summaryrefslogtreecommitdiff
path: root/libs/cairo-1.16.0/src/cairo-matrix.c
diff options
context:
space:
mode:
authorsanine <sanine.not@pm.me>2022-10-12 12:03:23 -0500
committersanine <sanine.not@pm.me>2022-10-12 12:03:23 -0500
commit530ffd0b7d3c39757b20f00716e486b5caf89aff (patch)
tree76b35fdf57317038acf6b828871f6ae25fce2ebe /libs/cairo-1.16.0/src/cairo-matrix.c
parent3dbe9332e47c143a237db12440f134caebd1cfbe (diff)
add cairo
Diffstat (limited to 'libs/cairo-1.16.0/src/cairo-matrix.c')
-rw-r--r--libs/cairo-1.16.0/src/cairo-matrix.c1206
1 files changed, 1206 insertions, 0 deletions
diff --git a/libs/cairo-1.16.0/src/cairo-matrix.c b/libs/cairo-1.16.0/src/cairo-matrix.c
new file mode 100644
index 0000000..f3cf684
--- /dev/null
+++ b/libs/cairo-1.16.0/src/cairo-matrix.c
@@ -0,0 +1,1206 @@
+/* cairo - a vector graphics library with display and print output
+ *
+ * Copyright © 2002 University of Southern California
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ *
+ * The Original Code is the cairo graphics library.
+ *
+ * The Initial Developer of the Original Code is University of Southern
+ * California.
+ *
+ * Contributor(s):
+ * Carl D. Worth <cworth@cworth.org>
+ */
+
+#include "cairoint.h"
+#include "cairo-error-private.h"
+#include <float.h>
+
+#define PIXMAN_MAX_INT ((pixman_fixed_1 >> 1) - pixman_fixed_e) /* need to ensure deltas also fit */
+
+/**
+ * SECTION:cairo-matrix
+ * @Title: cairo_matrix_t
+ * @Short_Description: Generic matrix operations
+ * @See_Also: #cairo_t
+ *
+ * #cairo_matrix_t is used throughout cairo to convert between different
+ * coordinate spaces. A #cairo_matrix_t holds an affine transformation,
+ * such as a scale, rotation, shear, or a combination of these.
+ * The transformation of a point (<literal>x</literal>,<literal>y</literal>)
+ * is given by:
+ *
+ * <programlisting>
+ * x_new = xx * x + xy * y + x0;
+ * y_new = yx * x + yy * y + y0;
+ * </programlisting>
+ *
+ * The current transformation matrix of a #cairo_t, represented as a
+ * #cairo_matrix_t, defines the transformation from user-space
+ * coordinates to device-space coordinates. See cairo_get_matrix() and
+ * cairo_set_matrix().
+ **/
+
+static void
+_cairo_matrix_scalar_multiply (cairo_matrix_t *matrix, double scalar);
+
+static void
+_cairo_matrix_compute_adjoint (cairo_matrix_t *matrix);
+
+/**
+ * cairo_matrix_init_identity:
+ * @matrix: a #cairo_matrix_t
+ *
+ * Modifies @matrix to be an identity transformation.
+ *
+ * Since: 1.0
+ **/
+void
+cairo_matrix_init_identity (cairo_matrix_t *matrix)
+{
+ cairo_matrix_init (matrix,
+ 1, 0,
+ 0, 1,
+ 0, 0);
+}
+slim_hidden_def(cairo_matrix_init_identity);
+
+/**
+ * cairo_matrix_init:
+ * @matrix: a #cairo_matrix_t
+ * @xx: xx component of the affine transformation
+ * @yx: yx component of the affine transformation
+ * @xy: xy component of the affine transformation
+ * @yy: yy component of the affine transformation
+ * @x0: X translation component of the affine transformation
+ * @y0: Y translation component of the affine transformation
+ *
+ * Sets @matrix to be the affine transformation given by
+ * @xx, @yx, @xy, @yy, @x0, @y0. The transformation is given
+ * by:
+ * <programlisting>
+ * x_new = xx * x + xy * y + x0;
+ * y_new = yx * x + yy * y + y0;
+ * </programlisting>
+ *
+ * Since: 1.0
+ **/
+void
+cairo_matrix_init (cairo_matrix_t *matrix,
+ double xx, double yx,
+
+ double xy, double yy,
+ double x0, double y0)
+{
+ matrix->xx = xx; matrix->yx = yx;
+ matrix->xy = xy; matrix->yy = yy;
+ matrix->x0 = x0; matrix->y0 = y0;
+}
+slim_hidden_def(cairo_matrix_init);
+
+/**
+ * _cairo_matrix_get_affine:
+ * @matrix: a #cairo_matrix_t
+ * @xx: location to store xx component of matrix
+ * @yx: location to store yx component of matrix
+ * @xy: location to store xy component of matrix
+ * @yy: location to store yy component of matrix
+ * @x0: location to store x0 (X-translation component) of matrix, or %NULL
+ * @y0: location to store y0 (Y-translation component) of matrix, or %NULL
+ *
+ * Gets the matrix values for the affine transformation that @matrix represents.
+ * See cairo_matrix_init().
+ *
+ *
+ * This function is a leftover from the old public API, but is still
+ * mildly useful as an internal means for getting at the matrix
+ * members in a positional way. For example, when reassigning to some
+ * external matrix type, or when renaming members to more meaningful
+ * names (such as a,b,c,d,e,f) for particular manipulations.
