summaryrefslogtreecommitdiff
path: root/libs/assimp/code/AssetLib/IFC/IFCUtil.cpp
diff options
context:
space:
mode:
authorsanine <sanine.not@pm.me>2022-04-16 11:55:09 -0500
committersanine <sanine.not@pm.me>2022-04-16 11:55:09 -0500
commitdb81b925d776103326128bf629cbdda576a223e7 (patch)
tree58bea8155c686733310009f6bed7363f91fbeb9d /libs/assimp/code/AssetLib/IFC/IFCUtil.cpp
parent55860037b14fb3893ba21cf2654c83d349cc1082 (diff)
move 3rd-party librarys into libs/ and add built-in honeysuckle
Diffstat (limited to 'libs/assimp/code/AssetLib/IFC/IFCUtil.cpp')
-rw-r--r--libs/assimp/code/AssetLib/IFC/IFCUtil.cpp701
1 files changed, 701 insertions, 0 deletions
diff --git a/libs/assimp/code/AssetLib/IFC/IFCUtil.cpp b/libs/assimp/code/AssetLib/IFC/IFCUtil.cpp
new file mode 100644
index 0000000..6b378c1
--- /dev/null
+++ b/libs/assimp/code/AssetLib/IFC/IFCUtil.cpp
@@ -0,0 +1,701 @@
+/*
+Open Asset Import Library (assimp)
+----------------------------------------------------------------------
+
+Copyright (c) 2006-2022, assimp team
+
+
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the
+following conditions are met:
+
+* Redistributions of source code must retain the above
+ copyright notice, this list of conditions and the
+ following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the
+ following disclaimer in the documentation and/or other
+ materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+ contributors may be used to endorse or promote products
+ derived from this software without specific prior
+ written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+----------------------------------------------------------------------
+*/
+
+/** @file IFCUtil.cpp
+ * @brief Implementation of conversion routines for some common Ifc helper entities.
+ */
+
+#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
+
+#include "AssetLib/IFC/IFCUtil.h"
+#include "Common/PolyTools.h"
+#include "PostProcessing/ProcessHelper.h"
+
+namespace Assimp {
+namespace IFC {
+
+// ------------------------------------------------------------------------------------------------
+void TempOpening::Transform(const IfcMatrix4& mat) {
+ if(profileMesh) {
+ profileMesh->Transform(mat);
+ }
+ if(profileMesh2D) {
+ profileMesh2D->Transform(mat);
+ }
+ extrusionDir *= IfcMatrix3(mat);
+}
+
+// ------------------------------------------------------------------------------------------------
+aiMesh* TempMesh::ToMesh()
+{
+ ai_assert(mVerts.size() == std::accumulate(mVertcnt.begin(),mVertcnt.end(),size_t(0)));
+
+ if (mVerts.empty()) {
+ return nullptr;
+ }
+
+ std::unique_ptr<aiMesh> mesh(new aiMesh());
+
+ // copy vertices
+ mesh->mNumVertices = static_cast<unsigned int>(mVerts.size());
+ mesh->mVertices = new aiVector3D[mesh->mNumVertices];
+ std::copy(mVerts.begin(),mVerts.end(),mesh->mVertices);
+
+ // and build up faces
+ mesh->mNumFaces = static_cast<unsigned int>(mVertcnt.size());
+ mesh->mFaces = new aiFace[mesh->mNumFaces];
+
+ for(unsigned int i = 0,n=0, acc = 0; i < mesh->mNumFaces; ++n) {
+ aiFace& f = mesh->mFaces[i];
+ if (!mVertcnt[n]) {
+ --mesh->mNumFaces;
+ continue;
+ }
+
+ f.mNumIndices = mVertcnt[n];
+ f.mIndices = new unsigned int[f.mNumIndices];
