diff options
author | sanine <sanine.not@pm.me> | 2022-10-01 20:59:36 -0500 |
---|---|---|
committer | sanine <sanine.not@pm.me> | 2022-10-01 20:59:36 -0500 |
commit | c5fc66ee58f2c60f2d226868bb1cf5b91badaf53 (patch) | |
tree | 277dd280daf10bf77013236b8edfa5f88708c7e0 /libs/ode-0.16.1/OPCODE/Ice/IceMatrix4x4.h | |
parent | 1cf9cc3408af7008451f9133fb95af66a9697d15 (diff) |
add ode
Diffstat (limited to 'libs/ode-0.16.1/OPCODE/Ice/IceMatrix4x4.h')
-rw-r--r-- | libs/ode-0.16.1/OPCODE/Ice/IceMatrix4x4.h | 457 |
1 files changed, 457 insertions, 0 deletions
diff --git a/libs/ode-0.16.1/OPCODE/Ice/IceMatrix4x4.h b/libs/ode-0.16.1/OPCODE/Ice/IceMatrix4x4.h new file mode 100644 index 0000000..e2db104 --- /dev/null +++ b/libs/ode-0.16.1/OPCODE/Ice/IceMatrix4x4.h @@ -0,0 +1,457 @@ +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +/** + * Contains code for 4x4 matrices. + * \file IceMatrix4x4.h + * \author Pierre Terdiman + * \date April, 4, 2000 + */ +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Include Guard +#ifndef __ICEMATRIX4X4_H__ +#define __ICEMATRIX4X4_H__ + + // Forward declarations + class PRS; + class PR; + + #define MATRIX4X4_EPSILON (1.0e-7f) + + class ICEMATHS_API Matrix4x4 + { +// void LUBackwardSubstitution( sdword *indx, float* b ); +// void LUDecomposition( sdword* indx, float* d ); + + public: + //! Empty constructor. + inline_ Matrix4x4() {} + //! Constructor from 16 values + inline_ Matrix4x4( float m00, float m01, float m02, float m03, + float m10, float m11, float m12, float m13, + float m20, float m21, float m22, float m23, + float m30, float m31, float m32, float m33) + { + m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; m[0][3] = m03; + m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; m[1][3] = m13; + m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; m[2][3] = m23; + m[3][0] = m30; m[3][1] = m31; m[3][2] = m32; m[3][3] = m33; + } + //! Copy constructor + inline_ Matrix4x4(const Matrix4x4& mat) { CopyMemory(m, &mat.m, 16*sizeof(float)); } + //! Destructor. + inline_ ~Matrix4x4() {} + + //! Assign values (rotation only) + template<typename trotationfloat> + inline_ Matrix4x4& Set( trotationfloat m00, trotationfloat m01, trotationfloat m02, + trotationfloat m10, trotationfloat m11, trotationfloat m12, + trotationfloat m20, trotationfloat m21, trotationfloat m22) + { + m[0][0] = (float)m00; m[0][1] = (float)m01; m[0][2] = (float)m02; + m[1][0] = (float)m10; m[1][1] = (float)m11; m[1][2] = (float)m12; + m[2][0] = (float)m20; m[2][1] = (float)m21; m[2][2] = (float)m22; + return *this; + } + //! Assign values + template<typename trotationfloat, typename toffsetfloat, typename textrafloat> + inline_ Matrix4x4& Set( trotationfloat m00, trotationfloat m01, trotationfloat m02, textrafloat m03, + trotationfloat m10, trotationfloat m11, trotationfloat m12, textrafloat m13, + trotationfloat m20, trotationfloat m21, trotationfloat m22, textrafloat m23, + toffsetfloat m30, toffsetfloat m31, toffsetfloat m32, textrafloat