+ **/
+void
+_cairo_matrix_get_affine (const cairo_matrix_t *matrix,
+ double *xx, double *yx,
+ double *xy, double *yy,
+ double *x0, double *y0)
+{
+ *xx = matrix->xx;
+ *yx = matrix->yx;
+
+ *xy = matrix->xy;
+ *yy = matrix->yy;
+
+ if (x0)
+ *x0 = matrix->x0;
+ if (y0)
+ *y0 = matrix->y0;
+}
+
+/**
+ * cairo_matrix_init_translate:
+ * @matrix: a #cairo_matrix_t
+ * @tx: amount to translate in the X direction
+ * @ty: amount to translate in the Y direction
+ *
+ * Initializes @matrix to a transformation that translates by @tx and
+ * @ty in the X and Y dimensions, respectively.
+ *
+ * Since: 1.0
+ **/
+void
+cairo_matrix_init_translate (cairo_matrix_t *matrix,
+ double tx, double ty)
+{
+ cairo_matrix_init (matrix,
+ 1, 0,
+ 0, 1,
+ tx, ty);
+}
+slim_hidden_def(cairo_matrix_init_translate);
+
+/**
+ * cairo_matrix_translate:
+ * @matrix: a #cairo_matrix_t
+ * @tx: amount to translate in the X direction
+ * @ty: amount to translate in the Y direction
+ *
+ * Applies a translation by @tx, @ty to the transformation in
+ * @matrix. The effect of the new transformation is to first translate
+ * the coordinates by @tx and @ty, then apply the original transformation
+ * to the coordinates.
+ *
+ * Since: 1.0
+ **/
+void
+cairo_matrix_translate (cairo_matrix_t *matrix, double tx, double ty)
+{
+ cairo_matrix_t tmp;
+
+ cairo_matrix_init_translate (&tmp, tx, ty);
+
+ cairo_matrix_multiply (matrix, &tmp, matrix);
+}
+slim_hidden_def (cairo_matrix_translate);
+
+/**
+ * cairo_matrix_init_scale:
+ * @matrix: a #cairo_matrix_t
+ * @sx: scale factor in the X direction
+ * @sy: scale factor in the Y direction
+ *
+ * Initializes @matrix to a transformation that scales by @sx and @sy
+ * in the X and Y dimensions, respectively.
+ *
+ * Since: 1.0
+ **/
+void
+cairo_matrix_init_scale (cairo_matrix_t *matrix,
+ double sx, double sy)
+{
+ cairo_matrix_init (matrix,
+ sx, 0,
+ 0, sy,
+ 0, 0);
+}
+slim_hidden_def(cairo_matrix_init_scale);
+
+/**
+ * cairo_matrix_scale:
+ * @matrix: a #cairo_matrix_t
+ * @sx: scale factor in the X direction
+ * @sy: scale factor in the Y direction
+ *
+ * Applies scaling by @sx, @sy to the transformation in @matrix. The
+ * effect of the new transformation is to first scale the coordinates
+ * by @sx and @sy, then apply the original transformation to the coordinates.
+ *
+ * Since: 1.0
+ **/
+void
+cairo_matrix_scale (cairo_matrix_t *matrix, double sx, double sy)
+{
+ cairo_matrix_t tmp;
+
+ cairo_matrix_init_scale (&tmp, sx, sy);
+
+ cairo_matrix_multiply (matrix, &tmp, matrix);
+}
+slim_hidden_def(cairo_matrix_scale);
+
+/**
+ * cairo_matrix_init_rotate:
+ * @matrix: a #cairo_matrix_t
+ * @radians: angle of rotation, in radians. The direction of rotation
+ * is defined such that positive angles rotate in the direction from
+ * the positive X axis toward the positive Y axis. With the default
+ * axis orientation of cairo, positive angles rotate in a clockwise
+ * direction.
+ *
+ * Initialized @matrix to a transformation that rotates by @radians.
+ *
+ * Since: 1.0
+ **/
+void
+cairo_matrix_init_rotate (cairo_matrix_t *matrix,
+ double radians)
+{
+ double s;
+ double c;
+
+ s = sin (radians);
+ c = cos (radians);
+
+ cairo_matrix_init (matrix,
+ c, s,
+ -s, c,
+ 0, 0);
+}
+slim_hidden_def(cairo_matrix_init_rotate);
+
+/**
+ * cairo_matrix_rotate:
+ * @matrix: a #cairo_matrix_t
+ * @radians: angle of rotation, in radians. The direction of rotation
+ * is defined such that positive angles rotate in the direction from
+ * the positive X axis toward the positive Y axis. With the default
+ * axis orientation of cairo, positive angles rotate in a clockwise
+ * direction.
+ *
+ * Applies rotation by @radians to the transformation in
+ * @matrix. The effect of the new transformation is to first rotate the
+ * coordinates by @radians, then apply the original transformation
+ * to the coordinates.
+ *
+ * Since: 1.0
+ **/
+void
+cairo_matrix_rotate (cairo_matrix_t *matrix, double radians)
+{
+ cairo_matrix_t tmp;
+
+ cairo_matrix_init_rotate (&tmp, radians);
+
+ cairo_matrix_multiply (matrix, &tmp, matrix);
+}
+
+/**
+ * cairo_matrix_multiply:
+ * @result: a #cairo_matrix_t in which to store the result
+ * @a: a #cairo_matrix_t
+ * @b: a #cairo_matrix_t
+ *
+ * Multiplies the affine transformations in @a and @b together
+ * and stores the result in @result. The effect of the resulting
+ * transformation is to first apply the transformation in @a to the
+ * coordinates and then apply the transformation in @b to the
+ * coordinates.