+ for(unsigned int a = 0; a < f.mNumIndices; ++a) {
+ f.mIndices[a] = acc++;
+ }
+
+ ++i;
+ }
+
+ return mesh.release();
+}
+
+// ------------------------------------------------------------------------------------------------
+void TempMesh::Clear()
+{
+ mVerts.clear();
+ mVertcnt.clear();
+}
+
+// ------------------------------------------------------------------------------------------------
+void TempMesh::Transform(const IfcMatrix4& mat)
+{
+ for(IfcVector3& v : mVerts) {
+ v *= mat;
+ }
+}
+
+// ------------------------------------------------------------------------------
+IfcVector3 TempMesh::Center() const
+{
+ return (mVerts.size() == 0) ? IfcVector3(0.0f, 0.0f, 0.0f) : (std::accumulate(mVerts.begin(),mVerts.end(),IfcVector3()) / static_cast<IfcFloat>(mVerts.size()));
+}
+
+// ------------------------------------------------------------------------------------------------
+void TempMesh::Append(const TempMesh& other)
+{
+ mVerts.insert(mVerts.end(),other.mVerts.begin(),other.mVerts.end());
+ mVertcnt.insert(mVertcnt.end(),other.mVertcnt.begin(),other.mVertcnt.end());
+}
+
+// ------------------------------------------------------------------------------------------------
+void TempMesh::RemoveDegenerates()
+{
+ // The strategy is simple: walk the mesh and compute normals using
+ // Newell's algorithm. The length of the normals gives the area
+ // of the polygons, which is close to zero for lines.
+
+ std::vector<IfcVector3> normals;
+ ComputePolygonNormals(normals, false);
+
+ bool drop = false;
+ size_t inor = 0;
+
+ std::vector<IfcVector3>::iterator vit = mVerts.begin();
+ for (std::vector<unsigned int>::iterator it = mVertcnt.begin(); it != mVertcnt.end(); ++inor) {
+ const unsigned int pcount = *it;
+
+ if (normals[inor].SquareLength() < 1e-10f) {
+ it = mVertcnt.erase(it);
+ vit = mVerts.erase(vit, vit + pcount);
+
+ drop = true;
+ continue;
+ }
+
+ vit += pcount;
+ ++it;
+ }
+
+ if(drop) {
+ IFCImporter::LogVerboseDebug("removing degenerate faces");
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+IfcVector3 TempMesh::ComputePolygonNormal(const IfcVector3* vtcs, size_t cnt, bool normalize)
+{
+ std::vector<IfcFloat> temp((cnt+2)*3);
+ for( size_t vofs = 0, i = 0; vofs < cnt; ++vofs )
+ {
+ const IfcVector3& v = vtcs[vofs];
+ temp[i++] = v.x;
+ temp[i++] = v.y;
+ temp[i++] = v.z;
+ }
+
+ IfcVector3 nor;
+ NewellNormal<3, 3, 3>(nor, static_cast<int>(cnt), &temp[0], &temp[1], &temp[2]);
+ return normalize ? nor.Normalize() : nor;
+}
+
+// ------------------------------------------------------------------------------------------------
+void TempMesh::ComputePolygonNormals(std::vector<IfcVector3>& normals,
+ bool normalize,
+ size_t ofs) const
+{
+ size_t max_vcount = 0;
+ std::vector<unsigned int>::const_iterator begin = mVertcnt.begin()+ofs, end = mVertcnt.end(), iit;
+ for(iit = begin; iit != end; ++iit) {
+ max_vcount = std::max(max_vcount,static_cast<size_t>(*iit));
+ }
+
+ std::vector<IfcFloat> temp((max_vcount+2)*4);
+ normals.reserve( normals.size() + mVertcnt.size()-ofs );
+
+ // `NewellNormal()` currently has a relatively strange interface and need to
+ // re-structure things a bit to meet them.