m33) + { + m[0][0] = (float)m00; m[0][1] = (float)m01; m[0][2] = (float)m02; m[0][3] = (float)m03; + m[1][0] = (float)m10; m[1][1] = (float)m11; m[1][2] = (float)m12; m[1][3] = (float)m13; + m[2][0] = (float)m20; m[2][1] = (float)m21; m[2][2] = (float)m22; m[2][3] = (float)m23; + m[3][0] = (float)m30; m[3][1] = (float)m31; m[3][2] = (float)m32; m[3][3] = (float)m33; + return *this; + } + + //! Copy from a Matrix4x4 + inline_ void Copy(const Matrix4x4& source) { CopyMemory(m, source.m, 16*sizeof(float)); } + + // Row-column access + //! Returns a row. + inline_ void GetRow(const udword r, HPoint& p) const { p.x=m[r][0]; p.y=m[r][1]; p.z=m[r][2]; p.w=m[r][3]; } + //! Returns a row. + inline_ void GetRow(const udword r, Point& p) const { p.x=m[r][0]; p.y=m[r][1]; p.z=m[r][2]; } + //! Returns a row. + inline_ const HPoint& GetRow(const udword r) const { return *(const HPoint*)&m[r][0]; } + //! Returns a row. + inline_ HPoint& GetRow(const udword r) { return *(HPoint*)&m[r][0]; } + //! Sets a row. + inline_ void SetRow(const udword r, const HPoint& p) { m[r][0]=p.x; m[r][1]=p.y; m[r][2]=p.z; m[r][3]=p.w; } + //! Sets a row. + inline_ void SetRow(const udword r, const Point& p) { m[r][0]=p.x; m[r][1]=p.y; m[r][2]=p.z; m[r][3]= (r!=3) ? 0.0f : 1.0f; } + //! Returns a column. + inline_ void GetCol(const udword c, HPoint& p) const { p.x=m[0][c]; p.y=m[1][c]; p.z=m[2][c]; p.w=m[3][c]; } + //! Returns a column. + inline_ void GetCol(const udword c, Point& p) const { p.x=m[0][c]; p.y=m[1][c]; p.z=m[2][c]; } + //! Sets a column. + inline_ void SetCol(const udword c, const HPoint& p) { m[0][c]=p.x; m[1][c]=p.y; m[2][c]=p.z; m[3][c]=p.w; } + //! Sets a column. + inline_ void SetCol(const udword c, const Point& p) { m[0][c]=p.x; m[1][c]=p.y; m[2][c]=p.z; m[3][c]= (c!=3) ? 0.0f : 1.0f; } + + // Translation + //! Returns the translation part of the matrix. + inline_ const HPoint& GetTrans() const { return GetRow(3); } + //! Gets the translation part of the matrix + inline_ void GetTrans(Point& p) const { p.x=m[3][0]; p.y=m[3][1]; p.z=m[3][2]; } + //! Sets the translation part of the matrix, from a Point. + inline_ void SetTrans(const Point& p) { m[3][0]=p.x; m[3][1]=p.y; m[3][2]=p.z; } + //! Sets the translation part of the matrix, from a HPoint. + inline_ void SetTrans(const HPoint& p) { m[3][0]=p.x; m[3][1]=p.y; m[3][2]=p.z; m[3][3]=p.w; } + //! Sets the translation part of the matrix, from floats. + inline_ void SetTrans(float tx, float ty, float tz) { m[3][0]=tx; m[3][1]=ty; m[3][2]=tz; } + + // Scale + //! Sets the scale from a Point. The point is put on the diagonal. + inline_ void SetScale(const Point& p) { m[0][0]=p.x; m[1][1]=p.y; m[2][2]=p.z; } + //! Sets the scale from floats. Values are put on the diagonal. + inline_ void SetScale(float sx, float sy, float sz) { m[0][0]=sx; m[1][1]=sy; m[2][2]=sz; } + //! Scales from a Point. Each row is multiplied by a component. + void Scale(const Point& p) + { + m[0][0] *= p.x; m[1][0] *= p.y; m[2][0] *= p.z; + m[0][1] *= p.x; m[1][1] *= p.y; m[2][1] *= p.z; + m[0][2] *= p.x; m[1][2] *= p.y; m[2][2] *= p.z; + } + //! Scales from floats. Each row is multiplied by a value. + void Scale(float sx, float sy, float