+ *
+ * It is allowable for @result to be identical to either @a or @b.
+ *
+ * Since: 1.0
+ **/
+/*
+ * XXX: The ordering of the arguments to this function corresponds
+ * to [row_vector]*A*B. If we want to use column vectors instead,
+ * then we need to switch the two arguments and fix up all
+ * uses.
+ */
+void
+cairo_matrix_multiply (cairo_matrix_t *result, const cairo_matrix_t *a, const cairo_matrix_t *b)
+{
+ cairo_matrix_t r;
+
+ r.xx = a->xx * b->xx + a->yx * b->xy;
+ r.yx = a->xx * b->yx + a->yx * b->yy;
+
+ r.xy = a->xy * b->xx + a->yy * b->xy;
+ r.yy = a->xy * b->yx + a->yy * b->yy;
+
+ r.x0 = a->x0 * b->xx + a->y0 * b->xy + b->x0;
+ r.y0 = a->x0 * b->yx + a->y0 * b->yy + b->y0;
+
+ *result = r;
+}
+slim_hidden_def(cairo_matrix_multiply);
+
+void
+_cairo_matrix_multiply (cairo_matrix_t *r,
+ const cairo_matrix_t *a,
+ const cairo_matrix_t *b)
+{
+ r->xx = a->xx * b->xx + a->yx * b->xy;
+ r->yx = a->xx * b->yx + a->yx * b->yy;
+
+ r->xy = a->xy * b->xx + a->yy * b->xy;
+ r->yy = a->xy * b->yx + a->yy * b->yy;
+
+ r->x0 = a->x0 * b->xx + a->y0 * b->xy + b->x0;
+ r->y0 = a->x0 * b->yx + a->y0 * b->yy + b->y0;
+}
+
+/**
+ * cairo_matrix_transform_distance:
+ * @matrix: a #cairo_matrix_t
+ * @dx: X component of a distance vector. An in/out parameter
+ * @dy: Y component of a distance vector. An in/out parameter
+ *
+ * Transforms the distance vector (@dx,@dy) by @matrix. This is
+ * similar to cairo_matrix_transform_point() except that the translation
+ * components of the transformation are ignored. The calculation of
+ * the returned vector is as follows:
+ *
+ * <programlisting>
+ * dx2 = dx1 * a + dy1 * c;
+ * dy2 = dx1 * b + dy1 * d;
+ * </programlisting>
+ *
+ * Affine transformations are position invariant, so the same vector
+ * always transforms to the same vector. If (@x1,@y1) transforms
+ * to (@x2,@y2) then (@x1+@dx1,@y1+@dy1) will transform to
+ * (@x1+@dx2,@y1+@dy2) for all values of @x1 and @x2.
+ *
+ * Since: 1.0
+ **/
+void
+cairo_matrix_transform_distance (const cairo_matrix_t *matrix, double *dx, double *dy)
+{
+ double new_x, new_y;
+
+ new_x = (matrix->xx * *dx + matrix->xy * *dy);
+ new_y = (matrix->yx * *dx + matrix->yy * *dy);
+
+ *dx = new_x;
+ *dy = new_y;
+}
+slim_hidden_def(cairo_matrix_transform_distance);
+
+/**
+ * cairo_matrix_transform_point:
+ * @matrix: a #cairo_matrix_t
+ * @x: X position. An in/out parameter
+ * @y: Y position. An in/out parameter
+ *
+ * Transforms the point (@x, @y) by @matrix.
+ *
+ * Since: 1.0
+ **/
+void
+cairo_matrix_transform_point (const cairo_matrix_t *matrix, double *x, double *y)
+{
+ cairo_matrix_transform_distance (matrix, x, y);
+
+ *x += matrix->x0;
+ *y += matrix->y0;
+}
+slim_hidden_def(cairo_matrix_transform_point);
+
+void
+_cairo_matrix_transform_bounding_box (const cairo_matrix_t *matrix,
+ double *x1, double *y1,
+ double *x2, double *y2,
+ cairo_bool_t *is_tight)
+{
+ int i;
+ double quad_x[4], quad_y[4];
+ double min_x, max_x;
+ double min_y, max_y;
+
+ if (matrix->xy == 0. && matrix->yx == 0.) {
+ /* non-rotation/skew matrix, just map the two extreme points */
+
+ if (matrix->xx != 1.) {
+ quad_x[0] = *x1 * matrix->xx;
+ quad_x[1] = *x2 * matrix->xx;
+ if (quad_x[0] < quad_x[1]) {
+ *x1 = quad_x[0];
+ *x2 = quad_x[1];
+ } else {
+ *x1 = quad_x[1];
+ *x2 = quad_x[0];
+ }
+ }
+ if (matrix->x0 != 0.) {
+ *x1 += matrix->x0;
+ *x2 += matrix->x0;
+ }
+
+ if (matrix->yy != 1.) {
+ quad_y[0] = *y1 * matrix->yy;
+ quad_y[1] = *y2 * matrix->yy;
+ if (quad_y[0] < quad_y[1]) {
+ *y1 = quad_y[0];
+ *y2 = quad_y[1];
+ } else {
+ *y1 = quad_y[1];
+ *y2 = quad_y[0];
+ }
+ }
+ if (matrix->y0 != 0.) {
