summaryrefslogtreecommitdiff
path: root/libs/assimp/code/AssetLib/FBX/FBXConverter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libs/assimp/code/AssetLib/FBX/FBXConverter.cpp')
-rw-r--r--libs/assimp/code/AssetLib/FBX/FBXConverter.cpp3679
1 files changed, 3679 insertions, 0 deletions
diff --git a/libs/assimp/code/AssetLib/FBX/FBXConverter.cpp b/libs/assimp/code/AssetLib/FBX/FBXConverter.cpp
new file mode 100644
index 0000000..3287210
--- /dev/null
+++ b/libs/assimp/code/AssetLib/FBX/FBXConverter.cpp
@@ -0,0 +1,3679 @@
+/*
+Open Asset Import Library (assimp)
+----------------------------------------------------------------------
+
+Copyright (c) 2006-2022, assimp team
+
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the
+following conditions are met:
+
+* Redistributions of source code must retain the above
+ copyright notice, this list of conditions and the
+ following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the
+ following disclaimer in the documentation and/or other
+ materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+ contributors may be used to endorse or promote products
+ derived from this software without specific prior
+ written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+----------------------------------------------------------------------
+*/
+
+/** @file FBXConverter.cpp
+ * @brief Implementation of the FBX DOM -> aiScene converter
+ */
+
+#ifndef ASSIMP_BUILD_NO_FBX_IMPORTER
+
+#include "FBXConverter.h"
+#include "FBXDocument.h"
+#include "FBXImporter.h"
+#include "FBXMeshGeometry.h"
+#include "FBXParser.h"
+#include "FBXProperties.h"
+#include "FBXUtil.h"
+
+#include <assimp/MathFunctions.h>
+#include <assimp/StringComparison.h>
+
+#include <assimp/scene.h>
+
+#include <assimp/CreateAnimMesh.h>
+#include <assimp/StringUtils.h>
+#include <assimp/commonMetaData.h>
+
+#include <stdlib.h>
+#include <cstdint>
+#include <iomanip>
+#include <iostream>
+#include <iterator>
+#include <memory>
+#include <sstream>
+#include <tuple>
+#include <vector>
+
+namespace Assimp {
+namespace FBX {
+
+using namespace Util;
+
+#define MAGIC_NODE_TAG "_$AssimpFbx$"
+
+#define CONVERT_FBX_TIME(time) static_cast<double>(time) / 46186158000LL
+
+FBXConverter::FBXConverter(aiScene *out, const Document &doc, bool removeEmptyBones) :
+ defaultMaterialIndex(),
+ mMeshes(),
+ lights(),
+ cameras(),
+ textures(),
+ materials_converted(),
+ textures_converted(),
+ meshes_converted(),
+ node_anim_chain_bits(),
+ mNodeNames(),
+ anim_fps(),
+ mSceneOut(out),
+ doc(doc),
+ mRemoveEmptyBones(removeEmptyBones) {
+ // animations need to be converted first since this will
+ // populate the node_anim_chain_bits map, which is needed
+ // to determine which nodes need to be generated.
+ ConvertAnimations();
+ // Embedded textures in FBX could be connected to nothing but to itself,
+ // for instance Texture -> Video connection only but not to the main graph,
+ // The idea here is to traverse all objects to find these Textures and convert them,
+ // so later during material conversion it will find converted texture in the textures_converted array.
+ if (doc.Settings().readTextures) {
+ ConvertOrphanedEmbeddedTextures();
+ }
+ ConvertRootNode();
+
+ if (doc.Settings().readAllMaterials) {
+ // unfortunately this means we have to evaluate all objects
+ for (const ObjectMap::value_type &v : doc.Objects()) {
+
+ const Object *ob = v.second->Get();
+ if (!ob) {
+ continue;
+ }
+
+ const Material *mat = dynamic_cast<const Material *>(ob);
+ if (mat) {
+
+ if (materials_converted.find(mat) == materials_converted.end()) {
+ ConvertMaterial(*mat, 0);
+ }
+ }
+ }
+ }
+
+ ConvertGlobalSettings();
+ TransferDataToScene();
+
+ // if we didn't read any meshes set the AI_SCENE_FLAGS_INCOMPLETE
+ // to make sure the scene passes assimp's validation. FBX files
+ // need not contain geometry (i.e. camera animations, raw armatures).
+ if (out->mNumMeshes == 0) {
+ out->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
+ }
+}
+
+FBXConverter::~FBXConverter() {
+ std::for_each(mMeshes.begin(), mMeshes.end(), Util::delete_fun<aiMesh>());
+ std::for_each(materials.begin(), materials.end(), Util::delete_fun<aiMaterial>());
+ std::for_each(animations.begin(), animations.end(), Util::delete_fun<aiAnimation>());
+ std::for_each(lights.begin(), lights.end(), Util::delete_fun<aiLight>());
+ std::for_each(cameras.begin(), cameras.end(), Util::delete_fun<aiCamera>());
+ std::for_each(textures.begin(), textures.end(), Util::delete_fun<aiTexture>());
+}
+
+void FBXConverter::ConvertRootNode() {
+ mSceneOut->mRootNode = new aiNode();
+ std::string unique_name;
+ GetUniqueName("RootNode", unique_name);
+ mSceneOut->mRootNode->mName.Set(unique_name);
+
+ // root has ID 0
+ ConvertNodes(0L, mSceneOut->mRootNode, mSceneOut->mRootNode);
+}
+
+static std::string getAncestorBaseName(const aiNode *node) {
+ const char *nodeName = nullptr;
+ size_t length = 0;
+ while (node && (!nodeName || length == 0)) {
+ nodeName = node->mName.C_Str();
+ length = node->mName.length;
+ node = node->mParent;
+ }
+
+ if (!nodeName || length == 0) {
+ return {};
+ }
+ // could be std::string_view if c++17 available
+ return std::string(nodeName, length);
+}
+
+// Make unique name
+std::string FBXConverter::MakeUniqueNodeName(const Model *const model, const aiNode &parent) {
+ std::string original_name = FixNodeName(model->Name());
+ if (original_name.empty()) {
+ original_name = getAncestorBaseName(&parent);
+ }
+ std::string unique_name;
+ GetUniqueName(original_name, unique_name);
+ return unique_name;
+}
+
+/// This struct manages nodes which may or may not end up in the node hierarchy.
+/// When a node becomes a child of another node, that node becomes its owner and mOwnership should be released.
+struct FBXConverter::PotentialNode
+{
+ PotentialNode() : mOwnership(new aiNode), mNode(mOwnership.get()) {}
+ PotentialNode(const std::string& name) : mOwnership(new aiNode(name)), mNode(mOwnership.get()) {}
+ aiNode* operator->() { return mNode; }
+ std::unique_ptr<aiNode> mOwnership;
+ aiNode* mNode;
+};
+
+/// todo: pre-build node hierarchy
+/// todo: get bone from stack
+/// todo: make map of aiBone* to aiNode*
+/// then update convert clusters to the new format
+void FBXConverter::ConvertNodes(uint64_t id, aiNode *parent, aiNode *root_node) {
+ const std::vector<const Connection *> &conns = doc.GetConnectionsByDestinationSequenced(id, "Model");
+
+ std::vector<PotentialNode> nodes;
+ nodes.reserve(conns.size());
+
+ std::vector<PotentialNode> nodes_chain;
+ std::vector<PotentialNode> post_nodes_chain;
+
+ for (const Connection *con : conns) {
+ // ignore object-property links
+ if (con->PropertyName().length()) {
+ // really important we document why this is ignored.
+ FBXImporter::LogInfo("ignoring property link - no docs on why this is ignored");
+ continue; //?
+ }
+
+ // convert connection source object into Object base class
+ const Object *const object = con->SourceObject();
+ if (nullptr == object) {
+ FBXImporter::LogError("failed to convert source object for Model link");
+ continue;
+ }
+
+ // FBX Model::Cube, Model::Bone001, etc elements
+ // This detects if we can cast the object into this model structure.
+ const Model *const model = dynamic_cast<const Model *>(object);
+
+ if (nullptr != model) {
+ nodes_chain.clear();
+ post_nodes_chain.clear();
+
+ aiMatrix4x4 new_abs_transform = parent->mTransformation;
+ std::string node_name = FixNodeName(model->Name());
+ // even though there is only a single input node, the design of
+ // assimp (or rather: the complicated transformation chain that
+ // is employed by fbx) means that we may need multiple aiNode's
+ // to represent a fbx node's transformation.
+
+ // generate node transforms - this includes pivot data
+ // if need_additional_node is true then you t
+ const bool need_additional_node = GenerateTransformationNodeChain(*model, node_name, nodes_chain, post_nodes_chain);
+
+ // assert that for the current node we must have at least a single transform
+ ai_assert(nodes_chain.size());
+
+ if (need_additional_node) {
+ nodes_chain.emplace_back(PotentialNode(node_name));
+ }
+
+ //setup metadata on newest node
+ SetupNodeMetadata(*model, *nodes_chain.back().mNode);
+
+ // link all nodes in a row
+ aiNode *last_parent = parent;
+ for (PotentialNode& child : nodes_chain) {
+ ai_assert(child.mNode);
+
+ if (last_parent != parent) {
+ last_parent->mNumChildren = 1;
+ last_parent->mChildren = new aiNode *[1];
+ last_parent->mChildren[0] = child.mOwnership.release();
+ }
+
+ child->mParent = last_parent;
+ last_parent = child.mNode;
+
+ new_abs_transform *= child->mTransformation;
+ }
+
+ // attach geometry
+ ConvertModel(*model, nodes_chain.back().mNode, root_node, new_abs_transform);
+
+ // check if there will be any child nodes
+ const std::vector<const Connection *> &child_conns = doc.GetConnectionsByDestinationSequenced(model->ID(), "Model");
+
+ // if so, link the geometric transform inverse nodes
+ // before we attach any child nodes
+ if (child_conns.size()) {
+ for (PotentialNode& postnode : post_nodes_chain) {
+ ai_assert(postnode.mNode);
+
+ if (last_parent != parent) {
+ last_parent->mNumChildren = 1;
+ last_parent->mChildren = new aiNode *[1];
+ last_parent->mChildren[0] = postnode.mOwnership.release();
+ }
+
+ postnode->mParent = last_parent;
+ last_parent = postnode.mNode;
+
+ new_abs_transform *= postnode->mTransformation;
+ }
+ } else {
+ // free the nodes we allocated as we don't need them
+ post_nodes_chain.clear();
+ }
+
+ // recursion call - child nodes
+ ConvertNodes(model->ID(), last_parent, root_node);
+
+ if (doc.Settings().readLights) {
+ ConvertLights(*model, node_name);
+ }
+
+ if (doc.Settings().readCameras) {
+ ConvertCameras(*model, node_name);
+ }
+
+ nodes.push_back(std::move(nodes_chain.front()));
+ nodes_chain.clear();
+ }
+ }
+
+ if (nodes.size()) {
+ parent->mChildren = new aiNode *[nodes.size()]();
+ parent->mNumChildren = static_cast<unsigned int>(nodes.size());
+
+ for (unsigned int i = 0; i < nodes.size(); ++i)
+ {
+ parent->mChildren[i] = nodes[i].mOwnership.release();
+ }
+ nodes.clear();
+ } else {
+ parent->mNumChildren = 0;
+ parent->mChildren = nullptr;
+ }
+}
+
+void FBXConverter::ConvertLights(const Model &model, const std::string &orig_name) {
+ const std::vector<const NodeAttribute *> &node_attrs = model.GetAttributes();
+ for (const NodeAttribute *attr : node_attrs) {
+ const Light *const light = dynamic_cast<const Light *>(attr);
+ if (light) {
+ ConvertLight(*light, orig_name);
+ }
+ }
+}
+
+void FBXConverter::ConvertCameras(const Model &model, const std::string &orig_name) {
+ const std::vector<const NodeAttribute *> &node_attrs = model.GetAttributes();
+ for (const NodeAttribute *attr : node_attrs) {
+ const Camera *const cam = dynamic_cast<const Camera *>(attr);
+ if (cam) {
+ ConvertCamera(*cam, orig_name);
+ }
+ }
+}
+
+void FBXConverter::ConvertLight(const Light &light, const std::string &orig_name) {
+ lights.push_back(new aiLight());
+ aiLight *const out_light = lights.back();
+
+ out_light->mName.Set(orig_name);
+
+ const float intensity = light.Intensity() / 100.0f;
+ const aiVector3D &col = light.Color();
+
+ out_light->mColorDiffuse = aiColor3D(col.x, col.y, col.z);
+ out_light->mColorDiffuse.r *= intensity;
+ out_light->mColorDiffuse.g *= intensity;
+ out_light->mColorDiffuse.b *= intensity;
+
+ out_light->mColorSpecular = out_light->mColorDiffuse;
+
+ //lights are defined along negative y direction
+ out_light->mPosition = aiVector3D(0.0f);
+ out_light->mDirection = aiVector3D(0.0f, -1.0f, 0.0f);
+ out_light->mUp = aiVector3D(0.0f, 0.0f, -1.0f);
+
+ switch (light.LightType()) {
+ case Light::Type_Point:
+ out_light->mType = aiLightSource_POINT;
+ break;
+
+ case Light::Type_Directional:
+ out_light->mType = aiLightSource_DIRECTIONAL;
+ break;
+
+ case Light::Type_Spot:
+ out_light->mType = aiLightSource_SPOT;
+ out_light->mAngleOuterCone = AI_DEG_TO_RAD(light.OuterAngle());
+ out_light->mAngleInnerCone = AI_DEG_TO_RAD(light.InnerAngle());
+ break;
+
+ case Light::Type_Area:
+ FBXImporter::LogWarn("cannot represent area light, set to UNDEFINED");
+ out_light->mType = aiLightSource_UNDEFINED;
+ break;
+
+ case Light::Type_Volume:
+ FBXImporter::LogWarn("cannot represent volume light, set to UNDEFINED");
+ out_light->mType = aiLightSource_UNDEFINED;
+ break;
+ default:
+ ai_assert(false);
+ }
+
+ float decay = light.DecayStart();
+ switch (light.DecayType()) {
+ case Light::Decay_None:
+ out_light->mAttenuationConstant = decay;
+ out_light->mAttenuationLinear = 0.0f;
+ out_light->mAttenuationQuadratic = 0.0f;
+ break;
+ case Light::Decay_Linear:
+ out_light->mAttenuationConstant = 0.0f;
+ out_light->mAttenuationLinear = 2.0f / decay;
+ out_light->mAttenuationQuadratic = 0.0f;
+ break;
+ case Light::Decay_Quadratic:
+ out_light->mAttenuationConstant = 0.0f;
+ out_light->mAttenuationLinear = 0.0f;
+ out_light->mAttenuationQuadratic = 2.0f / (decay * decay);
+ break;
+ case Light::Decay_Cubic:
+ FBXImporter::LogWarn("cannot represent cubic attenuation, set to Quadratic");
+ out_light->mAttenuationQuadratic = 1.0f;
+ break;
+ default:
+ ai_assert(false);
+ break;
+ }
+}
+
+void FBXConverter::ConvertCamera(const Camera &cam, const std::string &orig_name) {
+ cameras.push_back(new aiCamera());
+ aiCamera *const out_camera = cameras.back();
+
+ out_camera->mName.Set(orig_name);
+
+ out_camera->mAspect = cam.AspectWidth() / cam.AspectHeight();
+
+ out_camera->mPosition = aiVector3D(0.0f);
+ out_camera->mLookAt = aiVector3D(1.0f, 0.0f, 0.0f);
+ out_camera->mUp = aiVector3D(0.0f, 1.0f, 0.0f);
+
+ out_camera->mHorizontalFOV = AI_DEG_TO_RAD(cam.FieldOfView());
+
+ out_camera->mClipPlaneNear = cam.NearPlane();
+ out_camera->mClipPlaneFar = cam.FarPlane();
+
+ out_camera->mHorizontalFOV = AI_DEG_TO_RAD(cam.FieldOfView());
+ out_camera->mClipPlaneNear = cam.NearPlane();
+ out_camera->mClipPlaneFar = cam.FarPlane();
+}
+
+void FBXConverter::GetUniqueName(const std::string &name, std::string &uniqueName) {
+ uniqueName = name;
+ auto it_pair = mNodeNames.insert({ name, 0 }); // duplicate node name instance count
+ unsigned int &i = it_pair.first->second;
+ while (!it_pair.second) {
+ i++;
+ std::ostringstream ext;
+ ext << name << std::setfill('0') << std::setw(3) << i;
+ uniqueName = ext.str();
+ it_pair = mNodeNames.insert({ uniqueName, 0 });
+ }
+}
+
+const char *FBXConverter::NameTransformationComp(TransformationComp comp) {
+ switch (comp) {
+ case TransformationComp_Translation:
+ return "Translation";
+ case TransformationComp_RotationOffset:
+ return "RotationOffset";
+ case TransformationComp_RotationPivot:
+ return "RotationPivot";
+ case TransformationComp_PreRotation:
+ return "PreRotation";
+ case TransformationComp_Rotation:
+ return "Rotation";
+ case TransformationComp_PostRotation:
+ return "PostRotation";
+ case TransformationComp_RotationPivotInverse:
+ return "RotationPivotInverse";
+ case TransformationComp_ScalingOffset:
+ return "ScalingOffset";
+ case TransformationComp_ScalingPivot:
+ return "ScalingPivot";
+ case TransformationComp_Scaling:
+ return "Scaling";
+ case TransformationComp_ScalingPivotInverse:
+ return "ScalingPivotInverse";
+ case TransformationComp_GeometricScaling:
+ return "GeometricScaling";
+ case TransformationComp_GeometricRotation:
+ return "GeometricRotation";
+ case TransformationComp_GeometricTranslation:
+ return "GeometricTranslation";
+ case TransformationComp_GeometricScalingInverse:
+ return "GeometricScalingInverse";
+ case TransformationComp_GeometricRotationInverse:
+ return "GeometricRotationInverse";
+ case TransformationComp_GeometricTranslationInverse:
+ return "GeometricTranslationInverse";
+ case TransformationComp_MAXIMUM: // this is to silence compiler warnings
+ default:
+ break;
+ }
+
+ ai_assert(false);
+
+ return nullptr;
+}
+
+const char *FBXConverter::NameTransformationCompProperty(TransformationComp comp) {
+ switch (comp) {
+ case TransformationComp_Translation:
+ return "Lcl Translation";
+ case TransformationComp_RotationOffset:
+ return "RotationOffset";
+ case TransformationComp_RotationPivot:
+ return "RotationPivot";
+ case TransformationComp_PreRotation:
+ return "PreRotation";
+ case TransformationComp_Rotation:
+ return "Lcl Rotation";
+ case TransformationComp_PostRotation:
+ return "PostRotation";
+ case TransformationComp_RotationPivotInverse:
+ return "RotationPivotInverse";
+ case TransformationComp_ScalingOffset:
+ return "ScalingOffset";
+ case TransformationComp_ScalingPivot:
+ return "ScalingPivot";
+ case TransformationComp_Scaling:
+ return "Lcl Scaling";
+ case TransformationComp_ScalingPivotInverse:
+ return "ScalingPivotInverse";
+ case TransformationComp_GeometricScaling:
+ return "GeometricScaling";
+ case TransformationComp_GeometricRotation:
+ return "GeometricRotation";
+ case TransformationComp_GeometricTranslation:
+ return "GeometricTranslation";
+ case TransformationComp_GeometricScalingInverse:
+ return "GeometricScalingInverse";
+ case TransformationComp_GeometricRotationInverse:
+ return "GeometricRotationInverse";
+ case TransformationComp_GeometricTranslationInverse:
+ return "GeometricTranslationInverse";
+ case TransformationComp_MAXIMUM: // this is to silence compiler warnings
+ break;
+ }
+
+ ai_assert(false);
+
+ return nullptr;
+}
+
+aiVector3D FBXConverter::TransformationCompDefaultValue(TransformationComp comp) {
+ // XXX a neat way to solve the never-ending special cases for scaling
+ // would be to do everything in log space!