+ size_t vidx = std::accumulate(mVertcnt.begin(),begin,0);
+ for(iit = begin; iit != end; vidx += *iit++) {
+ if (!*iit) {
+ normals.push_back(IfcVector3());
+ continue;
+ }
+ for(size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) {
+ const IfcVector3& v = mVerts[vidx+vofs];
+ temp[cnt++] = v.x;
+ temp[cnt++] = v.y;
+ temp[cnt++] = v.z;
+#ifdef ASSIMP_BUILD_DEBUG
+ temp[cnt] = std::numeric_limits<IfcFloat>::quiet_NaN();
+#endif
+ ++cnt;
+ }
+
+ normals.push_back(IfcVector3());
+ NewellNormal<4,4,4>(normals.back(),*iit,&temp[0],&temp[1],&temp[2]);
+ }
+
+ if(normalize) {
+ for(IfcVector3& n : normals) {
+ n.Normalize();
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Compute the normal of the last polygon in the given mesh
+IfcVector3 TempMesh::ComputeLastPolygonNormal(bool normalize) const {
+ return ComputePolygonNormal(&mVerts[mVerts.size() - mVertcnt.back()], mVertcnt.back(), normalize);
+}
+
+struct CompareVector {
+ bool operator () (const IfcVector3& a, const IfcVector3& b) const {
+ IfcVector3 d = a - b;
+ IfcFloat eps = ai_epsilon;
+ return d.x < -eps || (std::abs(d.x) < eps && d.y < -eps) || (std::abs(d.x) < eps && std::abs(d.y) < eps && d.z < -eps);
+ }
+};
+
+struct FindVector {
+ IfcVector3 v;
+ FindVector(const IfcVector3& p) : v(p) { }
+ bool operator()(const IfcVector3 &p) {
+ return FuzzyVectorCompare(ai_epsilon)(p, v);
+ }
+};
+
+// ------------------------------------------------------------------------------------------------
+void TempMesh::FixupFaceOrientation()
+{
+ const IfcVector3 vavg = Center();
+
+ // create a list of start indices for all faces to allow random access to faces
+ std::vector<size_t> faceStartIndices(mVertcnt.size());
+ for( size_t i = 0, a = 0; a < mVertcnt.size(); i += mVertcnt[a], ++a )
+ faceStartIndices[a] = i;
+
+ // list all faces on a vertex
+ std::map<IfcVector3, std::vector<size_t>, CompareVector> facesByVertex;
+ for( size_t a = 0; a < mVertcnt.size(); ++a )
+ {
+ for( size_t b = 0; b < mVertcnt[a]; ++b )
+ facesByVertex[mVerts[faceStartIndices[a] + b]].push_back(a);
+ }
+ // determine neighbourhood for all polys
+ std::vector<size_t> neighbour(mVerts.size(), SIZE_MAX);
+ std::vector<size_t> tempIntersect(10);
+ for( size_t a = 0; a < mVertcnt.size(); ++a )
+ {
+ for( size_t b = 0; b < mVertcnt[a]; ++b )
+ {
+ size_t ib = faceStartIndices[a] + b, nib = faceStartIndices[a] + (b + 1) % mVertcnt[a];
+ const std::vector<size_t>& facesOnB = facesByVertex[mVerts[ib]];
+ const std::vector<size_t>& facesOnNB = facesByVertex[mVerts[nib]];
+ // there should be exactly one or two faces which appear in both lists. Our face and the other side
+ std::vector<size_t>::iterator sectstart = tempIntersect.begin();
+ std::vector<size_t>::iterator sectend = std::set_intersection(
+ facesOnB.begin(), facesOnB.end(), facesOnNB.begin(), facesOnNB.end(), sectstart);
+
+ if( std::distance(sectstart, sectend) != 2 )
+ continue;
+ if( *sectstart == a )
+ ++sectstart;
+ neighbour[ib] = *sectstart;
+ }
+ }
+
+ // now we're getting started. We take the face which is the farthest away from the center. This face is most probably
+ // facing outwards. So we reverse this face to point outwards in relation to the center. Then we adapt neighbouring
+ // faces to have the same winding until all faces have been tested.