+ *y1 += matrix->y0;
+ *y2 += matrix->y0;
+ }
+
+ if (is_tight)
+ *is_tight = TRUE;
+
+ return;
+ }
+
+ /* general matrix */
+ quad_x[0] = *x1;
+ quad_y[0] = *y1;
+ cairo_matrix_transform_point (matrix, &quad_x[0], &quad_y[0]);
+
+ quad_x[1] = *x2;
+ quad_y[1] = *y1;
+ cairo_matrix_transform_point (matrix, &quad_x[1], &quad_y[1]);
+
+ quad_x[2] = *x1;
+ quad_y[2] = *y2;
+ cairo_matrix_transform_point (matrix, &quad_x[2], &quad_y[2]);
+
+ quad_x[3] = *x2;
+ quad_y[3] = *y2;
+ cairo_matrix_transform_point (matrix, &quad_x[3], &quad_y[3]);
+
+ min_x = max_x = quad_x[0];
+ min_y = max_y = quad_y[0];
+
+ for (i=1; i < 4; i++) {
+ if (quad_x[i] < min_x)
+ min_x = quad_x[i];
+ if (quad_x[i] > max_x)
+ max_x = quad_x[i];
+
+ if (quad_y[i] < min_y)
+ min_y = quad_y[i];
+ if (quad_y[i] > max_y)
+ max_y = quad_y[i];
+ }
+
+ *x1 = min_x;
+ *y1 = min_y;
+ *x2 = max_x;
+ *y2 = max_y;
+
+ if (is_tight) {
+ /* it's tight if and only if the four corner points form an axis-aligned
+ rectangle.
+ And that's true if and only if we can derive corners 0 and 3 from
+ corners 1 and 2 in one of two straightforward ways...
+ We could use a tolerance here but for now we'll fall back to FALSE in the case
+ of floating point error.
+ */
+ *is_tight =
+ (quad_x[1] == quad_x[0] && quad_y[1] == quad_y[3] &&
+ quad_x[2] == quad_x[3] && quad_y[2] == quad_y[0]) ||
+ (quad_x[1] == quad_x[3] && quad_y[1] == quad_y[0] &&
+ quad_x[2] == quad_x[0] && quad_y[2] == quad_y[3]);
+ }
+}
+
+cairo_private void
+_cairo_matrix_transform_bounding_box_fixed (const cairo_matrix_t *matrix,
+ cairo_box_t *bbox,
+ cairo_bool_t *is_tight)
+{
+ double x1, y1, x2, y2;
+
+ _cairo_box_to_doubles (bbox, &x1, &y1, &x2, &y2);
+ _cairo_matrix_transform_bounding_box (matrix, &x1, &y1, &x2, &y2, is_tight);
+ _cairo_box_from_doubles (bbox, &x1, &y1, &x2, &y2);
+}
+
+static void
+_cairo_matrix_scalar_multiply (cairo_matrix_t *matrix, double scalar)
+{
+ matrix->xx *= scalar;
+ matrix->yx *= scalar;
+
+ matrix->xy *= scalar;
+ matrix->yy *= scalar;
+
+ matrix->x0 *= scalar;
+ matrix->y0 *= scalar;
+}
+
+/* This function isn't a correct adjoint in that the implicit 1 in the
+ homogeneous result should actually be ad-bc instead. But, since this
+ adjoint is only used in the computation of the inverse, which
+ divides by det (A)=ad-bc anyway, everything works out in the end. */
+static void
+_cairo_matrix_compute_adjoint (cairo_matrix_t *matrix)
+{
+ /* adj (A) = transpose (C:cofactor (A,i,j)) */
+ double a, b, c, d, tx, ty;
+
+ _cairo_matrix_get_affine (matrix,
+ &a, &b,
+ &c, &d,
+ &tx, &ty);
+
+ cairo_matrix_init (matrix,
+ d, -b,
+ -c, a,
+ c*ty - d*tx, b*tx - a*ty);
+}
+
+/**
+ * cairo_matrix_invert:
+ * @matrix: a #cairo_matrix_t
+ *
+ * Changes @matrix to be the inverse of its original value. Not
+ * all transformation matrices have inverses; if the matrix
+ * collapses points together (it is <firstterm>degenerate</firstterm>),
+ * then it has no inverse and this function will fail.
+ *
+ * Returns: If @matrix has an inverse, modifies @matrix to
+ * be the inverse matrix and returns %CAIRO_STATUS_SUCCESS. Otherwise,
+ * returns %CAIRO_STATUS_INVALID_MATRIX.
+ *
+ * Since: 1.0
+ **/
+cairo_status_t
+cairo_matrix_invert (cairo_matrix_t *matrix)
+{
+ double det;
+
+ /* Simple scaling|translation matrices are quite common... */
+ if (matrix->xy == 0. && matrix->yx == 0.) {
+ matrix->x0 = -matrix->x0;
+ matrix->y0 = -matrix->y0;
+
+ if (matrix->xx != 1.) {
+ if (matrix->xx == 0.)
+ return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
+
+ matrix->xx = 1. / matrix->xx;
+ matrix->x0 *= matrix->xx;
+ }
+
+ if (matrix->yy != 1.) {
+ if (matrix->yy == 0.)