+ return comp == TransformationComp_Scaling ? aiVector3D(1.f, 1.f, 1.f) : aiVector3D();
+}
+
+void FBXConverter::GetRotationMatrix(Model::RotOrder mode, const aiVector3D &rotation, aiMatrix4x4 &out) {
+ if (mode == Model::RotOrder_SphericXYZ) {
+ FBXImporter::LogError("Unsupported RotationMode: SphericXYZ");
+ out = aiMatrix4x4();
+ return;
+ }
+
+ const float angle_epsilon = Math::getEpsilon<float>();
+
+ out = aiMatrix4x4();
+
+ bool is_id[3] = { true, true, true };
+
+ aiMatrix4x4 temp[3];
+ if (std::fabs(rotation.z) > angle_epsilon) {
+ aiMatrix4x4::RotationZ(AI_DEG_TO_RAD(rotation.z), temp[2]);
+ is_id[2] = false;
+ }
+ if (std::fabs(rotation.y) > angle_epsilon) {
+ aiMatrix4x4::RotationY(AI_DEG_TO_RAD(rotation.y), temp[1]);
+ is_id[1] = false;
+ }
+ if (std::fabs(rotation.x) > angle_epsilon) {
+ aiMatrix4x4::RotationX(AI_DEG_TO_RAD(rotation.x), temp[0]);
+ is_id[0] = false;
+ }
+
+ int order[3] = { -1, -1, -1 };
+
+ // note: rotation order is inverted since we're left multiplying as is usual in assimp
+ switch (mode) {
+ case Model::RotOrder_EulerXYZ:
+ order[0] = 2;
+ order[1] = 1;
+ order[2] = 0;
+ break;
+
+ case Model::RotOrder_EulerXZY:
+ order[0] = 1;
+ order[1] = 2;
+ order[2] = 0;
+ break;
+
+ case Model::RotOrder_EulerYZX:
+ order[0] = 0;
+ order[1] = 2;
+ order[2] = 1;
+ break;
+
+ case Model::RotOrder_EulerYXZ:
+ order[0] = 2;
+ order[1] = 0;
+ order[2] = 1;
+ break;
+
+ case Model::RotOrder_EulerZXY:
+ order[0] = 1;
+ order[1] = 0;
+ order[2] = 2;
+ break;
+
+ case Model::RotOrder_EulerZYX:
+ order[0] = 0;
+ order[1] = 1;
+ order[2] = 2;
+ break;
+
+ default:
+ ai_assert(false);
+ break;
+ }
+
+ ai_assert(order[0] >= 0);
+ ai_assert(order[0] <= 2);
+ ai_assert(order[1] >= 0);
+ ai_assert(order[1] <= 2);
+ ai_assert(order[2] >= 0);
+ ai_assert(order[2] <= 2);
+
+ if (!is_id[order[0]]) {
+ out = temp[order[0]];
+ }
+
+ if (!is_id[order[1]]) {
+ out = out * temp[order[1]];
+ }
+
+ if (!is_id[order[2]]) {
+ out = out * temp[order[2]];
+ }
+}
+
+bool FBXConverter::NeedsComplexTransformationChain(const Model &model) {
+ const PropertyTable &props = model.Props();
+ bool ok;
+
+ const float zero_epsilon = ai_epsilon;
+ const aiVector3D all_ones(1.0f, 1.0f, 1.0f);
+ for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
+ const TransformationComp comp = static_cast<TransformationComp>(i);
+
+ if (comp == TransformationComp_Rotation || comp == TransformationComp_Scaling || comp == TransformationComp_Translation ||
+ comp == TransformationComp_PreRotation || comp == TransformationComp_PostRotation) {
+ continue;
+ }
+
+ bool scale_compare = (comp == TransformationComp_GeometricScaling || comp == TransformationComp_Scaling);
+
+ const aiVector3D &v = PropertyGet<aiVector3D>(props, NameTransformationCompProperty(comp), ok);
+ if (ok && scale_compare) {
+ if ((v - all_ones).SquareLength() > zero_epsilon) {
+ return true;
+ }
+ } else if (ok) {
+ if (v.SquareLength() > zero_epsilon) {
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+std::string FBXConverter::NameTransformationChainNode(const std::string &name, TransformationComp comp) {
+ return name + std::string(MAGIC_NODE_TAG) + "_" + NameTransformationComp(comp);
+}
+
+bool FBXConverter::GenerateTransformationNodeChain(const Model &model, const std::string &name, std::vector<PotentialNode> &output_nodes,
+ std::vector<PotentialNode> &post_output_nodes) {
+ const PropertyTable &props = model.Props();
+ const Model::RotOrder rot = model.RotationOrder();
+
+ bool ok;
+
+ aiMatrix4x4 chain[TransformationComp_MAXIMUM];
+
+ ai_assert(TransformationComp_MAXIMUM < 32);
+ std::uint32_t chainBits = 0;
+ // A node won't need a node chain if it only has these.
+ const std::uint32_t chainMaskSimple = (1 << TransformationComp_Translation) + (1 << TransformationComp_Scaling) + (1 << TransformationComp_Rotation);
+ // A node will need a node chain if it has any of these.
+ const std::uint32_t chainMaskComplex = ((1 << (TransformationComp_MAXIMUM)) - 1) - chainMaskSimple;
+
+ std::fill_n(chain, static_cast<unsigned int>(TransformationComp_MAXIMUM), aiMatrix4x4());
+
+ // generate transformation matrices for all the different transformation components
+ const float zero_epsilon = Math::getEpsilon<float>();
+ const aiVector3D all_ones(1.0f, 1.0f, 1.0f);
+
+ const aiVector3D &PreRotation = PropertyGet<aiVector3D>(props, "PreRotation", ok);
+ if (ok && PreRotation.SquareLength() > zero_epsilon) {
+ chainBits = chainBits | (1 << TransformationComp_PreRotation);
+
+ GetRotationMatrix(Model::RotOrder::RotOrder_EulerXYZ, PreRotation, chain[TransformationComp_PreRotation]);
+ }
+
+ const aiVector3D &PostRotation = PropertyGet<aiVector3D>(props, "PostRotation", ok);
+ if (ok && PostRotation.SquareLength() > zero_epsilon) {
+ chainBits = chainBits | (1 << TransformationComp_PostRotation);
+
+ GetRotationMatrix(Model::RotOrder::RotOrder_EulerXYZ, PostRotation, chain[TransformationComp_PostRotation]);
+ }
+
+ const aiVector3D &RotationPivot = PropertyGet<aiVector3D>(props, "RotationPivot", ok);
+ if (ok && RotationPivot.SquareLength() > zero_epsilon) {
+ chainBits = chainBits | (1 << TransformationComp_RotationPivot) | (1 << TransformationComp_RotationPivotInverse);
+
+ aiMatrix4x4::Translation(RotationPivot, chain[TransformationComp_RotationPivot]);
+ aiMatrix4x4::Translation(-RotationPivot, chain[TransformationComp_RotationPivotInverse]);
+ }
+
+ const aiVector3D &RotationOffset = PropertyGet<aiVector3D>(props, "RotationOffset", ok);
+ if (ok && RotationOffset.SquareLength() > zero_epsilon) {
+ chainBits = chainBits | (1 << TransformationComp_RotationOffset);
+
+ aiMatrix4x4::Translation(RotationOffset, chain[TransformationComp_RotationOffset]);
+ }
+
+ const aiVector3D &ScalingOffset = PropertyGet<aiVector3D>(props, "ScalingOffset", ok);
+ if (ok && ScalingOffset.SquareLength() > zero_epsilon) {
+ chainBits = chainBits | (1 << TransformationComp_ScalingOffset);
+
+ aiMatrix4x4::Translation(ScalingOffset, chain[TransformationComp_ScalingOffset]);
+ }
+
+ const aiVector3D &ScalingPivot = PropertyGet<aiVector3D>(props, "ScalingPivot", ok);
+ if (ok && ScalingPivot.SquareLength() > zero_epsilon) {
+ chainBits = chainBits | (1 << TransformationComp_ScalingPivot) | (1 << TransformationComp_ScalingPivotInverse);
+
+ aiMatrix4x4::Translation(ScalingPivot, chain[TransformationComp_ScalingPivot]);
+ aiMatrix4x4::Translation(-ScalingPivot, chain[TransformationComp_ScalingPivotInverse]);
+ }
+
+ const aiVector3D &Translation = PropertyGet<aiVector3D>(props, "Lcl Translation", ok);
+ if (ok && Translation.SquareLength() > zero_epsilon) {
+ chainBits = chainBits | (1 << TransformationComp_Translation);
+
+ aiMatrix4x4::Translation(Translation, chain[TransformationComp_Translation]);
+ }
+
+ const aiVector3D &Scaling = PropertyGet<aiVector3D>(props, "Lcl Scaling", ok);
+ if (ok && (Scaling - all_ones).SquareLength() > zero_epsilon) {
+ chainBits = chainBits | (1 << TransformationComp_Scaling);
+
+ aiMatrix4x4::Scaling(Scaling, chain[TransformationComp_Scaling]);
+ }
+
+ const aiVector3D &Rotation = PropertyGet<aiVector3D>(props, "Lcl Rotation", ok);
+ if (ok && Rotation.SquareLength() > zero_epsilon) {
+ chainBits = chainBits | (1 << TransformationComp_Rotation);
+
+ GetRotationMatrix(rot, Rotation, chain[TransformationComp_Rotation]);
+ }
+
+ const aiVector3D &GeometricScaling = PropertyGet<aiVector3D>(props, "GeometricScaling", ok);
+ if (ok && (GeometricScaling - all_ones).SquareLength() > zero_epsilon) {
+ chainBits = chainBits | (1 << TransformationComp_GeometricScaling);
+ aiMatrix4x4::Scaling(GeometricScaling, chain[TransformationComp_GeometricScaling]);
+ aiVector3D GeometricScalingInverse = GeometricScaling;
+ bool canscale = true;
+ for (unsigned int i = 0; i < 3; ++i) {
+ if (std::fabs(GeometricScalingInverse[i]) > zero_epsilon) {
+ GeometricScalingInverse[i] = 1.0f / GeometricScaling[i];
+ } else {
+ FBXImporter::LogError("cannot invert geometric scaling matrix with a 0.0 scale component");
+ canscale = false;
+ break;
+ }
+ }
+ if (canscale) {
+ chainBits = chainBits | (1 << TransformationComp_GeometricScalingInverse);
+ aiMatrix4x4::Scaling(GeometricScalingInverse, chain[TransformationComp_GeometricScalingInverse]);
+ }
+ }
+
+ const aiVector3D &GeometricRotation = PropertyGet<aiVector3D>(props, "GeometricRotation", ok);
+ if (ok && GeometricRotation.SquareLength() > zero_epsilon) {
+ chainBits = chainBits | (1 << TransformationComp_GeometricRotation) | (1 << TransformationComp_GeometricRotationInverse);
+ GetRotationMatrix(rot, GeometricRotation, chain[TransformationComp_GeometricRotation]);
+ GetRotationMatrix(rot, GeometricRotation, chain[TransformationComp_GeometricRotationInverse]);
+ chain[TransformationComp_GeometricRotationInverse].Inverse();
+ }
+
+ const aiVector3D &GeometricTranslation = PropertyGet<aiVector3D>(props, "GeometricTranslation", ok);
+ if (ok && GeometricTranslation.SquareLength() > zero_epsilon) {
+ chainBits = chainBits | (1 << TransformationComp_GeometricTranslation) | (1 << TransformationComp_GeometricTranslationInverse);
+ aiMatrix4x4::Translation(GeometricTranslation, chain[TransformationComp_GeometricTranslation]);
+ aiMatrix4x4::Translation(-GeometricTranslation, chain[TransformationComp_GeometricTranslationInverse]);
+ }
+
+ // now, if we have more than just Translation, Scaling and Rotation,
+ // we need to generate a full node chain to accommodate for assimp's
+ // lack to express pivots and offsets.
