (Internal 5) (Internal 0) (negate 1.0)) @?= Nothing , testCase "internal sink out of range" $ let network = Network 3 [[], []] [[]] in (connectNeurons network (Internal 1) (Internal (negate 1)) (negate 1.0)) @?= Nothing , testCase "input source out of range" $ let network = Network 3 [[], []] [[]] in (connectNeurons network (Input (negate 1)) (Internal 0) (negate 1.0)) @?= Nothing , testCase "input sink" $ let network = Network 3 [[], []] [[]] in (connectNeurons network (Input 0) (Input 0) (negate 1.0)) @?= Nothing , testCase "output source" $ let network = Network 3 [[], []] [[]] in (connectNeurons network (Output 0) (Output 0) (negate 1.0)) @?= Nothing , testCase "output sink out of range" $ let network = Network 3 [[], []] [[]] in (connectNeurons network (Input 0) (Output 1) (negate 1.0)) @?= Nothing -- network computations , testCase "single input, single output" $ let net = Network 1 [] [[Edge (Input 0, 2.0)]] Just (output, state) = compute net [negate 0.5] [] in (output, state) @?= ( [tanh (2.0 * (negate 0.5))] , [] ) , testCase "multiple inputs, single output" $ let net = Network 4 [] [ [ Edge (Input 0, negate 1.0) , Edge (Input 1, negate 2.0) , Edge (Input 2, 1.0) , Edge (Input 3, 2.0) ]] Just (output, state) = compute net [1, 2, 3, 5] [] in (output, state) @?= ( [tanh ( (1 * (negate 1.0)) + (2 * (negate 2.0)) + (3 * 1.0) + (5 * 2.0) ) ] , [] ) , testCase "multiple inputs, multiple outputs" $ let net = Network 4 [] [ [ Edge (Input 0, negate 1.0) , Edge (Input 1, 1.0) ] , [ Edge (Input 2, negate 1.0) , Edge (Input 3, 1.0) ] ] Just (output, state) = compute net [1, 2, 3, 5] [] in (output, state) @?= ( [ tanh (2 - 1) , tanh (5 - 3) ] , [] ) , testCase "hidden neurons" $ let net = Network 4 -- hidden neurons [ [ Edge (Input 0, negate 1.0) , Edge (Input 1, 1.0) ] , [ Edge (Input 2, negate 1.0) , Edge (Input 3, 1.0) ] ] -- output neurons [ [ Edge (Internal 0, negate 1.0) , Edge (Internal 1, 1.0) ] ] Just (output, state) = compute net [1, 2, 3, 5] [0, 0] in (output, state) @?= ( [ tanh ( (tanh (5-3)) - (tanh (2-1)) ) ] , [ tanh (2-1) , tanh (5-3) ] ) , testCase "computing with self-connection" $ let net = Network 0 -- hidden neurons [ [ Edge (Internal 0, negate 0.5) ] ] -- output neurons [ [ Edge (Internal 0, 2) ] ] Just result = compute net [] [1.0] in result @?= ( [ tanh $ 2 * (tanh (negate 0.5)) ] , [ tanh (negate 0.5) ] ) ]