+ return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
+
+ matrix->yy = 1. / matrix->yy;
+ matrix->y0 *= matrix->yy;
+ }
+
+ return CAIRO_STATUS_SUCCESS;
+ }
+
+ /* inv (A) = 1/det (A) * adj (A) */
+ det = _cairo_matrix_compute_determinant (matrix);
+
+ if (! ISFINITE (det))
+ return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
+
+ if (det == 0)
+ return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
+
+ _cairo_matrix_compute_adjoint (matrix);
+ _cairo_matrix_scalar_multiply (matrix, 1 / det);
+
+ return CAIRO_STATUS_SUCCESS;
+}
+slim_hidden_def(cairo_matrix_invert);
+
+cairo_bool_t
+_cairo_matrix_is_invertible (const cairo_matrix_t *matrix)
+{
+ double det;
+
+ det = _cairo_matrix_compute_determinant (matrix);
+
+ return ISFINITE (det) && det != 0.;
+}
+
+cairo_bool_t
+_cairo_matrix_is_scale_0 (const cairo_matrix_t *matrix)
+{
+ return matrix->xx == 0. &&
+ matrix->xy == 0. &&
+ matrix->yx == 0. &&
+ matrix->yy == 0.;
+}
+
+double
+_cairo_matrix_compute_determinant (const cairo_matrix_t *matrix)
+{
+ double a, b, c, d;
+
+ a = matrix->xx; b = matrix->yx;
+ c = matrix->xy; d = matrix->yy;
+
+ return a*d - b*c;
+}
+
+/**
+ * _cairo_matrix_compute_basis_scale_factors:
+ * @matrix: a matrix
+ * @basis_scale: the scale factor in the direction of basis
+ * @normal_scale: the scale factor in the direction normal to the basis
+ * @x_basis: basis to use. X basis if true, Y basis otherwise.
+ *
+ * Computes |Mv| and det(M)/|Mv| for v=[1,0] if x_basis is true, and v=[0,1]
+ * otherwise, and M is @matrix.
+ *
+ * Return value: the scale factor of @matrix on the height of the font,
+ * or 1.0 if @matrix is %NULL.
+ **/
+cairo_status_t
+_cairo_matrix_compute_basis_scale_factors (const cairo_matrix_t *matrix,
+ double *basis_scale, double *normal_scale,
+ cairo_bool_t x_basis)
+{
+ double det;
+
+ det = _cairo_matrix_compute_determinant (matrix);
+
+ if (! ISFINITE (det))
+ return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
+
+ if (det == 0)
+ {
+ *basis_scale = *normal_scale = 0;
+ }
+ else
+ {
+ double x = x_basis != 0;
+ double y = x == 0;
+ double major, minor;
+
+ cairo_matrix_transform_distance (matrix, &x, &y);
+ major = hypot (x, y);
+ /*
+ * ignore mirroring
+ */
+ if (det < 0)
+ det = -det;
+ if (major)
+ minor = det / major;
+ else
+ minor = 0.0;
+ if (x_basis)
+ {
+ *basis_scale = major;
+ *normal_scale = minor;
+ }
+ else
+ {
+ *basis_scale = minor;
+ *normal_scale = major;
+ }
+ }
+
+ return CAIRO_STATUS_SUCCESS;
+}
+
+cairo_bool_t
+_cairo_matrix_is_integer_translation (const cairo_matrix_t *matrix,
+ int *itx, int *ity)
+{
+ if (_cairo_matrix_is_translation (matrix))
+ {
+ cairo_fixed_t x0_fixed = _cairo_fixed_from_double (matrix->x0);
+ cairo_fixed_t y0_fixed = _cairo_fixed_from_double (matrix->y0);
+
+ if (_cairo_fixed_is_integer (x0_fixed) &&
+ _cairo_fixed_is_integer (y0_fixed))
+ {
+ if (itx)
+ *itx = _cairo_fixed_integer_part (x0_fixed);
+ if (ity)
+ *ity = _cairo_fixed_integer_part (y0_fixed);
+
+ return TRUE;
+ }
+ }
+
+ return FALSE;
+}
+
+#define SCALING_EPSILON _cairo_fixed_to_double(1)
+
+/* This only returns true if the matrix is 90 degree rotations or
+ * flips. It appears calling code is relying on this. It will return
+ * false for other rotations even if the scale is one. Approximations
+ * are allowed to handle matricies filled in using trig functions
+ * such as sin(M_PI_2).
+ */
+cairo_bool_t
+_cairo_matrix_has_unity_scale (const cairo_matrix_t *matrix)
+{
+ /* check that the determinant is near +/-1 */
+ double det = _cairo_matrix_compute_determinant (matrix);
+ if (fabs (det * det - 1.0) < SCALING_EPSILON) {
+ /* check that one axis is close to zero */
+ if (fabs (matrix->xy) < SCALING_EPSILON &&
+ fabs (matrix->yx) < SCALING_EPSILON)
+ return TRUE;
+ if (fabs (matrix->xx) < SCALING_EPSILON &&
+ fabs (matrix->yy) < SCALING_EPSILON)
+ return TRUE;
+ /* If rotations are allowed then it must instead test for
+ * orthogonality. This is xx*xy+yx*yy ~= 0.
+ */
+ }
+ return FALSE;
+}
+
+/* By pixel exact here, we mean a matrix that is composed only of
+ * 90 degree rotations, flips, and integer translations and produces a 1:1
+ * mapping between source and destination pixels. If we transform an image
+ * with a pixel-exact matrix, filtering is not useful.