+ if ((chainBits & chainMaskComplex) && doc.Settings().preservePivots) {
+ FBXImporter::LogInfo("generating full transformation chain for node: ", name);
+
+ // query the anim_chain_bits dictionary to find out which chain elements
+ // have associated node animation channels. These can not be dropped
+ // even if they have identity transform in bind pose.
+ NodeAnimBitMap::const_iterator it = node_anim_chain_bits.find(name);
+ const unsigned int anim_chain_bitmask = (it == node_anim_chain_bits.end() ? 0 : (*it).second);
+
+ unsigned int bit = 0x1;
+ for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i, bit <<= 1) {
+ const TransformationComp comp = static_cast<TransformationComp>(i);
+
+ if ((chainBits & bit) == 0 && (anim_chain_bitmask & bit) == 0) {
+ continue;
+ }
+
+ if (comp == TransformationComp_PostRotation) {
+ chain[i] = chain[i].Inverse();
+ }
+
+ PotentialNode nd;
+ nd->mName.Set(NameTransformationChainNode(name, comp));
+ nd->mTransformation = chain[i];
+
+ // geometric inverses go in a post-node chain
+ if (comp == TransformationComp_GeometricScalingInverse ||
+ comp == TransformationComp_GeometricRotationInverse ||
+ comp == TransformationComp_GeometricTranslationInverse) {
+ post_output_nodes.emplace_back(std::move(nd));
+ } else {
+ output_nodes.emplace_back(std::move(nd));
+ }
+ }
+
+ ai_assert(output_nodes.size());
+ return true;
+ }
+
+ // else, we can just multiply the matrices together
+ PotentialNode nd;
+
+ // name passed to the method is already unique
+ nd->mName.Set(name);
+ // for (const auto &transform : chain) {
+ // skip inverse chain for no preservePivots
+ for (unsigned int i = TransformationComp_Translation; i < TransformationComp_MAXIMUM; i++) {
+ nd->mTransformation = nd->mTransformation * chain[i];
+ }
+ output_nodes.push_back(std::move(nd));
+ return false;
+}
+
+void FBXConverter::SetupNodeMetadata(const Model &model, aiNode &nd) {
+ const PropertyTable &props = model.Props();
+ DirectPropertyMap unparsedProperties = props.GetUnparsedProperties();
+
+ // create metadata on node
+ const std::size_t numStaticMetaData = 2;
+ aiMetadata *data = aiMetadata::Alloc(static_cast<unsigned int>(unparsedProperties.size() + numStaticMetaData));
+ nd.mMetaData = data;
+ int index = 0;
+
+ // find user defined properties (3ds Max)
+ data->Set(index++, "UserProperties", aiString(PropertyGet<std::string>(props, "UDP3DSMAX", "")));
+ // preserve the info that a node was marked as Null node in the original file.
+ data->Set(index++, "IsNull", model.IsNull() ? true : false);
+
+ // add unparsed properties to the node's metadata
+ for (const DirectPropertyMap::value_type &prop : unparsedProperties) {
+ // Interpret the property as a concrete type
+ if (const TypedProperty<bool> *interpretedBool = prop.second->As<TypedProperty<bool>>()) {
+ data->Set(index++, prop.first, interpretedBool->Value());
+ } else if (const TypedProperty<int> *interpretedInt = prop.second->As<TypedProperty<int>>()) {
+ data->Set(index++, prop.first, interpretedInt->Value());
+ } else if (const TypedProperty<uint64_t> *interpretedUint64 = prop.second->As<TypedProperty<uint64_t>>()) {
+ data->Set(index++, prop.first, interpretedUint64->Value());
+ } else if (const TypedProperty<float> *interpretedFloat = prop.second->As<TypedProperty<float>>()) {
+ data->Set(index++, prop.first, interpretedFloat->Value());
+ } else if (const TypedProperty<std::string> *interpretedString = prop.second->As<TypedProperty<std::string>>()) {
+ data->Set(index++, prop.first, aiString(interpretedString->Value()));
+ } else if (const TypedProperty<aiVector3D> *interpretedVec3 = prop.second->As<TypedProperty<aiVector3D>>()) {
+ data->Set(index++, prop.first, interpretedVec3->Value());
+ } else {
+ ai_assert(false);
+ }
+ }
+}
+
+void FBXConverter::ConvertModel(const Model &model, aiNode *parent, aiNode *root_node,
+ const aiMatrix4x4 &absolute_transform) {
+ const std::vector<const Geometry *> &geos = model.GetGeometry();
+
+ std::vector<unsigned int> meshes;
+ meshes.reserve(geos.size());
+
+ for (const Geometry *geo : geos) {
+
+ const MeshGeometry *const mesh = dynamic_cast<const MeshGeometry *>(geo);
+ const LineGeometry *const line = dynamic_cast<const LineGeometry *>(geo);
+ if (mesh) {
+ const std::vector<unsigned int> &indices = ConvertMesh(*mesh, model, parent, root_node,
+ absolute_transform);
+ std::copy(indices.begin(), indices.end(), std::back_inserter(meshes));
+ } else if (line) {
+ const std::vector<unsigned int> &indices = ConvertLine(*line, root_node);
+ std::copy(indices.begin(), indices.end(), std::back_inserter(meshes));
+ } else if (geo) {
+ FBXImporter::LogWarn("ignoring unrecognized geometry: ", geo->Name());
+ } else {
+ FBXImporter::LogWarn("skipping null geometry");
+ }
+ }
+
+ if (meshes.size()) {
+ parent->mMeshes = new unsigned int[meshes.size()]();
+ parent->mNumMeshes = static_cast<unsigned int>(meshes.size());
+
+ std::swap_ranges(meshes.begin(), meshes.end(), parent->mMeshes);
+ }
+}
+
+std::vector<unsigned int>
+FBXConverter::ConvertMesh(const MeshGeometry &mesh, const Model &model, aiNode *parent, aiNode *root_node,
+ const aiMatrix4x4 &absolute_transform) {
+ std::vector<unsigned int> temp;
+
+ MeshMap::const_iterator it = meshes_converted.find(&mesh);
+ if (it != meshes_converted.end()) {
+ std::copy((*it).second.begin(), (*it).second.end(), std::back_inserter(temp));
+ return temp;
+ }
+
+ const std::vector<aiVector3D> &vertices = mesh.GetVertices();
+ const std::vector<unsigned int> &faces = mesh.GetFaceIndexCounts();
+ if (vertices.empty() || faces.empty()) {
+ FBXImporter::LogWarn("ignoring empty geometry: ", mesh.Name());
+ return temp;
+ }
+
+ // one material per mesh maps easily to aiMesh. Multiple material
+ // meshes need to be split.
+ const MatIndexArray &mindices = mesh.GetMaterialIndices();
+ if (doc.Settings().readMaterials && !mindices.empty()) {
+ const MatIndexArray::value_type base = mindices[0];
+ for (MatIndexArray::value_type index : mindices) {
+ if (index != base) {
+ return ConvertMeshMultiMaterial(mesh, model, parent, root_node, absolute_transform);
+ }
+ }
+ }
+
+ // faster code-path, just copy the data
+ temp.push_back(ConvertMeshSingleMaterial(mesh, model, absolute_transform, parent, root_node));
+ return temp;
+}
+
+std::vector<unsigned int> FBXConverter::ConvertLine(const LineGeometry &line, aiNode *root_node) {
+ std::vector<unsigned int> temp;
+
+ const std::vector<aiVector3D> &vertices = line.GetVertices();
+ const std::vector<int> &indices = line.GetIndices();
+ if (vertices.empty() || indices.empty()) {
+ FBXImporter::LogWarn("ignoring empty line: ", line.Name());
+ return temp;
+ }
+
+ aiMesh *const out_mesh = SetupEmptyMesh(line, root_node);
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
+
+ // copy vertices
+ out_mesh->mNumVertices = static_cast<unsigned int>(vertices.size());
+ out_mesh->mVertices = new aiVector3D[out_mesh->mNumVertices];
+ std::copy(vertices.begin(), vertices.end(), out_mesh->mVertices);
+
+ //Number of line segments (faces) is "Number of Points - Number of Endpoints"
+ //N.B.: Endpoints in FbxLine are denoted by negative indices.
+ //If such an Index is encountered, add 1 and multiply by -1 to get the real index.
+ unsigned int epcount = 0;
+ for (unsigned i = 0; i < indices.size(); i++) {
+ if (indices[i] < 0) {
+ epcount++;
+ }
+ }
+ unsigned int pcount = static_cast<unsigned int>(indices.size());
+ unsigned int scount = out_mesh->mNumFaces = pcount - epcount;
+
+ aiFace *fac = out_mesh->mFaces = new aiFace[scount]();
+ for (unsigned int i = 0; i < pcount; ++i) {
+ if (indices[i] < 0) continue;
+ aiFace &f = *fac++;
+ f.mNumIndices = 2; //2 == aiPrimitiveType_LINE
+ f.mIndices = new unsigned int[2];
+ f.mIndices[0] = indices[i];
+ int segid = indices[(i + 1 == pcount ? 0 : i + 1)]; //If we have reached he last point, wrap around
+ f.mIndices[1] = (segid < 0 ? (segid + 1) * -1 : segid); //Convert EndPoint Index to normal Index
+ }
+ temp.push_back(static_cast<unsigned int>(mMeshes.size() - 1));
+ return temp;
+}
+
+aiMesh *FBXConverter::SetupEmptyMesh(const Geometry &mesh, aiNode *parent) {
+ aiMesh *const out_mesh = new aiMesh();
+ mMeshes.push_back(out_mesh);
+ meshes_converted[&mesh].push_back(static_cast<unsigned int>(mMeshes.size() - 1));
+
+ // set name
+ std::string name = mesh.Name();
+ if (name.substr(0, 10) == "Geometry::") {
+ name = name.substr(10);
+ }
+
+ if (name.length()) {
+ out_mesh->mName.Set(name);
+ } else {
+ out_mesh->mName = parent->mName;
+ }
+
+ return out_mesh;
+}
+
+unsigned int FBXConverter::ConvertMeshSingleMaterial(const MeshGeometry &mesh, const Model &model,
+ const aiMatrix4x4 &absolute_transform, aiNode *parent,
+ aiNode *) {
+ const MatIndexArray &mindices = mesh.GetMaterialIndices();
+ aiMesh *const out_mesh = SetupEmptyMesh(mesh, parent);
+
+ const std::vector<aiVector3D> &vertices = mesh.GetVertices();
+ const std::vector<unsigned int> &faces = mesh.GetFaceIndexCounts();
+
+ // copy vertices
+ out_mesh->mNumVertices = static_cast<unsigned int>(vertices.size());
+ out_mesh->mVertices = new aiVector3D[vertices.size()];
+
+ std::copy(vertices.begin(), vertices.end(), out_mesh->mVertices);
+
+ // generate dummy faces
+ out_mesh->mNumFaces = static_cast<unsigned int>(faces.size());
+ aiFace *fac = out_mesh->mFaces = new aiFace[faces.size()]();
+
+ unsigned int cursor = 0;
+ for (unsigned int pcount : faces) {
+ aiFace &f = *fac++;
+ f.mNumIndices = pcount;
+ f.mIndices = new unsigned int[pcount];
+ switch (pcount) {
+ case 1:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
+ break;
+ case 2:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
+ break;
+ case 3:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
+ break;
+ default:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
+ break;
+ }
+ for (unsigned int i = 0; i < pcount; ++i) {
+ f.mIndices[i] = cursor++;
+ }
+ }
+
+ // copy normals
+ const std::vector<aiVector3D> &normals = mesh.GetNormals();
+ if (normals.size()) {
+ ai_assert(normals.size() == vertices.size());
+
+ out_mesh->mNormals = new aiVector3D[vertices.size()];
+ std::copy(normals.begin(), normals.end(), out_mesh->mNormals);
+ }
+
+ // copy tangents - assimp requires both tangents and bitangents (binormals)
+ // to be present, or neither of them. Compute binormals from normals
+ // and tangents if needed.