+ std::vector<bool> faceDone(mVertcnt.size(), false);
+ while( std::count(faceDone.begin(), faceDone.end(), false) != 0 )
+ {
+ // find the farthest of the remaining faces
+ size_t farthestIndex = SIZE_MAX;
+ IfcFloat farthestDistance = -1.0;
+ for( size_t a = 0; a < mVertcnt.size(); ++a )
+ {
+ if( faceDone[a] )
+ continue;
+ IfcVector3 faceCenter = std::accumulate(mVerts.begin() + faceStartIndices[a],
+ mVerts.begin() + faceStartIndices[a] + mVertcnt[a], IfcVector3(0.0)) / IfcFloat(mVertcnt[a]);
+ IfcFloat dst = (faceCenter - vavg).SquareLength();
+ if( dst > farthestDistance ) { farthestDistance = dst; farthestIndex = a; }
+ }
+
+ // calculate its normal and reverse the poly if its facing towards the mesh center
+ IfcVector3 farthestNormal = ComputePolygonNormal(mVerts.data() + faceStartIndices[farthestIndex], mVertcnt[farthestIndex]);
+ IfcVector3 farthestCenter = std::accumulate(mVerts.begin() + faceStartIndices[farthestIndex],
+ mVerts.begin() + faceStartIndices[farthestIndex] + mVertcnt[farthestIndex], IfcVector3(0.0))
+ / IfcFloat(mVertcnt[farthestIndex]);
+ // We accept a bit of negative orientation without reversing. In case of doubt, prefer the orientation given in
+ // the file.
+ if( (farthestNormal * (farthestCenter - vavg).Normalize()) < -0.4 )
+ {
+ size_t fsi = faceStartIndices[farthestIndex], fvc = mVertcnt[farthestIndex];
+ std::reverse(mVerts.begin() + fsi, mVerts.begin() + fsi + fvc);
+ std::reverse(neighbour.begin() + fsi, neighbour.begin() + fsi + fvc);
+ // because of the neighbour index belonging to the edge starting with the point at the same index, we need to
+ // cycle the neighbours through to match the edges again.
+ // Before: points A - B - C - D with edge neighbour p - q - r - s
+ // After: points D - C - B - A, reversed neighbours are s - r - q - p, but the should be
+ // r q p s
+ for( size_t a = 0; a < fvc - 1; ++a )
+ std::swap(neighbour[fsi + a], neighbour[fsi + a + 1]);
+ }
+ faceDone[farthestIndex] = true;
+ std::vector<size_t> todo;
+ todo.push_back(farthestIndex);
+
+ // go over its neighbour faces recursively and adapt their winding order to match the farthest face
+ while( !todo.empty() )
+ {
+ size_t tdf = todo.back();
+ size_t vsi = faceStartIndices[tdf], vc = mVertcnt[tdf];
+ todo.pop_back();
+
+ // check its neighbours
+ for( size_t a = 0; a < vc; ++a )
+ {
+ // ignore neighbours if we already checked them
+ size_t nbi = neighbour[vsi + a];
+ if( nbi == SIZE_MAX || faceDone[nbi] )
+ continue;
+
+ const IfcVector3& vp = mVerts[vsi + a];
+ size_t nbvsi = faceStartIndices[nbi], nbvc = mVertcnt[nbi];
+ std::vector<IfcVector3>::iterator it = std::find_if(mVerts.begin() + nbvsi, mVerts.begin() + nbvsi + nbvc, FindVector(vp));
+ ai_assert(it != mVerts.begin() + nbvsi + nbvc);
+ size_t nb_vidx = std::distance(mVerts.begin() + nbvsi, it);
+ // two faces winded in the same direction should have a crossed edge, where one face has p0->p1 and the other
+ // has p1'->p0'. If the next point on the neighbouring face is also the next on the current face, we need
+ // to reverse the neighbour
+ nb_vidx = (nb_vidx + 1) % nbvc;
+ size_t oursideidx = (a + 1) % vc;
+ if (FuzzyVectorCompare(ai_epsilon)(mVerts[vsi + oursideidx], mVerts[nbvsi + nb_vidx])) {
+ std::reverse(mVerts.begin() + nbvsi, mVerts.begin() + nbvsi + nbvc);
+ std::reverse(neighbour.begin() + nbvsi, neighbour.begin() + nbvsi + nbvc);
+ for (size_t aa = 0; aa < nbvc - 1; ++aa) {
+ std::swap(neighbour[nbvsi + aa], neighbour[nbvsi + aa + 1]);
+ }
+ }
+
+ // either way we're done with the neighbour. Mark it as done and continue checking from there recursively
+ faceDone[nbi] = true;
+ todo.push_back(nbi);
+ }
+ }
+
+ // no more faces reachable from this part of the surface, start over with a disjunct part and its farthest face
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void TempMesh::RemoveAdjacentDuplicates() {
+ bool drop = false;
+ std::vector<IfcVector3>::iterator base = mVerts.begin();
+ for(unsigned int& cnt : mVertcnt) {
+ if (cnt < 2){
+ base += cnt;
+ continue;
+ }
+
+ IfcVector3 vmin,vmax;
+ ArrayBounds(&*base, cnt ,vmin,vmax);
+
+
+ const IfcFloat epsilon = (vmax-vmin).SquareLength() / static_cast<IfcFloat>(1e9);
+ //const IfcFloat dotepsilon = 1e-9;
+
+ //// look for vertices that lie directly on the line between their predecessor and their
+ //// successor and replace them with either of them.