+ */
+cairo_bool_t
+_cairo_matrix_is_pixel_exact (const cairo_matrix_t *matrix)
+{
+ cairo_fixed_t x0_fixed, y0_fixed;
+
+ if (! _cairo_matrix_has_unity_scale (matrix))
+ return FALSE;
+
+ x0_fixed = _cairo_fixed_from_double (matrix->x0);
+ y0_fixed = _cairo_fixed_from_double (matrix->y0);
+
+ return _cairo_fixed_is_integer (x0_fixed) && _cairo_fixed_is_integer (y0_fixed);
+}
+
+/*
+ A circle in user space is transformed into an ellipse in device space.
+
+ The following is a derivation of a formula to calculate the length of the
+ major axis for this ellipse; this is useful for error bounds calculations.
+
+ Thanks to Walter Brisken <wbrisken@aoc.nrao.edu> for this derivation:
+
+ 1. First some notation:
+
+ All capital letters represent vectors in two dimensions. A prime '
+ represents a transformed coordinate. Matrices are written in underlined
+ form, ie _R_. Lowercase letters represent scalar real values.
+
+ 2. The question has been posed: What is the maximum expansion factor
+ achieved by the linear transformation
+
+ X' = X _R_
+
+ where _R_ is a real-valued 2x2 matrix with entries:
+
+ _R_ = [a b]
+ [c d] .
+
+ In other words, what is the maximum radius, MAX[ |X'| ], reached for any
+ X on the unit circle ( |X| = 1 ) ?
+
+ 3. Some useful formulae
+
+ (A) through (C) below are standard double-angle formulae. (D) is a lesser
+ known result and is derived below:
+
+ (A) sin²(θ) = (1 - cos(2*θ))/2
+ (B) cos²(θ) = (1 + cos(2*θ))/2
+ (C) sin(θ)*cos(θ) = sin(2*θ)/2
+ (D) MAX[a*cos(θ) + b*sin(θ)] = sqrt(a² + b²)
+
+ Proof of (D):
+
+ find the maximum of the function by setting the derivative to zero:
+
+ -a*sin(θ)+b*cos(θ) = 0
+
+ From this it follows that
+
+ tan(θ) = b/a
+
+ and hence
+
+ sin(θ) = b/sqrt(a² + b²)
+
+ and
+
+ cos(θ) = a/sqrt(a² + b²)
+
+ Thus the maximum value is
+
+ MAX[a*cos(θ) + b*sin(θ)] = (a² + b²)/sqrt(a² + b²)
+ = sqrt(a² + b²)
+
+ 4. Derivation of maximum expansion
+
+ To find MAX[ |X'| ] we search brute force method using calculus. The unit
+ circle on which X is constrained is to be parameterized by t:
+
+ X(θ) = (cos(θ), sin(θ))
+
+ Thus
+
+ X'(θ) = X(θ) * _R_ = (cos(θ), sin(θ)) * [a b]
+ [c d]
+ = (a*cos(θ) + c*sin(θ), b*cos(θ) + d*sin(θ)).
+
+ Define
+
+ r(θ) = |X'(θ)|
+
+ Thus
+
+ r²(θ) = (a*cos(θ) + c*sin(θ))² + (b*cos(θ) + d*sin(θ))²
+ = (a² + b²)*cos²(θ) + (c² + d²)*sin²(θ)
+ + 2*(a*c + b*d)*cos(θ)*sin(θ)
+
+ Now apply the double angle formulae (A) to (C) from above:
+
+ r²(θ) = (a² + b² + c² + d²)/2
+ + (a² + b² - c² - d²)*cos(2*θ)/2
+ + (a*c + b*d)*sin(2*θ)
+ = f + g*cos(φ) + h*sin(φ)
+
+ Where
+
+ f = (a² + b² + c² + d²)/2
+ g = (a² + b² - c² - d²)/2
+ h = (a*c + d*d)
+ φ = 2*θ
+
+ It is clear that MAX[ |X'| ] = sqrt(MAX[ r² ]). Here we determine MAX[ r² ]
+ using (D) from above:
+
+ MAX[ r² ] = f + sqrt(g² + h²)
+
+ And finally
+
+ MAX[ |X'| ] = sqrt( f + sqrt(g² + h²) )
+
+ Which is the solution to this problem.
+
+ Walter Brisken
+ 2004/10/08
+
+ (Note that the minor axis length is at the minimum of the above solution,
+ which is just sqrt ( f - sqrt(g² + h²) ) given the symmetry of (D)).
+
+
+ For another derivation of the same result, using Singular Value Decomposition,
+ see doc/tutorial/src/singular.c.