sz) + { + m[0][0] *= sx; m[1][0] *= sy; m[2][0] *= sz; + m[0][1] *= sx; m[1][1] *= sy; m[2][1] *= sz; + m[0][2] *= sx; m[1][2] *= sy; m[2][2] *= sz; + } +/* + //! Returns a row. + inline_ HPoint GetRow(const udword row) const { return mRow[row]; } + //! Sets a row. + inline_ Matrix4x4& SetRow(const udword row, const HPoint& p) { mRow[row] = p; return *this; } + //! Sets a row. + Matrix4x4& SetRow(const udword row, const Point& p) + { + m[row][0] = p.x; + m[row][1] = p.y; + m[row][2] = p.z; + m[row][3] = (row != 3) ? 0.0f : 1.0f; + return *this; + } + //! Returns a column. + HPoint GetCol(const udword col) const + { + HPoint Res; + Res.x = m[0][col]; + Res.y = m[1][col]; + Res.z = m[2][col]; + Res.w = m[3][col]; + return Res; + } + //! Sets a column. + Matrix4x4& SetCol(const udword col, const HPoint& p) + { + m[0][col] = p.x; + m[1][col] = p.y; + m[2][col] = p.z; + m[3][col] = p.w; + return *this; + } + //! Sets a column. + Matrix4x4& SetCol(const udword col, const Point& p) + { + m[0][col] = p.x; + m[1][col] = p.y; + m[2][col] = p.z; + m[3][col] = (col != 3) ? 0.0f : 1.0f; + return *this; + } +*/ + //! Computes the trace. The trace is the sum of the 4 diagonal components. + inline_ float Trace() const { return m[0][0] + m[1][1] + m[2][2] + m[3][3]; } + //! Computes the trace of the upper 3x3 matrix. + inline_ float Trace3x3() const { return m[0][0] + m[1][1] + m[2][2]; } + //! Clears the matrix. + inline_ void Zero() { ZeroMemory(&m, sizeof(m)); } + //! Sets the identity matrix. + inline_ void Identity() { Zero(); m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f; } + //! Checks for identity + inline_ bool IsIdentity() const + { + if(IR(m[0][0])!=IEEE_1_0) return false; + if(IR(m[0][1])!=0) return false; + if(IR(m[0][2])!=0) return false; + if(IR(m[0][3])!=0) return false; + + if(IR(m[1][0])!=0) return false; + if(IR(m[1][1])!=IEEE_1_0) return false; + if(IR(m[1][2])!=0) return false; + if(IR(m[1][3])!=0) return false; + + if(IR(m[2][0])!=0) return false; + if(IR(m[2][1])!=0) return false; + if(IR(m[2][2])!=IEEE_1_0) return false; + if(IR(m[2][3])!=0) return false; + + if(IR(m[3][0])!=0) return false; + if(IR(m[3][1])!=0) return false; + if(IR(m[3][2])!=0) return false; + if(IR(m[3][3])!=IEEE_1_0) return false; + return true; + } + + //! Checks matrix validity + inline_ BOOL IsValid() const + { + for(udword j=0;j<4;j++) + { + for(udword i=0;i<4;i++) + { + if(!IsValidFloat(m[j][i])) return FALSE; + } + } + return TRUE; + } + + //! Sets a rotation matrix around the X axis. + void RotX(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[1][1] = m[2][2] = Cos; m[2][1] = -Sin; m[1][2] = Sin; } + //! Sets a rotation matrix around the Y axis. + void RotY(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[2][2] = Cos; m[2][0] = Sin; m[0][2] = -Sin; } + //! Sets a rotation matrix around the Z axis. + void RotZ(float angle) { float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[1][1] = Cos; m[1][0] = -Sin; m[0][1] = Sin; } + + //! Makes a rotation matrix about an arbitrary axis + Matrix4x4& Rot(float angle, Point& p1, Point& p2); + + //! Transposes