+
+ //for(size_t i = 0; i < cnt; ++i) {
+ // IfcVector3& v1 = *(base+i), &v0 = *(base+(i?i-1:cnt-1)), &v2 = *(base+(i+1)%cnt);
+ // const IfcVector3& d0 = (v1-v0), &d1 = (v2-v1);
+ // const IfcFloat l0 = d0.SquareLength(), l1 = d1.SquareLength();
+ // if (!l0 || !l1) {
+ // continue;
+ // }
+
+ // const IfcFloat d = (d0/std::sqrt(l0))*(d1/std::sqrt(l1));
+
+ // if ( d >= 1.f-dotepsilon ) {
+ // v1 = v0;
+ // }
+ // else if ( d < -1.f+dotepsilon ) {
+ // v2 = v1;
+ // continue;
+ // }
+ //}
+
+ // drop any identical, adjacent vertices. this pass will collect the dropouts
+ // of the previous pass as a side-effect.
+ FuzzyVectorCompare fz(epsilon);
+ std::vector<IfcVector3>::iterator end = base+cnt, e = std::unique( base, end, fz );
+ if (e != end) {
+ cnt -= static_cast<unsigned int>(std::distance(e, end));
+ mVerts.erase(e,end);
+ drop = true;
+ }
+
+ // check front and back vertices for this polygon
+ if (cnt > 1 && fz(*base,*(base+cnt-1))) {
+ mVerts.erase(base+ --cnt);
+ drop = true;
+ }
+
+ // removing adjacent duplicates shouldn't erase everything :-)
+ ai_assert(cnt>0);
+ base += cnt;
+ }
+ if(drop) {
+ IFCImporter::LogVerboseDebug("removing duplicate vertices");
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void TempMesh::Swap(TempMesh& other)
+{
+ mVertcnt.swap(other.mVertcnt);
+ mVerts.swap(other.mVerts);
+}
+
+// ------------------------------------------------------------------------------------------------
+bool IsTrue(const ::Assimp::STEP::EXPRESS::BOOLEAN& in)
+{
+ return (std::string)in == "TRUE" || (std::string)in == "T";
+}
+
+// ------------------------------------------------------------------------------------------------
+IfcFloat ConvertSIPrefix(const std::string& prefix)
+{
+ if (prefix == "EXA") {
+ return 1e18f;
+ }
+ else if (prefix == "PETA") {
+ return 1e15f;
+ }
+ else if (prefix == "TERA") {
+ return 1e12f;
+ }
+ else if (prefix == "GIGA") {
+ return 1e9f;
+ }
+ else if (prefix == "MEGA") {
+ return 1e6f;
+ }
+ else if (prefix == "KILO") {
+ return 1e3f;
+ }
+ else if (prefix == "HECTO") {
+ return 1e2f;
+ }
+ else if (prefix == "DECA") {
+ return 1e-0f;
+ }
+ else if (prefix == "DECI") {
+ return 1e-1f;
+ }
+ else if (prefix == "CENTI") {
+ return 1e-2f;
+ }
+ else if (prefix == "MILLI") {
+ return 1e-3f;
+ }
+ else if (prefix == "MICRO") {
+ return 1e-6f;
+ }
+ else if (prefix == "NANO") {
+ return 1e-9f;
+ }
+ else if (prefix == "PICO") {
+ return 1e-12f;
+ }
+ else if (prefix == "FEMTO") {
+ return 1e-15f;
+ }
+ else if (prefix == "ATTO") {
+ return 1e-18f;
+ }
+ else {
+ IFCImporter::LogError("Unrecognized SI prefix: ", prefix);
+ return 1;
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void ConvertColor(aiColor4D& out, const Schema_2x3::IfcColourRgb& in)