+ const std::vector<aiVector3D> &tangents = mesh.GetTangents();
+ const std::vector<aiVector3D> *binormals = &mesh.GetBinormals();
+
+ if (tangents.size()) {
+ std::vector<aiVector3D> tempBinormals;
+ if (!binormals->size()) {
+ if (normals.size()) {
+ tempBinormals.resize(normals.size());
+ for (unsigned int i = 0; i < tangents.size(); ++i) {
+ tempBinormals[i] = normals[i] ^ tangents[i];
+ }
+
+ binormals = &tempBinormals;
+ } else {
+ binormals = nullptr;
+ }
+ }
+
+ if (binormals) {
+ ai_assert(tangents.size() == vertices.size());
+ ai_assert(binormals->size() == vertices.size());
+
+ out_mesh->mTangents = new aiVector3D[vertices.size()];
+ std::copy(tangents.begin(), tangents.end(), out_mesh->mTangents);
+
+ out_mesh->mBitangents = new aiVector3D[vertices.size()];
+ std::copy(binormals->begin(), binormals->end(), out_mesh->mBitangents);
+ }
+ }
+
+ // copy texture coords
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
+ const std::vector<aiVector2D> &uvs = mesh.GetTextureCoords(i);
+ if (uvs.empty()) {
+ break;
+ }
+
+ aiVector3D *out_uv = out_mesh->mTextureCoords[i] = new aiVector3D[vertices.size()];
+ for (const aiVector2D &v : uvs) {
+ *out_uv++ = aiVector3D(v.x, v.y, 0.0f);
+ }
+
+ out_mesh->SetTextureCoordsName(i, aiString(mesh.GetTextureCoordChannelName(i)));
+
+ out_mesh->mNumUVComponents[i] = 2;
+ }
+
+ // copy vertex colors
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i) {
+ const std::vector<aiColor4D> &colors = mesh.GetVertexColors(i);
+ if (colors.empty()) {
+ break;
+ }
+
+ out_mesh->mColors[i] = new aiColor4D[vertices.size()];
+ std::copy(colors.begin(), colors.end(), out_mesh->mColors[i]);
+ }
+
+ if (!doc.Settings().readMaterials || mindices.empty()) {
+ FBXImporter::LogError("no material assigned to mesh, setting default material");
+ out_mesh->mMaterialIndex = GetDefaultMaterial();
+ } else {
+ ConvertMaterialForMesh(out_mesh, model, mesh, mindices[0]);
+ }
+
+ if (doc.Settings().readWeights && mesh.DeformerSkin() != nullptr) {
+ ConvertWeights(out_mesh, mesh, absolute_transform, parent, NO_MATERIAL_SEPARATION, nullptr);
+ }
+
+ std::vector<aiAnimMesh *> animMeshes;
+ for (const BlendShape *blendShape : mesh.GetBlendShapes()) {
+ for (const BlendShapeChannel *blendShapeChannel : blendShape->BlendShapeChannels()) {
+ const std::vector<const ShapeGeometry *> &shapeGeometries = blendShapeChannel->GetShapeGeometries();
+ for (size_t i = 0; i < shapeGeometries.size(); i++) {
+ aiAnimMesh *animMesh = aiCreateAnimMesh(out_mesh);
+ const ShapeGeometry *shapeGeometry = shapeGeometries.at(i);
+ const std::vector<aiVector3D> &curVertices = shapeGeometry->GetVertices();
+ const std::vector<aiVector3D> &curNormals = shapeGeometry->GetNormals();
+ const std::vector<unsigned int> &curIndices = shapeGeometry->GetIndices();
+ //losing channel name if using shapeGeometry->Name()
+ animMesh->mName.Set(FixAnimMeshName(blendShapeChannel->Name()));
+ for (size_t j = 0; j < curIndices.size(); j++) {
+ const unsigned int curIndex = curIndices.at(j);
+ aiVector3D vertex = curVertices.at(j);
+ aiVector3D normal = curNormals.at(j);
+ unsigned int count = 0;
+ const unsigned int *outIndices = mesh.ToOutputVertexIndex(curIndex, count);
+ for (unsigned int k = 0; k < count; k++) {
+ unsigned int index = outIndices[k];
+ animMesh->mVertices[index] += vertex;
+ if (animMesh->mNormals != nullptr) {
+ animMesh->mNormals[index] += normal;
+ animMesh->mNormals[index].NormalizeSafe();
+ }
+ }
+ }
+ animMesh->mWeight = shapeGeometries.size() > 1 ? blendShapeChannel->DeformPercent() / 100.0f : 1.0f;
+ animMeshes.push_back(animMesh);
+ }
+ }
+ }
+ const size_t numAnimMeshes = animMeshes.size();
+ if (numAnimMeshes > 0) {
+ out_mesh->mNumAnimMeshes = static_cast<unsigned int>(numAnimMeshes);
+ out_mesh->mAnimMeshes = new aiAnimMesh *[numAnimMeshes];
+ for (size_t i = 0; i < numAnimMeshes; i++) {
+ out_mesh->mAnimMeshes[i] = animMeshes.at(i);
+ }
+ }
+ return static_cast<unsigned int>(mMeshes.size() - 1);
+}
+
+std::vector<unsigned int>
+FBXConverter::ConvertMeshMultiMaterial(const MeshGeometry &mesh, const Model &model, aiNode *parent,
+ aiNode *root_node,
+ const aiMatrix4x4 &absolute_transform) {
+ const MatIndexArray &mindices = mesh.GetMaterialIndices();
+ ai_assert(mindices.size());
+
+ std::set<MatIndexArray::value_type> had;
+ std::vector<unsigned int> indices;
+
+ for (MatIndexArray::value_type index : mindices) {
+ if (had.find(index) == had.end()) {
+
+ indices.push_back(ConvertMeshMultiMaterial(mesh, model, index, parent, root_node, absolute_transform));
+ had.insert(index);
+ }
+ }
+
+ return indices;
+}
+
+unsigned int FBXConverter::ConvertMeshMultiMaterial(const MeshGeometry &mesh, const Model &model,
+ MatIndexArray::value_type index,
+ aiNode *parent, aiNode *,
+ const aiMatrix4x4 &absolute_transform) {
+ aiMesh *const out_mesh = SetupEmptyMesh(mesh, parent);
+
+ const MatIndexArray &mindices = mesh.GetMaterialIndices();
+ const std::vector<aiVector3D> &vertices = mesh.GetVertices();
+ const std::vector<unsigned int> &faces = mesh.GetFaceIndexCounts();
+
+ const bool process_weights = doc.Settings().readWeights && mesh.DeformerSkin() != nullptr;
+
+ unsigned int count_faces = 0;
+ unsigned int count_vertices = 0;
+
+ // count faces
+ std::vector<unsigned int>::const_iterator itf = faces.begin();
+ for (MatIndexArray::const_iterator it = mindices.begin(),
+ end = mindices.end();
+ it != end; ++it, ++itf) {
+ if ((*it) != index) {
+ continue;
+ }
+ ++count_faces;
+ count_vertices += *itf;
+ }
+
+ ai_assert(count_faces);
+ ai_assert(count_vertices);
+
+ // mapping from output indices to DOM indexing, needed to resolve weights or blendshapes
+ std::vector<unsigned int> reverseMapping;
+ std::map<unsigned int, unsigned int> translateIndexMap;
+ if (process_weights || mesh.GetBlendShapes().size() > 0) {
+ reverseMapping.resize(count_vertices);
+ }
+
+ // allocate output data arrays, but don't fill them yet
+ out_mesh->mNumVertices = count_vertices;
+ out_mesh->mVertices = new aiVector3D[count_vertices];
+
+ out_mesh->mNumFaces = count_faces;
+ aiFace *fac = out_mesh->mFaces = new aiFace[count_faces]();
+
+ // allocate normals
+ const std::vector<aiVector3D> &normals = mesh.GetNormals();
+ if (normals.size()) {
+ ai_assert(normals.size() == vertices.size());
+ out_mesh->mNormals = new aiVector3D[count_vertices];
+ }
+
+ // allocate tangents, binormals.
+ const std::vector<aiVector3D> &tangents = mesh.GetTangents();
+ const std::vector<aiVector3D> *binormals = &mesh.GetBinormals();
+ std::vector<aiVector3D> tempBinormals;
+
+ if (tangents.size()) {
+ if (!binormals->size()) {
+ if (normals.size()) {
+ // XXX this computes the binormals for the entire mesh, not only
+ // the part for which we need them.
+ tempBinormals.resize(normals.size());
+ for (unsigned int i = 0; i < tangents.size(); ++i) {
+ tempBinormals[i] = normals[i] ^ tangents[i];
+ }
+
+ binormals = &tempBinormals;
+ } else {
+ binormals = nullptr;
+ }
+ }
+
+ if (binormals) {
+ ai_assert(tangents.size() == vertices.size());
+ ai_assert(binormals->size() == vertices.size());
+
+ out_mesh->mTangents = new aiVector3D[count_vertices];
+ out_mesh->mBitangents = new aiVector3D[count_vertices];
+ }
+ }
+
+ // allocate texture coords
+ unsigned int num_uvs = 0;
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i, ++num_uvs) {
+ const std::vector<aiVector2D> &uvs = mesh.GetTextureCoords(i);
+ if (uvs.empty()) {
+ break;
+ }
+
+ out_mesh->mTextureCoords[i] = new aiVector3D[count_vertices];
+ out_mesh->mNumUVComponents[i] = 2;
+ }
+
+ // allocate vertex colors
+ unsigned int num_vcs = 0;
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i, ++num_vcs) {
+ const std::vector<aiColor4D> &colors = mesh.GetVertexColors(i);
+ if (colors.empty()) {
+ break;
+ }
+
+ out_mesh->mColors[i] = new aiColor4D[count_vertices];
+ }
+
+ unsigned int cursor = 0, in_cursor = 0;
+
+ itf = faces.begin();
+ for (MatIndexArray::const_iterator it = mindices.begin(), end = mindices.end(); it != end; ++it, ++itf) {
+ const unsigned int pcount = *itf;
+ if ((*it) != index) {
+ in_cursor += pcount;
+ continue;
+ }
+
+ aiFace &f = *fac++;
+
+ f.mNumIndices = pcount;
+ f.mIndices = new unsigned int[pcount];
+ switch (pcount) {
+ case 1:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
+ break;
+ case 2:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
+ break;
+ case 3:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
+ break;
+ default:
+ out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
+ break;
+ }
+ for (unsigned int i = 0; i < pcount; ++i, ++cursor, ++in_cursor) {
+ f.mIndices[i] = cursor;
+
+ if (reverseMapping.size()) {
+ reverseMapping[cursor] = in_cursor;
+ translateIndexMap[in_cursor] = cursor;
+ }
+
+ out_mesh->mVertices[cursor] = vertices[in_cursor];
+
+ if (out_mesh->mNormals) {
+ out_mesh->mNormals[cursor] = normals[in_cursor];
+ }
+
+ if (out_mesh->mTangents) {
+ out_mesh->mTangents[cursor] = tangents[in_cursor];
+ out_mesh->mBitangents[cursor] = (*binormals)[in_cursor];
+ }
+
+ for (unsigned int j = 0; j < num_uvs; ++j) {
+ const std::vector<aiVector2D> &uvs = mesh.GetTextureCoords(j);
+ out_mesh->mTextureCoords[j][cursor] = aiVector3D(uvs[in_cursor].x, uvs[in_cursor].y, 0.0f);
+ }
+
+ for (unsigned int j = 0; j < num_vcs; ++j) {
+ const std::vector<aiColor4D> &cols = mesh.GetVertexColors(j);
+ out_mesh->mColors[j][cursor] = cols[in_cursor];
+ }
+ }
+ }
+
+ ConvertMaterialForMesh(out_mesh, model, mesh, index);
+
+ if (process_weights) {
+ ConvertWeights(out_mesh, mesh, absolute_transform, parent, index, &reverseMapping);
+ }
+
+ std::vector<aiAnimMesh *> animMeshes;
+ for (const BlendShape *blendShape : mesh.GetBlendShapes()) {
+ for (const BlendShapeChannel *blendShapeChannel : blendShape->BlendShapeChannels()) {
+ const std::vector<const ShapeGeometry *> &shapeGeometries = blendShapeChannel->GetShapeGeometries();
+ for (size_t i = 0; i < shapeGeometries.size(); i++) {
+ aiAnimMesh *animMesh = aiCreateAnimMesh(out_mesh);
+ const ShapeGeometry *shapeGeometry = shapeGeometries.at(i);
+ const std::vector<aiVector3D> &curVertices = shapeGeometry->GetVertices();
+ const std::vector<aiVector3D> &curNormals = shapeGeometry->GetNormals();
+ const std::vector<unsigned int> &curIndices = shapeGeometry->GetIndices();
+ animMesh->mName.Set(FixAnimMeshName(shapeGeometry->Name()));
+ for (size_t j = 0; j < curIndices.size(); j++) {
+ unsigned int curIndex = curIndices.at(j);
+ aiVector3D vertex = curVertices.at(j);
+ aiVector3D normal = curNormals.at(j);
+ unsigned int count = 0;
+ const unsigned int *outIndices = mesh.ToOutputVertexIndex(curIndex, count);
+ for (unsigned int k = 0; k < count; k++) {
+ unsigned int outIndex = outIndices[k];
+ if (translateIndexMap.find(outIndex) == translateIndexMap.end())
+ continue;
+ unsigned int transIndex = translateIndexMap[outIndex];
+ animMesh->mVertices[transIndex] += vertex;
+ if (animMesh->mNormals != nullptr) {
+ animMesh->mNormals[transIndex] += normal;
+ animMesh->mNormals[transIndex].NormalizeSafe();
+ }
+ }
+ }
+ animMesh->mWeight = shapeGeometries.size() > 1 ? blendShapeChannel->DeformPercent() / 100.0f : 1.0f;
+ animMeshes.push_back(animMesh);
+ }
+ }
+ }
+
+ const size_t numAnimMeshes = animMeshes.size();
+ if (numAnimMeshes > 0) {
+ out_mesh->mNumAnimMeshes = static_cast<unsigned int>(numAnimMeshes);
+ out_mesh->mAnimMeshes = new aiAnimMesh *[numAnimMeshes];
+ for (size_t i = 0; i < numAnimMeshes; i++) {
+ out_mesh->mAnimMeshes[i] = animMeshes.at(i);
+ }
+ }
+
+ return static_cast<unsigned int>(mMeshes.size() - 1);
+}
+
+void FBXConverter::ConvertWeights(aiMesh *out, const MeshGeometry &geo,
+ const aiMatrix4x4 &absolute_transform,
+ aiNode *parent, unsigned int materialIndex,
+ std::vector<unsigned int> *outputVertStartIndices) {
+ ai_assert(geo.DeformerSkin());
+
+ std::vector<size_t> out_indices;
+ std::vector<size_t> index_out_indices;
+ std::vector<size_t> count_out_indices;
+
+ const Skin &sk = *geo.DeformerSkin();
+
+ std::vector<aiBone *> bones;
+
+ const bool no_mat_check = materialIndex == NO_MATERIAL_SEPARATION;
+ ai_assert(no_mat_check || outputVertStartIndices);
+
+ try {
+ // iterate over the sub deformers
+ for (const Cluster *cluster : sk.Clusters()) {
+ ai_assert(cluster);
+
+ const WeightIndexArray &indices = cluster->GetIndices();
+
+ const MatIndexArray &mats = geo.GetMaterialIndices();
+
+ const size_t no_index_sentinel = std::numeric_limits<size_t>::max();
+
+ count_out_indices.clear();
+ index_out_indices.clear();
+ out_indices.clear();
+
+ // now check if *any* of these weights is contained in the output mesh,
+ // taking notes so we don't need to do it twice.
+ for (WeightIndexArray::value_type index : indices) {
+
+ unsigned int count = 0;
+ const unsigned int *const out_idx = geo.ToOutputVertexIndex(index, count);
+ // ToOutputVertexIndex only returns nullptr if index is out of bounds
+ // which should never happen
+ ai_assert(out_idx != nullptr);
+
+ index_out_indices.push_back(no_index_sentinel);
+ count_out_indices.push_back(0);
+
+ for (unsigned int i = 0; i < count; ++i) {
+ if (no_mat_check || static_cast<size_t>(mats[geo.FaceForVertexIndex(out_idx[i])]) == materialIndex) {
+
+ if (index_out_indices.back() == no_index_sentinel) {
+ index_out_indices.back() = out_indices.size();
+ }
+
+ if (no_mat_check) {
+ out_indices.push_back(out_idx[i]);
+ } else {
+ // this extra lookup is in O(logn), so the entire algorithm becomes O(nlogn)
+ const std::vector<unsigned int>::iterator it = std::lower_bound(
+ outputVertStartIndices->begin(),
+ outputVertStartIndices->end(),
+ out_idx[i]);
+
+ out_indices.push_back(std::distance(outputVertStartIndices->begin(), it));
+ }
+
+ ++count_out_indices.back();
+ }
+ }
+ }
+
+ // if we found at least one, generate the output bones
+ // XXX this could be heavily simplified by collecting the bone
+ // data in a single step.
+ ConvertCluster(bones, cluster, out_indices, index_out_indices,
+ count_out_indices, absolute_transform, parent);
+ }
+
+ bone_map.clear();
+ } catch (std::exception &) {
+ std::for_each(bones.begin(), bones.end(), Util::delete_fun<aiBone>());
+ throw;
+ }
+
+ if (bones.empty()) {
+ out->mBones = nullptr;
+ out->mNumBones = 0;
+ return;
+ } else {
+ out->mBones = new aiBone *[bones.size()]();
+ out->mNumBones = static_cast<unsigned int>(bones.size());
+
+ std::swap_ranges(bones.begin(), bones.end(), out->mBones);
+ }
+}
+
+const aiNode *GetNodeByName(aiNode *current_node) {
+ aiNode *iter = current_node;
+ //printf("Child count: %d", iter->mNumChildren);
+ return iter;
+}
+
+void FBXConverter::ConvertCluster(std::vector<aiBone *> &local_mesh_bones, const Cluster *cl,
+ std::vector<size_t> &out_indices, std::vector<size_t> &index_out_indices,
+ std::vector<size_t> &count_out_indices, const aiMatrix4x4 &absolute_transform,
+ aiNode *) {
+ ai_assert(cl); // make sure cluster valid
+ std::string deformer_name = cl->TargetNode()->Name();
+ aiString bone_name = aiString(FixNodeName(deformer_name));
+
+ aiBone *bone = nullptr;
+
+ if (bone_map.count(deformer_name)) {
+ ASSIMP_LOG_VERBOSE_DEBUG("retrieved bone from lookup ", bone_name.C_Str(), ". Deformer:", deformer_name);
+ bone = bone_map[deformer_name];
+ } else {
+ ASSIMP_LOG_VERBOSE_DEBUG("created new bone ", bone_name.C_Str(), ". Deformer: ", deformer_name);
+ bone = new aiBone();
+ bone->mName = bone_name;
+
+ // store local transform link for post processing
+ bone->mOffsetMatrix = cl->TransformLink();
+ bone->mOffsetMatrix.Inverse();
+
+ aiMatrix4x4 matrix = (aiMatrix4x4)absolute_transform;
+
+ bone->mOffsetMatrix = bone->mOffsetMatrix * matrix; // * mesh_offset
+
+ //
+ // Now calculate the aiVertexWeights
+ //
+
+ aiVertexWeight *cursor = nullptr;
+
+ bone->mNumWeights = static_cast<unsigned int>(out_indices.size());
+ cursor = bone->mWeights = new aiVertexWeight[out_indices.size()];
+
+ const size_t no_index_sentinel = std::numeric_limits<size_t>::max();
+ const WeightArray &weights = cl->GetWeights();
+
+ const size_t c = index_out_indices.size();
+ for (size_t i = 0; i < c; ++i) {
+ const size_t index_index = index_out_indices[i];
+
+ if (index_index == no_index_sentinel) {
+ continue;
+ }
+
+ const size_t cc = count_out_indices[i];
+ for (size_t j = 0; j < cc; ++j) {
+ // cursor runs from first element relative to the start
+ // or relative to the start of the next indexes.