the matrix. + void Transpose() + { + TSwap(m[1][0], m[0][1]); + TSwap(m[2][0], m[0][2]); + TSwap(m[3][0], m[0][3]); + TSwap(m[1][2], m[2][1]); + TSwap(m[1][3], m[3][1]); + TSwap(m[2][3], m[3][2]); + } + + //! Computes a cofactor. Used for matrix inversion. + float CoFactor(udword row, udword col) const; + //! Computes the determinant of the matrix. + float Determinant() const; + //! Inverts the matrix. Determinant must be different from zero, else matrix can't be inverted. + Matrix4x4& Invert(); +// Matrix& ComputeAxisMatrix(Point& axis, float angle); + + // Cast operators + //! Casts a Matrix4x4 to a Matrix3x3. + inline_ operator Matrix3x3() const + { + return Matrix3x3( + m[0][0], m[0][1], m[0][2], + m[1][0], m[1][1], m[1][2], + m[2][0], m[2][1], m[2][2]); + } + //! Casts a Matrix4x4 to a Quat. + operator Quat() const; + //! Casts a Matrix4x4 to a PR. + operator PR() const; + + // Arithmetic operators + //! Operator for Matrix4x4 Plus = Matrix4x4 + Matrix4x4; + inline_ Matrix4x4 operator+(const Matrix4x4& mat) const + { + return Matrix4x4( + m[0][0]+mat.m[0][0], m[0][1]+mat.m[0][1], m[0][2]+mat.m[0][2], m[0][3]+mat.m[0][3], + m[1][0]+mat.m[1][0], m[1][1]+mat.m[1][1], m[1][2]+mat.m[1][2], m[1][3]+mat.m[1][3], + m[2][0]+mat.m[2][0], m[2][1]+mat.m[2][1], m[2][2]+mat.m[2][2], m[2][3]+mat.m[2][3], + m[3][0]+mat.m[3][0], m[3][1]+mat.m[3][1], m[3][2]+mat.m[3][2], m[3][3]+mat.m[3][3]); + } + + //! Operator for Matrix4x4 Minus = Matrix4x4 - Matrix4x4; + inline_ Matrix4x4 operator-(const Matrix4x4& mat) const + { + return Matrix4x4( + m[0][0]-mat.m[0][0], m[0][1]-mat.m[0][1], m[0][2]-mat.m[0][2], m[0][3]-mat.m[0][3], + m[1][0]-mat.m[1][0], m[1][1]-mat.m[1][1], m[1][2]-mat.m[1][2], m[1][3]-mat.m[1][3], + m[2][0]-mat.m[2][0], m[2][1]-mat.m[2][1], m[2][2]-mat.m[2][2], m[2][3]-mat.m[2][3], + m[3][0]-mat.m[3][0], m[3][1]-mat.m[3][1], m[3][2]-mat.m[3][2], m[3][3]-mat.m[3][3]); + } + + //! Operator for Matrix4x4 Mul = Matrix4x4 * Matrix4x4; + inline_ Matrix4x4 operator*(const Matrix4x4& mat) const + { + return Matrix4x4( + m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0] + m[0][3]*mat.m[3][0], + m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1] + m[0][3]*mat.m[3][1], + m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2] + m[0][3]*mat.m[3][2], + m[0][0]*mat.m[0][3] + m[0][1]*mat.m[1][3] + m[0][2]*mat.m[2][3] + m[0][3]*mat.m[3][3], + + m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0] + m[1][3]*mat.m[3][0], + m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1] + m[1][3]*mat.m[3][1], + m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2] + m[1][3]*mat.m[3][2], + m[1][0]*mat.m[0][3] + m[1][1]*mat.m[1][3] + m[1][2]*mat.m[2][3] + m[1][3]*mat.m[3][3], + + m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0] + m[2][3]*mat.m[3][0], + m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1] + m[2][3]*mat.m[3][1], + m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2] + m[2][3]*mat.m[3][2], + m[2][0]*mat.m[0][3] + m[2][1]*mat.m[1][3] + m[2][2]*mat.m[2][3] + m[2][3]*mat.m[3][3], + + m[3][0]*mat.m[0][0] + m[3][1]*mat.m[1][0] + m[3][2]*mat.m[2][0] + m[3][3]*mat.m[3][0], + m[3][0]*mat.m[0][1] + m[3][1]*mat.m[1][1] + m[3][2]*mat.m[2][1] + m[3][3]*mat.m[3][1], + m[3][0]*mat.m[0][2] + m[3][1]*mat.m[1][2] + m[3][2]*mat.m[2][2] + m[3][3]*mat.m[3][2], + m[3][0]*mat.m[0][3] + m[3][1]*mat.m[1][3] + m[3][2]*mat.m[2][3] + m[3][3]*mat.m[3][3]); + } + + //! Operator