+{
+ out.r = static_cast<float>( in.Red );
+ out.g = static_cast<float>( in.Green );
+ out.b = static_cast<float>( in.Blue );
+ out.a = static_cast<float>( 1.f );
+}
+
+// ------------------------------------------------------------------------------------------------
+void ConvertColor(aiColor4D& out, const Schema_2x3::IfcColourOrFactor& in,ConversionData& conv,const aiColor4D* base)
+{
+ if (const ::Assimp::STEP::EXPRESS::REAL* const r = in.ToPtr<::Assimp::STEP::EXPRESS::REAL>()) {
+ out.r = out.g = out.b = static_cast<float>(*r);
+ if(base) {
+ out.r *= static_cast<float>( base->r );
+ out.g *= static_cast<float>( base->g );
+ out.b *= static_cast<float>( base->b );
+ out.a = static_cast<float>( base->a );
+ }
+ else out.a = 1.0;
+ }
+ else if (const Schema_2x3::IfcColourRgb* const rgb = in.ResolveSelectPtr<Schema_2x3::IfcColourRgb>(conv.db)) {
+ ConvertColor(out,*rgb);
+ }
+ else {
+ IFCImporter::LogWarn("skipping unknown IfcColourOrFactor entity");
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void ConvertCartesianPoint(IfcVector3& out, const Schema_2x3::IfcCartesianPoint& in)
+{
+ out = IfcVector3();
+ for(size_t i = 0; i < in.Coordinates.size(); ++i) {
+ out[static_cast<unsigned int>(i)] = in.Coordinates[i];
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void ConvertVector(IfcVector3& out, const Schema_2x3::IfcVector& in)
+{
+ ConvertDirection(out,in.Orientation);
+ out *= in.Magnitude;
+}
+
+// ------------------------------------------------------------------------------------------------
+void ConvertDirection(IfcVector3& out, const Schema_2x3::IfcDirection& in)
+{
+ out = IfcVector3();
+ for(size_t i = 0; i < in.DirectionRatios.size(); ++i) {
+ out[static_cast<unsigned int>(i)] = in.DirectionRatios[i];
+ }
+ const IfcFloat len = out.Length();
+ if (len < ai_epsilon) {
+ IFCImporter::LogWarn("direction vector magnitude too small, normalization would result in a division by zero");
+ return;
+ }
+ out /= len;
+}
+
+// ------------------------------------------------------------------------------------------------
+void AssignMatrixAxes(IfcMatrix4& out, const IfcVector3& x, const IfcVector3& y, const IfcVector3& z)
+{
+ out.a1 = x.x;
+ out.b1 = x.y;
+ out.c1 = x.z;
+
+ out.a2 = y.x;
+ out.b2 = y.y;
+ out.c2 = y.z;
+
+ out.a3 = z.x;
+ out.b3 = z.y;
+ out.c3 = z.z;
+}
+
+// ------------------------------------------------------------------------------------------------
+void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement3D& in)
+{
+ IfcVector3 loc;
+ ConvertCartesianPoint(loc,in.Location);
+
+ IfcVector3 z(0.f,0.f,1.f),r(1.f,0.f,0.f),x;
+
+ if (in.Axis) {
+ ConvertDirection(z,*in.Axis.Get());
+ }
+ if (in.RefDirection) {
+ ConvertDirection(r,*in.RefDirection.Get());
+ }