+ aiVertexWeight &out_weight = *cursor++;
+
+ out_weight.mVertexId = static_cast<unsigned int>(out_indices[index_index + j]);
+ out_weight.mWeight = weights[i];
+ }
+ }
+
+ bone_map.insert(std::pair<const std::string, aiBone *>(deformer_name, bone));
+ }
+
+ ASSIMP_LOG_DEBUG("bone research: Indices size: ", out_indices.size());
+
+ // lookup must be populated in case something goes wrong
+ // this also allocates bones to mesh instance outside
+ local_mesh_bones.push_back(bone);
+}
+
+void FBXConverter::ConvertMaterialForMesh(aiMesh *out, const Model &model, const MeshGeometry &geo,
+ MatIndexArray::value_type materialIndex) {
+ // locate source materials for this mesh
+ const std::vector<const Material *> &mats = model.GetMaterials();
+ if (static_cast<unsigned int>(materialIndex) >= mats.size() || materialIndex < 0) {
+ FBXImporter::LogError("material index out of bounds, setting default material");
+ out->mMaterialIndex = GetDefaultMaterial();
+ return;
+ }
+
+ const Material *const mat = mats[materialIndex];
+ MaterialMap::const_iterator it = materials_converted.find(mat);
+ if (it != materials_converted.end()) {
+ out->mMaterialIndex = (*it).second;
+ return;
+ }
+
+ out->mMaterialIndex = ConvertMaterial(*mat, &geo);
+ materials_converted[mat] = out->mMaterialIndex;
+}
+
+unsigned int FBXConverter::GetDefaultMaterial() {
+ if (defaultMaterialIndex) {
+ return defaultMaterialIndex - 1;
+ }
+
+ aiMaterial *out_mat = new aiMaterial();
+ materials.push_back(out_mat);
+
+ const aiColor3D diffuse = aiColor3D(0.8f, 0.8f, 0.8f);
+ out_mat->AddProperty(&diffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
+
+ aiString s;
+ s.Set(AI_DEFAULT_MATERIAL_NAME);
+
+ out_mat->AddProperty(&s, AI_MATKEY_NAME);
+
+ defaultMaterialIndex = static_cast<unsigned int>(materials.size());
+ return defaultMaterialIndex - 1;
+}
+
+unsigned int FBXConverter::ConvertMaterial(const Material &material, const MeshGeometry *const mesh) {
+ const PropertyTable &props = material.Props();
+
+ // generate empty output material
+ aiMaterial *out_mat = new aiMaterial();
+ materials_converted[&material] = static_cast<unsigned int>(materials.size());
+
+ materials.push_back(out_mat);
+
+ aiString str;
+
+ // strip Material:: prefix
+ std::string name = material.Name();
+ if (name.substr(0, 10) == "Material::") {
+ name = name.substr(10);
+ }
+
+ // set material name if not empty - this could happen
+ // and there should be no key for it in this case.
+ if (name.length()) {
+ str.Set(name);
+ out_mat->AddProperty(&str, AI_MATKEY_NAME);
+ }
+
+ // Set the shading mode as best we can: The FBX specification only mentions Lambert and Phong, and only Phong is mentioned in Assimp's aiShadingMode enum.
+ if (material.GetShadingModel() == "phong") {
+ aiShadingMode shadingMode = aiShadingMode_Phong;
+ out_mat->AddProperty<aiShadingMode>(&shadingMode, 1, AI_MATKEY_SHADING_MODEL);
+ }
+
+ // shading stuff and colors
+ SetShadingPropertiesCommon(out_mat, props);
+ SetShadingPropertiesRaw(out_mat, props, material.Textures(), mesh);
+
+ // texture assignments
+ SetTextureProperties(out_mat, material.Textures(), mesh);
+ SetTextureProperties(out_mat, material.LayeredTextures(), mesh);
+
+ return static_cast<unsigned int>(materials.size() - 1);
+}
+
+unsigned int FBXConverter::ConvertVideo(const Video &video) {
+ // generate empty output texture
+ aiTexture *out_tex = new aiTexture();
+ textures.push_back(out_tex);
+
+ // assuming the texture is compressed
+ out_tex->mWidth = static_cast<unsigned int>(video.ContentLength()); // total data size
+ out_tex->mHeight = 0; // fixed to 0
+
+ // steal the data from the Video to avoid an additional copy
+ out_tex->pcData = reinterpret_cast<aiTexel *>(const_cast<Video &>(video).RelinquishContent());
+
+ // try to extract a hint from the file extension
+ const std::string &filename = video.RelativeFilename().empty() ? video.FileName() : video.RelativeFilename();
+ std::string ext = BaseImporter::GetExtension(filename);
+
+ if (ext == "jpeg") {
+ ext = "jpg";
+ }
+
+ if (ext.size() <= 3) {
+ memcpy(out_tex->achFormatHint, ext.c_str(), ext.size());
+ }
+
+ out_tex->mFilename.Set(filename.c_str());
+
+ return static_cast<unsigned int>(textures.size() - 1);
+}
+
+aiString FBXConverter::GetTexturePath(const Texture *tex) {
+ aiString path;
+ path.Set(tex->RelativeFilename());
+
+ const Video *media = tex->Media();
+ if (media != nullptr) {
+ bool textureReady = false; //tells if our texture is ready (if it was loaded or if it was found)
+ unsigned int index=0;
+
+ VideoMap::const_iterator it = textures_converted.find(media);
+ if (it != textures_converted.end()) {
+ index = (*it).second;
+ textureReady = true;
+ } else {
+ if (media->ContentLength() > 0) {
+ index = ConvertVideo(*media);
+ textures_converted[media] = index;
+ textureReady = true;
+ }
+ }
+
+ // setup texture reference string (copied from ColladaLoader::FindFilenameForEffectTexture), if the texture is ready
+ if (doc.Settings().useLegacyEmbeddedTextureNaming) {
+ if (textureReady) {
+ // TODO: check the possibility of using the flag "AI_CONFIG_IMPORT_FBX_EMBEDDED_TEXTURES_LEGACY_NAMING"
+ // In FBX files textures are now stored internally by Assimp with their filename included
+ // Now Assimp can lookup through the loaded textures after all data is processed
+ // We need to load all textures before referencing them, as FBX file format order may reference a texture before loading it
+ // This may occur on this case too, it has to be studied
+ path.data[0] = '*';
+ path.length = 1 + ASSIMP_itoa10(path.data + 1, MAXLEN - 1, index);
+ }
+ }
+ }
+
+ return path;
+}
+
+void FBXConverter::TrySetTextureProperties(aiMaterial *out_mat, const TextureMap &_textures,
+ const std::string &propName,
+ aiTextureType target, const MeshGeometry *const mesh) {
+ TextureMap::const_iterator it = _textures.find(propName);
+ if (it == _textures.end()) {
+ return;
+ }
+
+ const Texture *const tex = (*it).second;
+ if (tex != nullptr) {
+ aiString path = GetTexturePath(tex);
+ out_mat->AddProperty(&path, _AI_MATKEY_TEXTURE_BASE, target, 0);
+
+ aiUVTransform uvTrafo;
+ // XXX handle all kinds of UV transformations
+ uvTrafo.mScaling = tex->UVScaling();
+ uvTrafo.mTranslation = tex->UVTranslation();
+ uvTrafo.mRotation = tex->UVRotation();
+ out_mat->AddProperty(&uvTrafo, 1, _AI_MATKEY_UVTRANSFORM_BASE, target, 0);
+
+ const PropertyTable &props = tex->Props();
+
+ int uvIndex = 0;
+
+ bool ok;
+ const std::string &uvSet = PropertyGet<std::string>(props, "UVSet", ok);
+ if (ok) {
+ // "default" is the name which usually appears in the FbxFileTexture template
+ if (uvSet != "default" && uvSet.length()) {
+ // this is a bit awkward - we need to find a mesh that uses this
+ // material and scan its UV channels for the given UV name because
+ // assimp references UV channels by index, not by name.
+
+ // XXX: the case that UV channels may appear in different orders
+ // in meshes is unhandled. A possible solution would be to sort
+ // the UV channels alphabetically, but this would have the side
+ // effect that the primary (first) UV channel would sometimes
+ // be moved, causing trouble when users read only the first
+ // UV channel and ignore UV channel assignments altogether.
+
+ const unsigned int matIndex = static_cast<unsigned int>(std::distance(materials.begin(),
+ std::find(materials.begin(), materials.end(), out_mat)));
+
+ uvIndex = -1;
+ if (!mesh) {
+ for (const MeshMap::value_type &v : meshes_converted) {
+ const MeshGeometry *const meshGeom = dynamic_cast<const MeshGeometry *>(v.first);
+ if (!meshGeom) {
+ continue;
+ }
+
+ const MatIndexArray &mats = meshGeom->GetMaterialIndices();
+ MatIndexArray::const_iterator curIt = std::find(mats.begin(), mats.end(), (int) matIndex);
+ if (curIt == mats.end()) {
+ continue;
+ }
+
+ int index = -1;
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
+ if (meshGeom->GetTextureCoords(i).empty()) {
+ break;
+ }
+ const std::string &name = meshGeom->GetTextureCoordChannelName(i);
+ if (name == uvSet) {
+ index = static_cast<int>(i);
+ break;
+ }
+ }
+ if (index == -1) {
+ FBXImporter::LogWarn("did not find UV channel named ", uvSet, " in a mesh using this material");
+ continue;
+ }
+
+ if (uvIndex == -1) {
+ uvIndex = index;
+ } else {
+ FBXImporter::LogWarn("the UV channel named ", uvSet,
+ " appears at different positions in meshes, results will be wrong");
+ }
+ }
+ } else {
+ int index = -1;
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
+ if (mesh->GetTextureCoords(i).empty()) {
+ break;
+ }
+ const std::string &name = mesh->GetTextureCoordChannelName(i);
+ if (name == uvSet) {
+ index = static_cast<int>(i);
+ break;
+ }
+ }
+ if (index == -1) {
+ FBXImporter::LogWarn("did not find UV channel named ", uvSet, " in a mesh using this material");
+ }
+
+ if (uvIndex == -1) {
+ uvIndex = index;
+ }
+ }
+
+ if (uvIndex == -1) {
+ FBXImporter::LogWarn("failed to resolve UV channel ", uvSet, ", using first UV channel");
+ uvIndex = 0;
+ }
+ }
+ }
+
+ out_mat->AddProperty(&uvIndex, 1, _AI_MATKEY_UVWSRC_BASE, target, 0);
+ }
+}
+
+void FBXConverter::TrySetTextureProperties(aiMaterial *out_mat, const LayeredTextureMap &layeredTextures,
+ const std::string &propName,
+ aiTextureType target, const MeshGeometry *const mesh) {
+ LayeredTextureMap::const_iterator it = layeredTextures.find(propName);
+ if (it == layeredTextures.end()) {
+ return;
+ }
+
+ int texCount = (*it).second->textureCount();
+
+ // Set the blend mode for layered textures
+ int blendmode = (*it).second->GetBlendMode();
+ out_mat->AddProperty(&blendmode, 1, _AI_MATKEY_TEXOP_BASE, target, 0);
+
+ for (int texIndex = 0; texIndex < texCount; texIndex++) {
+
+ const Texture *const tex = (*it).second->getTexture(texIndex);
+
+ aiString path = GetTexturePath(tex);
+ out_mat->AddProperty(&path, _AI_MATKEY_TEXTURE_BASE, target, texIndex);
+
+ aiUVTransform uvTrafo;
+ // XXX handle all kinds of UV transformations
+ uvTrafo.mScaling = tex->UVScaling();
+ uvTrafo.mTranslation = tex->UVTranslation();
+ uvTrafo.mRotation = tex->UVRotation();
+ out_mat->AddProperty(&uvTrafo, 1, _AI_MATKEY_UVTRANSFORM_BASE, target, texIndex);
+
+ const PropertyTable &props = tex->Props();
+
+ int uvIndex = 0;
+
+ bool ok;
+ const std::string &uvSet = PropertyGet<std::string>(props, "UVSet", ok);
+ if (ok) {
+ // "default" is the name which usually appears in the FbxFileTexture template
+ if (uvSet != "default" && uvSet.length()) {
+ // this is a bit awkward - we need to find a mesh that uses this
+ // material and scan its UV channels for the given UV name because
+ // assimp references UV channels by index, not by name.
+
+ // XXX: the case that UV channels may appear in different orders
+ // in meshes is unhandled. A possible solution would be to sort
+ // the UV channels alphabetically, but this would have the side
+ // effect that the primary (first) UV channel would sometimes
+ // be moved, causing trouble when users read only the first
+ // UV channel and ignore UV channel assignments altogether.