+*/
+
+/* determine the length of the major axis of a circle of the given radius
+ after applying the transformation matrix. */
+double
+_cairo_matrix_transformed_circle_major_axis (const cairo_matrix_t *matrix,
+ double radius)
+{
+ double a, b, c, d, f, g, h, i, j;
+
+ if (_cairo_matrix_has_unity_scale (matrix))
+ return radius;
+
+ _cairo_matrix_get_affine (matrix,
+ &a, &b,
+ &c, &d,
+ NULL, NULL);
+
+ i = a*a + b*b;
+ j = c*c + d*d;
+
+ f = 0.5 * (i + j);
+ g = 0.5 * (i - j);
+ h = a*c + b*d;
+
+ return radius * sqrt (f + hypot (g, h));
+
+ /*
+ * we don't need the minor axis length, which is
+ * double min = radius * sqrt (f - sqrt (g*g+h*h));
+ */
+}
+
+static const pixman_transform_t pixman_identity_transform = {{
+ {1 << 16, 0, 0},
+ { 0, 1 << 16, 0},
+ { 0, 0, 1 << 16}
+ }};
+
+static cairo_status_t
+_cairo_matrix_to_pixman_matrix (const cairo_matrix_t *matrix,
+ pixman_transform_t *pixman_transform,
+ double xc,
+ double yc)
+{
+ cairo_matrix_t inv;
+ unsigned max_iterations;
+
+ pixman_transform->matrix[0][0] = _cairo_fixed_16_16_from_double (matrix->xx);
+ pixman_transform->matrix[0][1] = _cairo_fixed_16_16_from_double (matrix->xy);
+ pixman_transform->matrix[0][2] = _cairo_fixed_16_16_from_double (matrix->x0);
+
+ pixman_transform->matrix[1][0] = _cairo_fixed_16_16_from_double (matrix->yx);
+ pixman_transform->matrix[1][1] = _cairo_fixed_16_16_from_double (matrix->yy);
+ pixman_transform->matrix[1][2] = _cairo_fixed_16_16_from_double (matrix->y0);
+
+ pixman_transform->matrix[2][0] = 0;
+ pixman_transform->matrix[2][1] = 0;
+ pixman_transform->matrix[2][2] = 1 << 16;
+
+ /* The conversion above breaks cairo's translation invariance:
+ * a translation of (a, b) in device space translates to
+ * a translation of (xx * a + xy * b, yx * a + yy * b)
+ * for cairo, while pixman uses rounded versions of xx ... yy.
+ * This error increases as a and b get larger.
+ *
+ * To compensate for this, we fix the point (xc, yc) in pattern
+ * space and adjust pixman's transform to agree with cairo's at
+ * that point.
+ */
+
+ if (_cairo_matrix_has_unity_scale (matrix))
+ return CAIRO_STATUS_SUCCESS;
+
+ if (unlikely (fabs (matrix->xx) > PIXMAN_MAX_INT ||
+ fabs (matrix->xy) > PIXMAN_MAX_INT ||
+ fabs (matrix->x0) > PIXMAN_MAX_INT ||
+ fabs (matrix->yx) > PIXMAN_MAX_INT ||
+ fabs (matrix->yy) > PIXMAN_MAX_INT ||
+ fabs (matrix->y0) > PIXMAN_MAX_INT))
+ {
+ return _cairo_error (CAIRO_STATUS_INVALID_MATRIX);
+ }
+
+ /* Note: If we can't invert the transformation, skip the adjustment. */
+ inv = *matrix;
+ if (cairo_matrix_invert (&inv) != CAIRO_STATUS_SUCCESS)
+ return CAIRO_STATUS_SUCCESS;
+
+ /* find the pattern space coordinate that maps to (xc, yc) */
+ max_iterations = 5;
+ do {
+ double x,y;
+ pixman_vector_t vector;
+ cairo_fixed_16_16_t dx, dy;
+
+ vector.vector[0] = _cairo_fixed_16_16_from_double (xc);
+ vector.vector[1] = _cairo_fixed_16_16_from_double (yc);
+ vector.vector[2] = 1 << 16;
+
+ /* If we can't transform the reference point, skip the adjustment. */
+ if (! pixman_transform_point_3d (pixman_transform, &vector))
+ return CAIRO_STATUS_SUCCESS;
+
+ x = pixman_fixed_to_double (vector.vector[0]);
+ y = pixman_fixed_to_double (vector.vector[1]);
+ cairo_matrix_transform_point (&inv, &x, &y);
+
+ /* Ideally, the vector should now be (xc, yc).
+ * We can now compensate for the resulting error.
+ */
+ x -= xc;
+ y -= yc;
+ cairo_matrix_transform_distance (matrix, &x, &y);
+ dx = _cairo_fixed_16_16_from_double (x);
+ dy = _cairo_fixed_16_16_from_double (y);
+ pixman_transform->matrix[0][2] -= dx;
+ pixman_transform->matrix[1][2] -= dy;
+
+ if (dx == 0 && dy == 0)
+ return CAIRO_STATUS_SUCCESS;
+ } while (--max_iterations);
+
+ /* We didn't find an exact match between cairo and pixman, but
+ * the matrix should be mostly correct */
+ return CAIRO_STATUS_SUCCESS;
+}
+
+static inline double
+_pixman_nearest_sample (double d)
+{
+ return ceil (d - .5);
+}
+
+/**
+ * _cairo_matrix_is_pixman_translation:
+ * @matrix: a matrix
+ * @filter: the filter to be used on the pattern transformed by @matrix
+ * @x_offset: the translation in the X direction
+ * @y_offset: the translation in the Y direction
+ *
+ * Checks if @matrix translated by (x_offset, y_offset) can be
+ * represented using just an offset (within the range pixman can
+ * accept) and an identity matrix.
+ *
+ * Passing a non-zero value in x_offset/y_offset has the same effect
+ * as applying cairo_matrix_translate(matrix, x_offset, y_offset) and
+ * setting x_offset and y_offset to 0.
+ *
+ * Upon return x_offset and y_offset contain the translation vector if
+ * the return value is %TRUE. If the return value is %FALSE, they will
+ * not be modified.