for HPoint Mul = Matrix4x4 * HPoint; + inline_ HPoint operator*(const HPoint& v) const { return HPoint(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v, GetRow(3)|v); } + + //! Operator for Point Mul = Matrix4x4 * Point; + inline_ Point operator*(const Point& v) const + { + return Point( m[0][0]*v.x + m[0][1]*v.y + m[0][2]*v.z + m[0][3], + m[1][0]*v.x + m[1][1]*v.y + m[1][2]*v.z + m[1][3], + m[2][0]*v.x + m[2][1]*v.y + m[2][2]*v.z + m[2][3] ); + } + + //! Operator for Matrix4x4 Scale = Matrix4x4 * float; + inline_ Matrix4x4 operator*(float s) const + { + return Matrix4x4( + m[0][0]*s, m[0][1]*s, m[0][2]*s, m[0][3]*s, + m[1][0]*s, m[1][1]*s, m[1][2]*s, m[1][3]*s, + m[2][0]*s, m[2][1]*s, m[2][2]*s, m[2][3]*s, + m[3][0]*s, m[3][1]*s, m[3][2]*s, m[3][3]*s); + } + + //! Operator for Matrix4x4 Scale = float * Matrix4x4; + inline_ friend Matrix4x4 operator*(float s, const Matrix4x4& mat) + { + return Matrix4x4( + s*mat.m[0][0], s*mat.m[0][1], s*mat.m[0][2], s*mat.m[0][3], + s*mat.m[1][0], s*mat.m[1][1], s*mat.m[1][2], s*mat.m[1][3], + s*mat.m[2][0], s*mat.m[2][1], s*mat.m[2][2], s*mat.m[2][3], + s*mat.m[3][0], s*mat.m[3][1], s*mat.m[3][2], s*mat.m[3][3]); + } + + //! Operator for Matrix4x4 Div = Matrix4x4 / float; + inline_ Matrix4x4 operator/(float s) const + { + if(s) s = 1.0f / s; + + return Matrix4x4( + m[0][0]*s, m[0][1]*s, m[0][2]*s, m[0][3]*s, + m[1][0]*s, m[1][1]*s, m[1][2]*s, m[1][3]*s, + m[2][0]*s, m[2][1]*s, m[2][2]*s, m[2][3]*s, + m[3][0]*s, m[3][1]*s, m[3][2]*s, m[3][3]*s); + } + + //! Operator for Matrix4x4 Div = float / Matrix4x4; + inline_ friend Matrix4x4 operator/(float s, const Matrix4x4& mat) + { + return Matrix4x4( + s/mat.m[0][0], s/mat.m[0][1], s/mat.m[0][2], s/mat.m[0][3], + s/mat.m[1][0], s/mat.m[1][1], s/mat.m[1][2], s/mat.m[1][3], + s/mat.m[2][0], s/mat.m[2][1], s/mat.m[2][2], s/mat.m[2][3], + s/mat.m[3][0], s/mat.m[3][1], s/mat.m[3][2], s/mat.m[3][3]); + } + + //! Operator for Matrix4x4 += Matrix4x4; + inline_ Matrix4x4& operator+=(const Matrix4x4& mat) + { + m[0][0]+=mat.m[0][0]; m[0][1]+=mat.m[0][1]; m[0][2]+=mat.m[0][2]; m[0][3]+=mat.m[0][3]; + m[1][0]+=mat.m[1][0]; m[1][1]+=mat.m[1][1]; m[1][2]+=mat.m[1][2]; m[1][3]+=mat.m[1][3]; + m[2][0]+=mat.m[2][0]; m[2][1]+=mat.m[2][1]; m[2][2]+=mat.m[2][2]; m[2][3]+=mat.m[2][3]; + m[3][0]+=mat.m[3][0]; m[3][1]+=mat.m[3][1]; m[3][2]+=mat.m[3][2]; m[3][3]+=mat.m[3][3]; + return *this; + } + + //! Operator for Matrix4x4 -= Matrix4x4; + inline_ Matrix4x4& operator-=(const Matrix4x4& mat) + { + m[0][0]-=mat.m[0][0]; m[0][1]-=mat.m[0][1]; m[0][2]-=mat.m[0][2]; m[0][3]-=mat.m[0][3]; + m[1][0]-=mat.m[1][0]; m[1][1]-=mat.m[1][1]; m[1][2]-=mat.m[1][2]; m[1][3]-=mat.m[1][3]; + m[2][0]-=mat.m[2][0]; m[2][1]-=mat.m[2][1]; m[2][2]-=mat.m[2][2]; m[2][3]-=mat.m[2][3]; + m[3][0]-=mat.m[3][0]; m[3][1]-=mat.m[3][1]; m[3][2]-=mat.m[3][2]; m[3][3]-=mat.m[3][3]; + return *this; + } + + //! Operator for Matrix4x4 *= Matrix4x4; + Matrix4x4& operator*=(const Matrix4x4& mat) + { + HPoint TempRow; + + GetRow(0, TempRow); + m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0]; + m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1]; + m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2]; + m[0][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3]; + + GetRow(1, TempRow); + m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0]; + m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1]; + m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2]; + m[1][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3]; + + GetRow(2, TempRow); + m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0]; + m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1]; + m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2]; + m[2][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3]; + + GetRow(3, TempRow); + m[3][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0]; + m[3][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1]; + m[3][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2]; + m[3][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3]; + + return *this; + } + + //! Operator for Matrix4x4 *= float; + inline_ Matrix4x4& operator*=(float s) + { + m[0][0]*=s; m[0][1]*=s; m[0][2]*=s; m[0][3]*=s; + m[1][0]*=s; m[1][1]*=s; m[1][2]*=s; m[1][3]*=s; + m[2][0]*=s; m[2][1]*=s; m[2][2]*=s; m[2][3]*=s; + m[3][0]*=s; m[3][1]*=s; m[3][2]*=s; m[3][3]*=s; + return *this; + } + + //! Operator for Matrix4x4 /= float; + inline_ Matrix4x4& operator/=(float s) + { + if(s) s = 1.0f / s; + m[0][0]*=s; m[0][1]*=s; m[0][2]*=s; m[0][3]*=s; + m[1][0]*=s; m[1][1]*=s; m[1][2]*=s; m[1][3]*=s; + m[2][0]*=s; m[2][1]*=s; m[2][2]*=s; m[2][3]*=s; + m[3][0]*=s; m[3][1]*=s; m[3][2]*=s; m[3][3]*=s; + return *this; + } + + inline_ const HPoint& operator[](int row) const { return *(const HPoint*)&m[row][0]; } + inline_ HPoint& operator[](int row) { return *(HPoint*)&m[row][0]; } + + public: + + float m[4][4]; + }; + + //! Quickly rotates & translates a vector, using the 4x3 part of a 4x4 matrix + inline_ void TransformPoint4x3(Point& dest, const Point& source, const Matrix4x4& rot) + { + dest.x = rot.m[3][0] + source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0]; + dest.y = rot.m[3][1] + source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1]; + dest.z = rot.m[3][2] + source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2]; + } + + //! Quickly rotates a vector, using the 3x3 part of a 4x4 matrix + inline_ void TransformPoint3x3(Point& dest, const Point& source, const Matrix4x4& rot) + { + dest.x = source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0]; + dest.y = source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1]; + dest.z = source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2]; + } + + ICEMATHS_API void InvertPRMatrix(Matrix4x4& dest, const Matrix4x4& src); + +#endif // __ICEMATRIX4X4_H__ + |