+
+ const unsigned int matIndex = static_cast<unsigned int>(std::distance(materials.begin(),
+ std::find(materials.begin(), materials.end(), out_mat)));
+
+ uvIndex = -1;
+ if (!mesh) {
+ for (const MeshMap::value_type &v : meshes_converted) {
+ const MeshGeometry *const meshGeom = dynamic_cast<const MeshGeometry *>(v.first);
+ if (!meshGeom) {
+ continue;
+ }
+
+ const MatIndexArray &mats = meshGeom->GetMaterialIndices();
+ MatIndexArray::const_iterator curIt = std::find(mats.begin(), mats.end(), (int) matIndex);
+ if ( curIt == mats.end()) {
+ continue;
+ }
+
+ int index = -1;
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
+ if (meshGeom->GetTextureCoords(i).empty()) {
+ break;
+ }
+ const std::string &name = meshGeom->GetTextureCoordChannelName(i);
+ if (name == uvSet) {
+ index = static_cast<int>(i);
+ break;
+ }
+ }
+ if (index == -1) {
+ FBXImporter::LogWarn("did not find UV channel named ", uvSet, " in a mesh using this material");
+ continue;
+ }
+
+ if (uvIndex == -1) {
+ uvIndex = index;
+ } else {
+ FBXImporter::LogWarn("the UV channel named ", uvSet,
+ " appears at different positions in meshes, results will be wrong");
+ }
+ }
+ } else {
+ int index = -1;
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
+ if (mesh->GetTextureCoords(i).empty()) {
+ break;
+ }
+ const std::string &name = mesh->GetTextureCoordChannelName(i);
+ if (name == uvSet) {
+ index = static_cast<int>(i);
+ break;
+ }
+ }
+ if (index == -1) {
+ FBXImporter::LogWarn("did not find UV channel named ", uvSet, " in a mesh using this material");
+ }
+
+ if (uvIndex == -1) {
+ uvIndex = index;
+ }
+ }
+
+ if (uvIndex == -1) {
+ FBXImporter::LogWarn("failed to resolve UV channel ", uvSet, ", using first UV channel");
+ uvIndex = 0;
+ }
+ }
+ }
+
+ out_mat->AddProperty(&uvIndex, 1, _AI_MATKEY_UVWSRC_BASE, target, texIndex);
+ }
+}
+
+void FBXConverter::SetTextureProperties(aiMaterial *out_mat, const TextureMap &_textures, const MeshGeometry *const mesh) {
+ TrySetTextureProperties(out_mat, _textures, "DiffuseColor", aiTextureType_DIFFUSE, mesh);
+ TrySetTextureProperties(out_mat, _textures, "AmbientColor", aiTextureType_AMBIENT, mesh);
+ TrySetTextureProperties(out_mat, _textures, "EmissiveColor", aiTextureType_EMISSIVE, mesh);
+ TrySetTextureProperties(out_mat, _textures, "SpecularColor", aiTextureType_SPECULAR, mesh);
+ TrySetTextureProperties(out_mat, _textures, "SpecularFactor", aiTextureType_SPECULAR, mesh);
+ TrySetTextureProperties(out_mat, _textures, "TransparentColor", aiTextureType_OPACITY, mesh);
+ TrySetTextureProperties(out_mat, _textures, "ReflectionColor", aiTextureType_REFLECTION, mesh);
+ TrySetTextureProperties(out_mat, _textures, "DisplacementColor", aiTextureType_DISPLACEMENT, mesh);
+ TrySetTextureProperties(out_mat, _textures, "NormalMap", aiTextureType_NORMALS, mesh);
+ TrySetTextureProperties(out_mat, _textures, "Bump", aiTextureType_HEIGHT, mesh);
+ TrySetTextureProperties(out_mat, _textures, "ShininessExponent", aiTextureType_SHININESS, mesh);
+ TrySetTextureProperties(out_mat, _textures, "TransparencyFactor", aiTextureType_OPACITY, mesh);
+ TrySetTextureProperties(out_mat, _textures, "EmissiveFactor", aiTextureType_EMISSIVE, mesh);
+ TrySetTextureProperties(out_mat, _textures, "ReflectionFactor", aiTextureType_METALNESS, mesh);
+ //Maya counterparts
+ TrySetTextureProperties(out_mat, _textures, "Maya|DiffuseTexture", aiTextureType_DIFFUSE, mesh);
+ TrySetTextureProperties(out_mat, _textures, "Maya|NormalTexture", aiTextureType_NORMALS, mesh);
+ TrySetTextureProperties(out_mat, _textures, "Maya|SpecularTexture", aiTextureType_SPECULAR, mesh);
+ TrySetTextureProperties(out_mat, _textures, "Maya|FalloffTexture", aiTextureType_OPACITY, mesh);
+ TrySetTextureProperties(out_mat, _textures, "Maya|ReflectionMapTexture", aiTextureType_REFLECTION, mesh);
+
+ // Maya PBR
+ TrySetTextureProperties(out_mat, _textures, "Maya|baseColor", aiTextureType_BASE_COLOR, mesh);
+ TrySetTextureProperties(out_mat, _textures, "Maya|normalCamera", aiTextureType_NORMAL_CAMERA, mesh);
+ TrySetTextureProperties(out_mat, _textures, "Maya|emissionColor", aiTextureType_EMISSION_COLOR, mesh);
+ TrySetTextureProperties(out_mat, _textures, "Maya|metalness", aiTextureType_METALNESS, mesh);
+ TrySetTextureProperties(out_mat, _textures, "Maya|diffuseRoughness", aiTextureType_DIFFUSE_ROUGHNESS, mesh);
+
+ // Maya stingray
+ TrySetTextureProperties(out_mat, _textures, "Maya|TEX_color_map", aiTextureType_BASE_COLOR, mesh);
+ TrySetTextureProperties(out_mat, _textures, "Maya|TEX_normal_map", aiTextureType_NORMAL_CAMERA, mesh);
+ TrySetTextureProperties(out_mat, _textures, "Maya|TEX_emissive_map", aiTextureType_EMISSION_COLOR, mesh);
+ TrySetTextureProperties(out_mat, _textures, "Maya|TEX_metallic_map", aiTextureType_METALNESS, mesh);
+ TrySetTextureProperties(out_mat, _textures, "Maya|TEX_roughness_map", aiTextureType_DIFFUSE_ROUGHNESS, mesh);
+ TrySetTextureProperties(out_mat, _textures, "Maya|TEX_ao_map", aiTextureType_AMBIENT_OCCLUSION, mesh);
+
+ // 3DSMax Physical material
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|Parameters|base_color_map", aiTextureType_BASE_COLOR, mesh);
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|Parameters|bump_map", aiTextureType_NORMAL_CAMERA, mesh);
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|Parameters|emission_map", aiTextureType_EMISSION_COLOR, mesh);
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|Parameters|metalness_map", aiTextureType_METALNESS, mesh);
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|Parameters|roughness_map", aiTextureType_DIFFUSE_ROUGHNESS, mesh);
+
+ // 3DSMax PBR materials
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|main|base_color_map", aiTextureType_BASE_COLOR, mesh);
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|main|norm_map", aiTextureType_NORMAL_CAMERA, mesh);
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|main|emit_color_map", aiTextureType_EMISSION_COLOR, mesh);
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|main|ao_map", aiTextureType_AMBIENT_OCCLUSION, mesh);
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|main|opacity_map", aiTextureType_OPACITY, mesh);
+ // Metalness/Roughness material type
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|main|metalness_map", aiTextureType_METALNESS, mesh);
+ // Specular/Gloss material type
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|main|specular_map", aiTextureType_SPECULAR, mesh);
+
+ // Glossiness vs roughness in 3ds Max Pbr Materials
+ int useGlossiness;
+ if (out_mat->Get("$raw.3dsMax|main|useGlossiness", aiTextureType_NONE, 0, useGlossiness) == aiReturn_SUCCESS) {
+ // These textures swap meaning if ((useGlossiness == 1) != (material type is Specular/Gloss))
+ if (useGlossiness == 1) {
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|main|roughness_map", aiTextureType_SHININESS, mesh);
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|main|glossiness_map", aiTextureType_SHININESS, mesh);
+ }
+ else if (useGlossiness == 2) {
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|main|roughness_map", aiTextureType_DIFFUSE_ROUGHNESS, mesh);
+ TrySetTextureProperties(out_mat, _textures, "3dsMax|main|glossiness_map", aiTextureType_DIFFUSE_ROUGHNESS, mesh);
+ }
+ else {
+ FBXImporter::LogWarn("A 3dsMax Pbr Material must have a useGlossiness value to correctly interpret roughness and glossiness textures.");
+ }
+ }
+}
+
+void FBXConverter::SetTextureProperties(aiMaterial *out_mat, const LayeredTextureMap &layeredTextures, const MeshGeometry *const mesh) {
+ TrySetTextureProperties(out_mat, layeredTextures, "DiffuseColor", aiTextureType_DIFFUSE, mesh);
+ TrySetTextureProperties(out_mat, layeredTextures, "AmbientColor", aiTextureType_AMBIENT, mesh);
+ TrySetTextureProperties(out_mat, layeredTextures, "EmissiveColor", aiTextureType_EMISSIVE, mesh);
+ TrySetTextureProperties(out_mat, layeredTextures, "SpecularColor", aiTextureType_SPECULAR, mesh);
+ TrySetTextureProperties(out_mat, layeredTextures, "SpecularFactor", aiTextureType_SPECULAR, mesh);
+ TrySetTextureProperties(out_mat, layeredTextures, "TransparentColor", aiTextureType_OPACITY, mesh);
+ TrySetTextureProperties(out_mat, layeredTextures, "ReflectionColor", aiTextureType_REFLECTION, mesh);
+ TrySetTextureProperties(out_mat, layeredTextures, "DisplacementColor", aiTextureType_DISPLACEMENT, mesh);
+ TrySetTextureProperties(out_mat, layeredTextures, "NormalMap", aiTextureType_NORMALS, mesh);
+ TrySetTextureProperties(out_mat, layeredTextures, "Bump", aiTextureType_HEIGHT, mesh);
+ TrySetTextureProperties(out_mat, layeredTextures, "ShininessExponent", aiTextureType_SHININESS, mesh);
+ TrySetTextureProperties(out_mat, layeredTextures, "EmissiveFactor", aiTextureType_EMISSIVE, mesh);
+ TrySetTextureProperties(out_mat, layeredTextures, "TransparencyFactor", aiTextureType_OPACITY, mesh);
+ TrySetTextureProperties(out_mat, layeredTextures, "ReflectionFactor", aiTextureType_METALNESS, mesh);
+}
+
+aiColor3D FBXConverter::GetColorPropertyFactored(const PropertyTable &props, const std::string &colorName,
+ const std::string &factorName, bool &result, bool useTemplate) {
+ result = true;
+
+ bool ok;
+ aiVector3D BaseColor = PropertyGet<aiVector3D>(props, colorName, ok, useTemplate);
+ if (!ok) {
+ result = false;
+ return aiColor3D(0.0f, 0.0f, 0.0f);
+ }
+
+ // if no factor name, return the colour as is
+ if (factorName.empty()) {
+ return aiColor3D(BaseColor.x, BaseColor.y, BaseColor.z);
+ }
+
+ // otherwise it should be multiplied by the factor, if found.
+ float factor = PropertyGet<float>(props, factorName, ok, useTemplate);
+ if (ok) {
+ BaseColor *= factor;
+ }
+ return aiColor3D(BaseColor.x, BaseColor.y, BaseColor.z);
+}
+
+aiColor3D FBXConverter::GetColorPropertyFromMaterial(const PropertyTable &props, const std::string &baseName,
+ bool &result) {
+ return GetColorPropertyFactored(props, baseName + "Color", baseName + "Factor", result, true);
+}
+
+aiColor3D FBXConverter::GetColorProperty(const PropertyTable &props, const std::string &colorName,
+ bool &result, bool useTemplate) {
+ result = true;
+ bool ok;
+ const aiVector3D &ColorVec = PropertyGet<aiVector3D>(props, colorName, ok, useTemplate);
+ if (!ok) {
+ result = false;
+ return aiColor3D(0.0f, 0.0f, 0.0f);
+ }
+ return aiColor3D(ColorVec.x, ColorVec.y, ColorVec.z);
+}
+
+void FBXConverter::SetShadingPropertiesCommon(aiMaterial *out_mat, const PropertyTable &props) {
+ // Set shading properties.
+ // Modern FBX Files have two separate systems for defining these,
+ // with only the more comprehensive one described in the property template.
+ // Likely the other values are a legacy system,
+ // which is still always exported by the official FBX SDK.
+ //
+ // Blender's FBX import and export mostly ignore this legacy system,
+ // and as we only support recent versions of FBX anyway, we can do the same.
+ bool ok;
+
+ const aiColor3D &Diffuse = GetColorPropertyFromMaterial(props, "Diffuse", ok);
+ if (ok) {
+ out_mat->AddProperty(&Diffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
+ }
+
+ const aiColor3D &Emissive = GetColorPropertyFromMaterial(props, "Emissive", ok);
+ if (ok) {
+ out_mat->AddProperty(&Emissive, 1, AI_MATKEY_COLOR_EMISSIVE);
+ } else {
+ const aiColor3D &emissiveColor = GetColorProperty(props, "Maya|emissive", ok);
+ if (ok) {
+ out_mat->AddProperty(&emissiveColor, 1, AI_MATKEY_COLOR_EMISSIVE);
+ }
+ }
+
+ const aiColor3D &Ambient = GetColorPropertyFromMaterial(props, "Ambient", ok);
+ if (ok) {
+ out_mat->AddProperty(&Ambient, 1, AI_MATKEY_COLOR_AMBIENT);
+ }
+
+ // we store specular factor as SHININESS_STRENGTH, so just get the color
+ const aiColor3D &Specular = GetColorProperty(props, "SpecularColor", ok, true);
+ if (ok) {
+ out_mat->AddProperty(&Specular, 1, AI_MATKEY_COLOR_SPECULAR);
+ }
+
+ // and also try to get SHININESS_STRENGTH
+ const float SpecularFactor = PropertyGet<float>(props, "SpecularFactor", ok, true);
+ if (ok) {
+ out_mat->AddProperty(&SpecularFactor, 1, AI_MATKEY_SHININESS_STRENGTH);
+ }
+
+ // and the specular exponent
+ const float ShininessExponent = PropertyGet<float>(props, "ShininessExponent", ok);
+ if (ok) {
+ out_mat->AddProperty(&ShininessExponent, 1, AI_MATKEY_SHININESS);
+ }
+
+ // TransparentColor / TransparencyFactor... gee thanks FBX :rolleyes:
+ const aiColor3D &Transparent = GetColorPropertyFactored(props, "TransparentColor", "TransparencyFactor", ok);
+ float CalculatedOpacity = 1.0f;
+ if (ok) {
+ out_mat->AddProperty(&Transparent, 1, AI_MATKEY_COLOR_TRANSPARENT);
+ // as calculated by FBX SDK 2017:
+ CalculatedOpacity = 1.0f - ((Transparent.r + Transparent.g + Transparent.b) / 3.0f);
+ }
+
+ // try to get the transparency factor
+ const float TransparencyFactor = PropertyGet<float>(props, "TransparencyFactor", ok);
+ if (ok) {
+ out_mat->AddProperty(&TransparencyFactor, 1, AI_MATKEY_TRANSPARENCYFACTOR);
+ }
+
+ // use of TransparencyFactor is inconsistent.
+ // Maya always stores it as 1.0,
+ // so we can't use it to set AI_MATKEY_OPACITY.
+ // Blender is more sensible and stores it as the alpha value.
+ // However both the FBX SDK and Blender always write an additional
+ // legacy "Opacity" field, so we can try to use that.
+ //
+ // If we can't find it,
+ // we can fall back to the value which the FBX SDK calculates
+ // from transparency colour (RGB) and factor (F) as
+ // 1.0 - F*((R+G+B)/3).
+ //
+ // There's no consistent way to interpret this opacity value,
+ // so it's up to clients to do the correct thing.