+
+ IfcVector3 v = r.Normalize();
+ IfcVector3 tmpx = z * (v*z);
+
+ x = (v-tmpx).Normalize();
+ IfcVector3 y = (z^x);
+
+ IfcMatrix4::Translation(loc,out);
+ AssignMatrixAxes(out,x,y,z);
+}
+
+// ------------------------------------------------------------------------------------------------
+void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement2D& in)
+{
+ IfcVector3 loc;
+ ConvertCartesianPoint(loc,in.Location);
+
+ IfcVector3 x(1.f,0.f,0.f);
+ if (in.RefDirection) {
+ ConvertDirection(x,*in.RefDirection.Get());
+ }
+
+ const IfcVector3 y = IfcVector3(x.y,-x.x,0.f);
+
+ IfcMatrix4::Translation(loc,out);
+ AssignMatrixAxes(out,x,y,IfcVector3(0.f,0.f,1.f));
+}
+
+// ------------------------------------------------------------------------------------------------
+void ConvertAxisPlacement(IfcVector3& axis, IfcVector3& pos, const Schema_2x3::IfcAxis1Placement& in)
+{
+ ConvertCartesianPoint(pos,in.Location);
+ if (in.Axis) {
+ ConvertDirection(axis,in.Axis.Get());
+ }
+ else {
+ axis = IfcVector3(0.f,0.f,1.f);
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement& in, ConversionData& conv)
+{
+ if(const Schema_2x3::IfcAxis2Placement3D* pl3 = in.ResolveSelectPtr<Schema_2x3::IfcAxis2Placement3D>(conv.db)) {
+ ConvertAxisPlacement(out,*pl3);
+ }
+ else if(const Schema_2x3::IfcAxis2Placement2D* pl2 = in.ResolveSelectPtr<Schema_2x3::IfcAxis2Placement2D>(conv.db)) {
+ ConvertAxisPlacement(out,*pl2);
+ }
+ else {
+ IFCImporter::LogWarn("skipping unknown IfcAxis2Placement entity");
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void ConvertTransformOperator(IfcMatrix4& out, const Schema_2x3::IfcCartesianTransformationOperator& op)
+{
+ IfcVector3 loc;
+ ConvertCartesianPoint(loc,op.LocalOrigin);
+
+ IfcVector3 x(1.f,0.f,0.f),y(0.f,1.f,0.f),z(0.f,0.f,1.f);
+ if (op.Axis1) {
+ ConvertDirection(x,*op.Axis1.Get());
+ }
+ if (op.Axis2) {
+ ConvertDirection(y,*op.Axis2.Get());
+ }
+ if (const Schema_2x3::IfcCartesianTransformationOperator3D* op2 = op.ToPtr<Schema_2x3::IfcCartesianTransformationOperator3D>()) {
+ if(op2->Axis3) {
+ ConvertDirection(z,*op2->Axis3.Get());
+ }
+ }
+
+ IfcMatrix4 locm;
+ IfcMatrix4::Translation(loc,locm);
+ AssignMatrixAxes(out,x,y,z);
+
+
+ IfcVector3 vscale;
+ if (const Schema_2x3::IfcCartesianTransformationOperator3DnonUniform* nuni = op.ToPtr<Schema_2x3::IfcCartesianTransformationOperator3DnonUniform>()) {
+ vscale.x = nuni->Scale?op.Scale.Get():1.f;
+ vscale.y = nuni->Scale2?nuni->Scale2.Get():1.f;
+ vscale.z = nuni->Scale3?nuni->Scale3.Get():1.f;
+ }
+ else {
+ const IfcFloat sc = op.Scale?op.Scale.Get():1.f;
+ vscale = IfcVector3(sc,sc,sc);
+ }
+
+ IfcMatrix4 s;
+ IfcMatrix4::Scaling(vscale,s);
+
+ out = locm * out * s;
+}
+
+
+} // ! IFC
+} // ! Assimp
+
+#endif