+ *
+ * Return value: %TRUE if @matrix can be represented as a pixman
+ * translation, %FALSE otherwise.
+ **/
+cairo_bool_t
+_cairo_matrix_is_pixman_translation (const cairo_matrix_t *matrix,
+ cairo_filter_t filter,
+ int *x_offset,
+ int *y_offset)
+{
+ double tx, ty;
+
+ if (!_cairo_matrix_is_translation (matrix))
+ return FALSE;
+
+ if (matrix->x0 == 0. && matrix->y0 == 0.)
+ return TRUE;
+
+ tx = matrix->x0 + *x_offset;
+ ty = matrix->y0 + *y_offset;
+
+ if (filter == CAIRO_FILTER_FAST || filter == CAIRO_FILTER_NEAREST) {
+ tx = _pixman_nearest_sample (tx);
+ ty = _pixman_nearest_sample (ty);
+ } else if (tx != floor (tx) || ty != floor (ty)) {
+ return FALSE;
+ }
+
+ if (fabs (tx) > PIXMAN_MAX_INT || fabs (ty) > PIXMAN_MAX_INT)
+ return FALSE;
+
+ *x_offset = _cairo_lround (tx);
+ *y_offset = _cairo_lround (ty);
+ return TRUE;
+}
+
+/**
+ * _cairo_matrix_to_pixman_matrix_offset:
+ * @matrix: a matrix
+ * @filter: the filter to be used on the pattern transformed by @matrix
+ * @xc: the X coordinate of the point to fix in pattern space
+ * @yc: the Y coordinate of the point to fix in pattern space
+ * @out_transform: the transformation which best approximates @matrix
+ * @x_offset: the translation in the X direction
+ * @y_offset: the translation in the Y direction
+ *
+ * This function tries to represent @matrix translated by (x_offset,
+ * y_offset) as a %pixman_transform_t and an translation.
+ *
+ * Passing a non-zero value in x_offset/y_offset has the same effect
+ * as applying cairo_matrix_translate(matrix, x_offset, y_offset) and
+ * setting x_offset and y_offset to 0.
+ *
+ * If it is possible to represent the matrix with an identity
+ * %pixman_transform_t and a translation within the valid range for
+ * pixman, this function will set @out_transform to be the identity,
+ * @x_offset and @y_offset to be the translation vector and will
+ * return %CAIRO_INT_STATUS_NOTHING_TO_DO. Otherwise it will try to
+ * evenly divide the translational component of @matrix between
+ * @out_transform and (@x_offset, @y_offset).
+ *
+ * Upon return x_offset and y_offset contain the translation vector.
+ *
+ * Return value: %CAIRO_INT_STATUS_NOTHING_TO_DO if the out_transform
+ * is the identity, %CAIRO_STATUS_INVALID_MATRIX if it was not
+ * possible to represent @matrix as a pixman_transform_t without
+ * overflows, %CAIRO_STATUS_SUCCESS otherwise.
+ **/
+cairo_status_t
+_cairo_matrix_to_pixman_matrix_offset (const cairo_matrix_t *matrix,
+ cairo_filter_t filter,
+ double xc,
+ double yc,
+ pixman_transform_t *out_transform,
+ int *x_offset,
+ int *y_offset)
+{
+ cairo_bool_t is_pixman_translation;
+
+ is_pixman_translation = _cairo_matrix_is_pixman_translation (matrix,
+ filter,
+ x_offset,
+ y_offset);
+
+ if (is_pixman_translation) {
+ *out_transform = pixman_identity_transform;
+ return CAIRO_INT_STATUS_NOTHING_TO_DO;
+ } else {
+ cairo_matrix_t m;
+
+ m = *matrix;
+ cairo_matrix_translate (&m, *x_offset, *y_offset);
+ if (m.x0 != 0.0 || m.y0 != 0.0) {
+ double tx, ty, norm;
+ int i, j;
+
+ /* pixman also limits the [xy]_offset to 16 bits so evenly
+ * spread the bits between the two.
+ *
+ * To do this, find the solutions of:
+ * |x| = |x*m.xx + y*m.xy + m.x0|
+ * |y| = |x*m.yx + y*m.yy + m.y0|
+ *
+ * and select the one whose maximum norm is smallest.
+ */
+ tx = m.x0;
+ ty = m.y0;
+ norm = MAX (fabs (tx), fabs (ty));
+
+ for (i = -1; i < 2; i+=2) {
+ for (j = -1; j < 2; j+=2) {
+ double x, y, den, new_norm;
+
+ den = (m.xx + i) * (m.yy + j) - m.xy * m.yx;
+ if (fabs (den) < DBL_EPSILON)
+ continue;
+
+ x = m.y0 * m.xy - m.x0 * (m.yy + j);
+ y = m.x0 * m.yx - m.y0 * (m.xx + i);
+
+ den = 1 / den;
+ x *= den;
+ y *= den;
+
+ new_norm = MAX (fabs (x), fabs (y));
+ if (norm > new_norm) {
+ norm = new_norm;
+ tx = x;
+ ty = y;
+ }
+ }
+ }
+
+ tx = floor (tx);
+ ty = floor (ty);
+ *x_offset = -tx;
+ *y_offset = -ty;
+ cairo_matrix_translate (&m, tx, ty);
+ } else {
+ *x_offset = 0;
+ *y_offset = 0;
+ }
+
+ return _cairo_matrix_to_pixman_matrix (&m, out_transform, xc, yc);
+ }
+}