+ const float Opacity = PropertyGet<float>(props, "Opacity", ok);
+ if (ok) {
+ out_mat->AddProperty(&Opacity, 1, AI_MATKEY_OPACITY);
+ } else if (CalculatedOpacity != 1.0) {
+ out_mat->AddProperty(&CalculatedOpacity, 1, AI_MATKEY_OPACITY);
+ }
+
+ // reflection color and factor are stored separately
+ const aiColor3D &Reflection = GetColorProperty(props, "ReflectionColor", ok, true);
+ if (ok) {
+ out_mat->AddProperty(&Reflection, 1, AI_MATKEY_COLOR_REFLECTIVE);
+ }
+
+ float ReflectionFactor = PropertyGet<float>(props, "ReflectionFactor", ok, true);
+ if (ok) {
+ out_mat->AddProperty(&ReflectionFactor, 1, AI_MATKEY_REFLECTIVITY);
+ }
+
+ const float BumpFactor = PropertyGet<float>(props, "BumpFactor", ok);
+ if (ok) {
+ out_mat->AddProperty(&BumpFactor, 1, AI_MATKEY_BUMPSCALING);
+ }
+
+ const float DispFactor = PropertyGet<float>(props, "DisplacementFactor", ok);
+ if (ok) {
+ out_mat->AddProperty(&DispFactor, 1, "$mat.displacementscaling", 0, 0);
+ }
+
+ // PBR material information
+ const aiColor3D &baseColor = GetColorProperty(props, "Maya|base_color", ok);
+ if (ok) {
+ out_mat->AddProperty(&baseColor, 1, AI_MATKEY_BASE_COLOR);
+ }
+
+ const float useColorMap = PropertyGet<float>(props, "Maya|use_color_map", ok);
+ if (ok) {
+ out_mat->AddProperty(&useColorMap, 1, AI_MATKEY_USE_COLOR_MAP);
+ }
+
+ const float useMetallicMap = PropertyGet<float>(props, "Maya|use_metallic_map", ok);
+ if (ok) {
+ out_mat->AddProperty(&useMetallicMap, 1, AI_MATKEY_USE_METALLIC_MAP);
+ }
+
+ const float metallicFactor = PropertyGet<float>(props, "Maya|metallic", ok);
+ if (ok) {
+ out_mat->AddProperty(&metallicFactor, 1, AI_MATKEY_METALLIC_FACTOR);
+ }
+
+ const float useRoughnessMap = PropertyGet<float>(props, "Maya|use_roughness_map", ok);
+ if (ok) {
+ out_mat->AddProperty(&useRoughnessMap, 1, AI_MATKEY_USE_ROUGHNESS_MAP);
+ }
+
+ const float roughnessFactor = PropertyGet<float>(props, "Maya|roughness", ok);
+ if (ok) {
+ out_mat->AddProperty(&roughnessFactor, 1, AI_MATKEY_ROUGHNESS_FACTOR);
+ }
+
+ const float useEmissiveMap = PropertyGet<float>(props, "Maya|use_emissive_map", ok);
+ if (ok) {
+ out_mat->AddProperty(&useEmissiveMap, 1, AI_MATKEY_USE_EMISSIVE_MAP);
+ }
+
+ const float emissiveIntensity = PropertyGet<float>(props, "Maya|emissive_intensity", ok);
+ if (ok) {
+ out_mat->AddProperty(&emissiveIntensity, 1, AI_MATKEY_EMISSIVE_INTENSITY);
+ }
+
+ const float useAOMap = PropertyGet<float>(props, "Maya|use_ao_map", ok);
+ if (ok) {
+ out_mat->AddProperty(&useAOMap, 1, AI_MATKEY_USE_AO_MAP);
+ }
+}
+
+void FBXConverter::SetShadingPropertiesRaw(aiMaterial *out_mat, const PropertyTable &props, const TextureMap &_textures, const MeshGeometry *const mesh) {
+ // Add all the unparsed properties with a "$raw." prefix
+
+ const std::string prefix = "$raw.";
+
+ for (const DirectPropertyMap::value_type &prop : props.GetUnparsedProperties()) {
+
+ std::string name = prefix + prop.first;
+
+ if (const TypedProperty<aiVector3D> *interpretedVec3 = prop.second->As<TypedProperty<aiVector3D>>()) {
+ out_mat->AddProperty(&interpretedVec3->Value(), 1, name.c_str(), 0, 0);
+ } else if (const TypedProperty<aiColor3D> *interpretedCol3 = prop.second->As<TypedProperty<aiColor3D>>()) {
+ out_mat->AddProperty(&interpretedCol3->Value(), 1, name.c_str(), 0, 0);
+ } else if (const TypedProperty<aiColor4D> *interpretedCol4 = prop.second->As<TypedProperty<aiColor4D>>()) {
+ out_mat->AddProperty(&interpretedCol4->Value(), 1, name.c_str(), 0, 0);
+ } else if (const TypedProperty<float> *interpretedFloat = prop.second->As<TypedProperty<float>>()) {
+ out_mat->AddProperty(&interpretedFloat->Value(), 1, name.c_str(), 0, 0);
+ } else if (const TypedProperty<int> *interpretedInt = prop.second->As<TypedProperty<int>>()) {
+ out_mat->AddProperty(&interpretedInt->Value(), 1, name.c_str(), 0, 0);
+ } else if (const TypedProperty<bool> *interpretedBool = prop.second->As<TypedProperty<bool>>()) {
+ int value = interpretedBool->Value() ? 1 : 0;
+ out_mat->AddProperty(&value, 1, name.c_str(), 0, 0);
+ } else if (const TypedProperty<std::string> *interpretedString = prop.second->As<TypedProperty<std::string>>()) {
+ const aiString value = aiString(interpretedString->Value());
+ out_mat->AddProperty(&value, name.c_str(), 0, 0);
+ }
+ }
+
+ // Add the textures' properties
+
+ for (TextureMap::const_iterator it = _textures.begin(); it != _textures.end(); ++it) {
+
+ std::string name = prefix + it->first;
+
+ const Texture *const tex = it->second;
+ if (tex != nullptr) {
+ aiString path;
+ path.Set(tex->RelativeFilename());
+
+ const Video *media = tex->Media();
+ if (media != nullptr && media->ContentLength() > 0) {
+ unsigned int index;
+
+ VideoMap::const_iterator videoIt = textures_converted.find(media);
+ if (videoIt != textures_converted.end()) {
+ index = videoIt->second;
+ } else {
+ index = ConvertVideo(*media);
+ textures_converted[media] = index;
+ }
+
+ // setup texture reference string (copied from ColladaLoader::FindFilenameForEffectTexture)
+ path.data[0] = '*';
+ path.length = 1 + ASSIMP_itoa10(path.data + 1, MAXLEN - 1, index);
+ }
+
+ out_mat->AddProperty(&path, (name + "|file").c_str(), aiTextureType_UNKNOWN, 0);
+
+ aiUVTransform uvTrafo;
+ // XXX handle all kinds of UV transformations
+ uvTrafo.mScaling = tex->UVScaling();
+ uvTrafo.mTranslation = tex->UVTranslation();
+ uvTrafo.mRotation = tex->UVRotation();
+ out_mat->AddProperty(&uvTrafo, 1, (name + "|uvtrafo").c_str(), aiTextureType_UNKNOWN, 0);
+
+ int uvIndex = 0;
+
+ bool uvFound = false;
+ const std::string &uvSet = PropertyGet<std::string>(tex->Props(), "UVSet", uvFound);
+ if (uvFound) {
+ // "default" is the name which usually appears in the FbxFileTexture template
+ if (uvSet != "default" && uvSet.length()) {
+ // this is a bit awkward - we need to find a mesh that uses this
+ // material and scan its UV channels for the given UV name because
+ // assimp references UV channels by index, not by name.
+
+ // XXX: the case that UV channels may appear in different orders
+ // in meshes is unhandled. A possible solution would be to sort
+ // the UV channels alphabetically, but this would have the side
+ // effect that the primary (first) UV channel would sometimes
+ // be moved, causing trouble when users read only the first
+ // UV channel and ignore UV channel assignments altogether.
+
+ std::vector<aiMaterial *>::iterator materialIt = std::find(materials.begin(), materials.end(), out_mat);
+ const unsigned int matIndex = static_cast<unsigned int>(std::distance(materials.begin(), materialIt));
+
+ uvIndex = -1;
+ if (!mesh) {
+ for (const MeshMap::value_type &v : meshes_converted) {
+ const MeshGeometry *const meshGeom = dynamic_cast<const MeshGeometry *>(v.first);
+ if (!meshGeom) {
+ continue;
+ }
+
+ const MatIndexArray &mats = meshGeom->GetMaterialIndices();
+ if (std::find(mats.begin(), mats.end(), (int)matIndex) == mats.end()) {
+ continue;
+ }
+
+ int index = -1;
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
+ if (meshGeom->GetTextureCoords(i).empty()) {
+ break;
+ }
+ const std::string &curName = meshGeom->GetTextureCoordChannelName(i);
+ if (curName == uvSet) {
+ index = static_cast<int>(i);
+ break;
+ }
+ }
+ if (index == -1) {
+ FBXImporter::LogWarn("did not find UV channel named ", uvSet, " in a mesh using this material");
+ continue;
+ }
+
+ if (uvIndex == -1) {
+ uvIndex = index;
+ } else {
+ FBXImporter::LogWarn("the UV channel named ", uvSet, " appears at different positions in meshes, results will be wrong");
+ }
+ }
+ } else {
+ int index = -1;
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
+ if (mesh->GetTextureCoords(i).empty()) {
+ break;
+ }
+ const std::string &curName = mesh->GetTextureCoordChannelName(i);
+ if (curName == uvSet) {
+ index = static_cast<int>(i);
+ break;
+ }
+ }
+ if (index == -1) {
+ FBXImporter::LogWarn("did not find UV channel named ", uvSet, " in a mesh using this material");
+ }
+
+ if (uvIndex == -1) {
+ uvIndex = index;
+ }
+ }
+
+ if (uvIndex == -1) {
+ FBXImporter::LogWarn("failed to resolve UV channel ", uvSet, ", using first UV channel");
+ uvIndex = 0;
+ }
+ }
+ }
+
+ out_mat->AddProperty(&uvIndex, 1, (name + "|uvwsrc").c_str(), aiTextureType_UNKNOWN, 0);
+ }
+ }
+}
+
+double FBXConverter::FrameRateToDouble(FileGlobalSettings::FrameRate fp, double customFPSVal) {
+ switch (fp) {
+ case FileGlobalSettings::FrameRate_DEFAULT:
+ return 1.0;
+
+ case FileGlobalSettings::FrameRate_120:
+ return 120.0;
+
+ case FileGlobalSettings::FrameRate_100:
+ return 100.0;
+
+ case FileGlobalSettings::FrameRate_60:
+ return 60.0;
+
+ case FileGlobalSettings::FrameRate_50:
+ return 50.0;
+
+ case FileGlobalSettings::FrameRate_48:
+ return 48.0;
+
+ case FileGlobalSettings::FrameRate_30:
+ case FileGlobalSettings::FrameRate_30_DROP:
+ return 30.0;
+
+ case FileGlobalSettings::FrameRate_NTSC_DROP_FRAME:
+ case FileGlobalSettings::FrameRate_NTSC_FULL_FRAME:
+ return 29.9700262;
+
+ case FileGlobalSettings::FrameRate_PAL:
+ return 25.0;
+
+ case FileGlobalSettings::FrameRate_CINEMA:
+ return 24.0;
+
+ case FileGlobalSettings::FrameRate_1000:
+ return 1000.0;
+
+ case FileGlobalSettings::FrameRate_CINEMA_ND:
+ return 23.976;
+
+ case FileGlobalSettings::FrameRate_CUSTOM:
+ return customFPSVal;
+
+ case FileGlobalSettings::FrameRate_MAX: // this is to silence compiler warnings
+ break;
+ }
+
+ ai_assert(false);
+
+ return -1.0f;
+}
+
+void FBXConverter::ConvertAnimations() {
+ // first of all determine framerate
+ const FileGlobalSettings::FrameRate fps = doc.GlobalSettings().TimeMode();
+ const float custom = doc.GlobalSettings().CustomFrameRate();
+ anim_fps = FrameRateToDouble(fps, custom);
+
+ const std::vector<const AnimationStack *> &curAnimations = doc.AnimationStacks();
+ for (const AnimationStack *stack : curAnimations) {
+ ConvertAnimationStack(*stack);
+ }
+}
+
+std::string FBXConverter::FixNodeName(const std::string &name) {
+ // strip Model:: prefix, avoiding ambiguities (i.e. don't strip if
+ // this causes ambiguities, well possible between empty identifiers,
+ // such as "Model::" and ""). Make sure the behaviour is consistent
+ // across multiple calls to FixNodeName().
+ if (name.substr(0, 7) == "Model::") {
+ std::string temp = name.substr(7);
+ return temp;
+ }
+
+ return name;
+}
+
+std::string FBXConverter::FixAnimMeshName(const std::string &name) {
+ if (name.length()) {
+ size_t indexOf = name.find_first_of("::");
+ if (indexOf != std::string::npos && indexOf < name.size() - 2) {
+ return name.substr(indexOf + 2);
+ }
+ }
+ return name.length() ? name : "AnimMesh";
+}
+
+void FBXConverter::ConvertAnimationStack(const AnimationStack &st) {
+ const AnimationLayerList &layers = st.Layers();
+ if (layers.empty()) {
+ return;
+ }
+
+ aiAnimation *const anim = new aiAnimation();
+ animations.push_back(anim);
+
+ // strip AnimationStack:: prefix
+ std::string name = st.Name();
+ if (name.substr(0, 16) == "AnimationStack::") {
+ name = name.substr(16);
+ } else if (name.substr(0, 11) == "AnimStack::") {
+ name = name.substr(11);
+ }
+
+ anim->mName.Set(name);
+
+ // need to find all nodes for which we need to generate node animations -
+ // it may happen that we need to merge multiple layers, though.
+ NodeMap node_map;
+
+ // reverse mapping from curves to layers, much faster than querying
+ // the FBX DOM for it.
+ LayerMap layer_map;
+
+ const char *prop_whitelist[] = {
+ "Lcl Scaling",
+ "Lcl Rotation",
+ "Lcl Translation",
+ "DeformPercent"
+ };
+
+ std::map<std::string, morphAnimData *> morphAnimDatas;
+
+ for (const AnimationLayer *layer : layers) {
+ ai_assert(layer);
+ const AnimationCurveNodeList &nodes = layer->Nodes(prop_whitelist, 4);
+ for (const AnimationCurveNode *node : nodes) {
+ ai_assert(node);
+ const Model *const model = dynamic_cast<const Model *>(node->Target());
+ if (model) {
+ const std::string &curName = FixNodeName(model->Name());
+ node_map[curName].push_back(node);
+ layer_map[node] = layer;
+ continue;
+ }
+ const BlendShapeChannel *const bsc = dynamic_cast<const BlendShapeChannel *>(node->Target());
+ if (bsc) {
+ ProcessMorphAnimDatas(&morphAnimDatas, bsc, node);
+ }
+ }
+ }
+
+ // generate node animations
+ std::vector<aiNodeAnim *> node_anims;
+
+ double min_time = 1e10;
+ double max_time = -1e10;
+
+ int64_t start_time = st.LocalStart();
+ int64_t stop_time = st.LocalStop();
+ bool has_local_startstop = start_time != 0 || stop_time != 0;
+ if (!has_local_startstop) {
+ // no time range given, so accept every keyframe and use the actual min/max time
+ // the numbers are INT64_MIN/MAX, the 20000 is for safety because GenerateNodeAnimations uses an epsilon of 10000
+ start_time = -9223372036854775807ll + 20000;
+ stop_time = 9223372036854775807ll - 20000;
+ }
+
+ try {
+ for (const NodeMap::value_type &kv : node_map) {
+ GenerateNodeAnimations(node_anims,
+ kv.first,
+ kv.second,
+ layer_map,
+ start_time, stop_time,
+ max_time,
+ min_time);
+ }
+ } catch (std::exception &) {
+ std::for_each(node_anims.begin(), node_anims.end(), Util::delete_fun<aiNodeAnim>());
+ throw;
+ }
+
+ if (node_anims.size() || morphAnimDatas.size()) {
+ if (node_anims.size()) {
+ anim->mChannels = new aiNodeAnim *[node_anims.size()]();
+ anim->mNumChannels = static_cast<unsigned int>(node_anims.size());
+ std::swap_ranges(node_anims.begin(), node_anims.end(), anim->mChannels);
+ }
+ if (morphAnimDatas.size()) {
+ unsigned int numMorphMeshChannels = static_cast<unsigned int>(morphAnimDatas.size());
+ anim->mMorphMeshChannels = new aiMeshMorphAnim *[numMorphMeshChannels];
+ anim->mNumMorphMeshChannels = numMorphMeshChannels;
+ unsigned int i = 0;
+ for (const auto &morphAnimIt : morphAnimDatas) {
+ morphAnimData *animData = morphAnimIt.second;
+ unsigned int numKeys = static_cast<unsigned int>(animData->size());
+ aiMeshMorphAnim *meshMorphAnim = new aiMeshMorphAnim();
+ meshMorphAnim->mName.Set(morphAnimIt.first);
+ meshMorphAnim->mNumKeys = numKeys;
+ meshMorphAnim->mKeys = new aiMeshMorphKey[numKeys];
+ unsigned int j = 0;
+ for (auto animIt : *animData) {
+ morphKeyData *keyData = animIt.second;
+ unsigned int numValuesAndWeights = static_cast<unsigned int>(keyData->values.size());
+ meshMorphAnim->mKeys[j].mNumValuesAndWeights = numValuesAndWeights;
+ meshMorphAnim->mKeys[j].mValues = new unsigned int[numValuesAndWeights];
+ meshMorphAnim->mKeys[j].mWeights = new double[numValuesAndWeights];
+ meshMorphAnim->mKeys[j].mTime = CONVERT_FBX_TIME(animIt.first) * anim_fps;
+ for (unsigned int k = 0; k < numValuesAndWeights; k++) {
+ meshMorphAnim->mKeys[j].mValues[k] = keyData->values.at(k);
+ meshMorphAnim->mKeys[j].mWeights[k] = keyData->weights.at(k);
+ }
+ j++;
+ }
+ anim->mMorphMeshChannels[i++] = meshMorphAnim;
+ }
+ }
+ } else {
+ // empty animations would fail validation, so drop them
+ delete anim;
+ animations.pop_back();
+ FBXImporter::LogInfo("ignoring empty AnimationStack (using IK?): ", name);
+ return;
+ }
+
+ double start_time_fps = has_local_startstop ? (CONVERT_FBX_TIME(start_time) * anim_fps) : min_time;
+ double stop_time_fps = has_local_startstop ? (CONVERT_FBX_TIME(stop_time) * anim_fps) : max_time;
+
+ // adjust relative timing for animation
+ for (unsigned int c = 0; c < anim->mNumChannels; c++) {
+ aiNodeAnim *channel = anim->mChannels[c];
+ for (uint32_t i = 0; i < channel->mNumPositionKeys; i++) {
+ channel->mPositionKeys[i].mTime -= start_time_fps;
+ }
+ for (uint32_t i = 0; i < channel->mNumRotationKeys; i++) {
+ channel->mRotationKeys[i].mTime -= start_time_fps;
+ }
+ for (uint32_t i = 0; i < channel->mNumScalingKeys; i++) {
+ channel->mScalingKeys[i].mTime -= start_time_fps;
+ }
+ }
+ for (unsigned int c = 0; c < anim->mNumMorphMeshChannels; c++) {
+ aiMeshMorphAnim *channel = anim->mMorphMeshChannels[c];
+ for (uint32_t i = 0; i < channel->mNumKeys; i++) {
+ channel->mKeys[i].mTime -= start_time_fps;
+ }
+ }
+
+ // for some mysterious reason, mDuration is simply the maximum key -- the
+ // validator always assumes animations to start at zero.
+ anim->mDuration = stop_time_fps - start_time_fps;
+ anim->mTicksPerSecond = anim_fps;
+}
+
+// ------------------------------------------------------------------------------------------------
+void FBXConverter::ProcessMorphAnimDatas(std::map<std::string, morphAnimData *> *morphAnimDatas, const BlendShapeChannel *bsc, const AnimationCurveNode *node) {
+ std::vector<const Connection *> bscConnections = doc.GetConnectionsBySourceSequenced(bsc->ID(), "Deformer");
+ for (const Connection *bscConnection : bscConnections) {
+ auto bs = dynamic_cast<const BlendShape *>(bscConnection->DestinationObject());
+ if (bs) {
+ auto channelIt = std::find(bs->BlendShapeChannels().begin(), bs->BlendShapeChannels().end(), bsc);
+ if (channelIt != bs->BlendShapeChannels().end()) {
+ auto channelIndex = static_cast<unsigned int>(std::distance(bs->BlendShapeChannels().begin(), channelIt));
+ std::vector<const Connection *> bsConnections = doc.GetConnectionsBySourceSequenced(bs->ID(), "Geometry");
+ for (const Connection *bsConnection : bsConnections) {
+ auto geo = dynamic_cast<const Geometry *>(bsConnection->DestinationObject());
+ if (geo) {
+ std::vector<const Connection *> geoConnections = doc.GetConnectionsBySourceSequenced(geo->ID(), "Model");
+ for (const Connection *geoConnection : geoConnections) {
+ auto model = dynamic_cast<const Model *>(geoConnection->DestinationObject());
+ if (model) {
+ auto geoIt = std::find(model->GetGeometry().begin(), model->GetGeometry().end(), geo);
+ auto geoIndex = static_cast<unsigned int>(std::distance(model->GetGeometry().begin(), geoIt));
+ auto name = aiString(FixNodeName(model->Name() + "*"));
+ name.length = 1 + ASSIMP_itoa10(name.data + name.length, MAXLEN - 1, geoIndex);
+ morphAnimData *animData;
+ auto animIt = morphAnimDatas->find(name.C_Str());
+ if (animIt == morphAnimDatas->end()) {
+ animData = new morphAnimData();
+ morphAnimDatas->insert(std::make_pair(name.C_Str(), animData));
+ } else {
+ animData = animIt->second;
+ }
+ for (std::pair<std::string, const AnimationCurve *> curvesIt : node->Curves()) {
+ if (curvesIt.first == "d|DeformPercent") {
+ const AnimationCurve *animationCurve = curvesIt.second;
+ const KeyTimeList &keys = animationCurve->GetKeys();
+ const KeyValueList &values = animationCurve->GetValues();
+ unsigned int k = 0;
+ for (auto key : keys) {
+ morphKeyData *keyData;
+ auto keyIt = animData->find(key);
+ if (keyIt == animData->end()) {
+ keyData = new morphKeyData();
+ animData->insert(std::make_pair(key, keyData));
+ } else {
+ keyData = keyIt->second;
+ }
+ keyData->values.push_back(channelIndex);
+ keyData->weights.push_back(values.at(k) / 100.0f);
+ k++;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+#ifdef ASSIMP_BUILD_DEBUG
+// ------------------------------------------------------------------------------------------------
+// sanity check whether the input is ok
+static void validateAnimCurveNodes(const std::vector<const AnimationCurveNode *> &curves,
+ bool strictMode) {
+ const Object *target(nullptr);
+ for (const AnimationCurveNode *node : curves) {
+ if (!target) {
+ target = node->Target();
+ }
+ if (node->Target() != target) {
+ FBXImporter::LogWarn("Node target is nullptr type.");
+ }
+ if (strictMode) {
+ ai_assert(node->Target() == target);
+ }
+ }
+}
+#endif // ASSIMP_BUILD_DEBUG
+
+// ------------------------------------------------------------------------------------------------
+void FBXConverter::GenerateNodeAnimations(std::vector<aiNodeAnim *> &node_anims,
+ const std::string &fixed_name,
+ const std::vector<const AnimationCurveNode *> &curves,
+ const LayerMap &layer_map,
+ int64_t start, int64_t stop,
+ double &max_time,
+ double &min_time) {
+
+ NodeMap node_property_map;
+ ai_assert(curves.size());
+
+#ifdef ASSIMP_BUILD_DEBUG
+ validateAnimCurveNodes(curves, doc.Settings().strictMode);
+#endif
+ const AnimationCurveNode *curve_node = nullptr;
+ for (const AnimationCurveNode *node : curves) {
+ ai_assert(node);
+
+ if (node->TargetProperty().empty()) {
+ FBXImporter::LogWarn("target property for animation curve not set: ", node->Name());
+ continue;
+ }
+
+ curve_node = node;
+ if (node->Curves().empty()) {
+ FBXImporter::LogWarn("no animation curves assigned to AnimationCurveNode: ", node->Name());
+ continue;
+ }
+
+ node_property_map[node->TargetProperty()].push_back(node);
+ }
+
+ ai_assert(curve_node);
+ ai_assert(curve_node->TargetAsModel());
+
+ const Model &target = *curve_node->TargetAsModel();
+
+ // check for all possible transformation components
+ NodeMap::const_iterator chain[TransformationComp_MAXIMUM];
+
+ bool has_any = false;
+ bool has_complex = false;
+
+ for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
+ const TransformationComp comp = static_cast<TransformationComp>(i);
+
+ // inverse pivots don't exist in the input, we just generate them
+ if (comp == TransformationComp_RotationPivotInverse || comp == TransformationComp_ScalingPivotInverse) {
+ chain[i] = node_property_map.end();
+ continue;
+ }
+
+ chain[i] = node_property_map.find(NameTransformationCompProperty(comp));
+ if (chain[i] != node_property_map.end()) {
+
+ // check if this curves contains redundant information by looking
+ // up the corresponding node's transformation chain.
+ if (doc.Settings().optimizeEmptyAnimationCurves &&
+ IsRedundantAnimationData(target, comp, (chain[i]->second))) {
+
+ FBXImporter::LogVerboseDebug("dropping redundant animation channel for node ", target.Name());
+ continue;
+ }
+
+ has_any = true;
+
+ if (comp != TransformationComp_Rotation && comp != TransformationComp_Scaling && comp != TransformationComp_Translation) {
+ has_complex = true;
+ }
+ }
+ }
+
+ if (!has_any) {
+ FBXImporter::LogWarn("ignoring node animation, did not find any transformation key frames");
+ return;
+ }
+
+ // this needs to play nicely with GenerateTransformationNodeChain() which will
+ // be invoked _later_ (animations come first). If this node has only rotation,
+ // scaling and translation _and_ there are no animated other components either,
+ // we can use a single node and also a single node animation channel.
+ if( !has_complex && !NeedsComplexTransformationChain(target)) {
+ aiNodeAnim* const nd = GenerateSimpleNodeAnim(fixed_name, target, chain,
+ node_property_map.end(),
+ start, stop,
+ max_time,
+ min_time
+ );
+
+ ai_assert(nd);
+ if (nd->mNumPositionKeys == 0 && nd->mNumRotationKeys == 0 && nd->mNumScalingKeys == 0) {
+ delete nd;
+ } else {
+ node_anims.push_back(nd);
+ }
+ return;
+ }
+
+ // otherwise, things get gruesome and we need separate animation channels
+ // for each part of the transformation chain. Remember which channels
+ // we generated and pass this information to the node conversion
+ // code to avoid nodes that have identity transform, but non-identity
+ // animations, being dropped.
+ unsigned int flags = 0, bit = 0x1;
+ for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i, bit <<= 1) {
+ const TransformationComp comp = static_cast<TransformationComp>(i);
+
+ if (chain[i] != node_property_map.end()) {
+ flags |= bit;
+
+ ai_assert(comp != TransformationComp_RotationPivotInverse);
+ ai_assert(comp != TransformationComp_ScalingPivotInverse);
+
+ const std::string &chain_name = NameTransformationChainNode(fixed_name, comp);
+
+ aiNodeAnim *na = nullptr;
+ switch (comp) {
+ case TransformationComp_Rotation:
+ case TransformationComp_PreRotation:
+ case TransformationComp_PostRotation:
+ case TransformationComp_GeometricRotation:
+ na = GenerateRotationNodeAnim(chain_name,
+ target,
+ (*chain[i]).second,
+ layer_map,
+ start, stop,
+ max_time,
+ min_time);
+
+ break;
+
+ case TransformationComp_RotationOffset:
+ case TransformationComp_RotationPivot:
+ case TransformationComp_ScalingOffset:
+ case TransformationComp_ScalingPivot:
+ case TransformationComp_Translation:
+ case TransformationComp_GeometricTranslation:
+ na = GenerateTranslationNodeAnim(chain_name,
+ target,
+ (*chain[i]).second,
+ layer_map,
+ start, stop,
+ max_time,
+ min_time);
+
+ // pivoting requires us to generate an implicit inverse channel to undo the pivot translation
+ if (comp == TransformationComp_RotationPivot) {
+ const std::string &invName = NameTransformationChainNode(fixed_name,
+ TransformationComp_RotationPivotInverse);
+
+ aiNodeAnim *const inv = GenerateTranslationNodeAnim(invName,
+ target,
+ (*chain[i]).second,
+ layer_map,
+ start, stop,
+ max_time,
+ min_time,
+ true);
+
+ ai_assert(inv);
+ if (inv->mNumPositionKeys == 0 && inv->mNumRotationKeys == 0 && inv->mNumScalingKeys == 0) {
+ delete inv;
+ } else {
+ node_anims.push_back(inv);
+ }
+
+ ai_assert(TransformationComp_RotationPivotInverse > i);
+ flags |= bit << (TransformationComp_RotationPivotInverse - i);
+ } else if (comp == TransformationComp_ScalingPivot) {
+ const std::string &invName = NameTransformationChainNode(fixed_name,
+ TransformationComp_ScalingPivotInverse);
+
+ aiNodeAnim *const inv = GenerateTranslationNodeAnim(invName,
+ target,
+ (*chain[i]).second,
+ layer_map,
+ start, stop,
+ max_time,
+ min_time,
+ true);
+
+ ai_assert(inv);
+ if (inv->mNumPositionKeys == 0 && inv->mNumRotationKeys == 0 && inv->mNumScalingKeys == 0) {
+ delete inv;
+ } else {
+ node_anims.push_back(inv);
+ }
+
+ ai_assert(TransformationComp_RotationPivotInverse > i);
+ flags |= bit << (TransformationComp_RotationPivotInverse - i);
+ }
+
+ break;
+
+ case TransformationComp_Scaling:
+ case TransformationComp_GeometricScaling:
+ na = GenerateScalingNodeAnim(chain_name,
+ target,
+ (*chain[i]).second,
+ layer_map,
+ start, stop,
+ max_time,
+ min_time);
+
+ break;
+
+ default:
+ ai_assert(false);
+ }
+
+ ai_assert(na);
+ if (na->mNumPositionKeys == 0 && na->mNumRotationKeys == 0 && na->mNumScalingKeys == 0) {
+ delete na;
+ } else {
+ node_anims.push_back(na);
+ }
+ continue;
+ }
+ }
+
+ node_anim_chain_bits[fixed_name] = flags;
+}
+
+bool FBXConverter::IsRedundantAnimationData(const Model &target,
+ TransformationComp comp,
+ const std::vector<const AnimationCurveNode *> &curves) {
+ ai_assert(curves.size());
+
+ // look for animation nodes with
+ // * sub channels for all relevant components set
+ // * one key/value pair per component
+ // * combined values match up the corresponding value in the bind pose node transformation
+ // only such nodes are 'redundant' for this function.
+
+ if (curves.size() > 1) {
+ return false;
+ }
+
+ const AnimationCurveNode &nd = *curves.front();
+ const AnimationCurveMap &sub_curves = nd.Curves();
+
+ const AnimationCurveMap::const_iterator dx = sub_curves.find("d|X");
+ const AnimationCurveMap::const_iterator dy = sub_curves.find("d|Y");
+ const AnimationCurveMap::const_iterator dz = sub_curves.find("d|Z");
+
+ if (dx == sub_curves.end() || dy == sub_curves.end() || dz == sub_curves.end()) {
+ return false;
+ }
+
+ const KeyValueList &vx = (*dx).second->GetValues();
+ const KeyValueList &vy = (*dy).second->GetValues();
+ const KeyValueList &vz = (*dz).second->GetValues();
+
+ if (vx.size() != 1 || vy.size() != 1 || vz.size() != 1) {
+ return false;
+ }
+
+ const aiVector3D dyn_val = aiVector3D(vx[0], vy[0], vz[0]);
+ const aiVector3D &static_val = PropertyGet<aiVector3D>(target.Props(),
+ NameTransformationCompProperty(comp),
+ TransformationCompDefaultValue(comp));
+
+ const float epsilon = Math::getEpsilon<float>();
+ return (dyn_val - static_val).SquareLength() < epsilon;
+}
+
+aiNodeAnim *FBXConverter::GenerateRotationNodeAnim(const std::string &name,
+ const Model &target,
+ const std::vector<const AnimationCurveNode *> &curves,
+ const LayerMap &layer_map,
+ int64_t start, int64_t stop,
+ double &max_time,
+ double &min_time) {
+ std::unique_ptr<aiNodeAnim> na(new aiNodeAnim());
+ na->mNodeName.Set(name);
+
+ ConvertRotationKeys(na.get(), curves, layer_map, start, stop, max_time, min_time, target.RotationOrder());
+
+ // dummy scaling key
+ na->mScalingKeys = new aiVectorKey[1];
+ na->mNumScalingKeys = 1;
+
+ na->mScalingKeys[0].mTime = 0.;
+ na->mScalingKeys[0].mValue = aiVector3D(1.0f, 1.0f, 1.0f);
+
+ // dummy position key
+ na->mPositionKeys = new aiVectorKey[1];
+ na->mNumPositionKeys = 1;
+
+ na->mPositionKeys[0].mTime = 0.;
+ na->mPositionKeys[0].mValue = aiVector3D();
+
+ return na.release();
+}
+
+aiNodeAnim *FBXConverter::GenerateScalingNodeAnim(const std::string &name,
+ const Model & /*target*/,
+ const std::vector<const AnimationCurveNode *> &curves,
+ const LayerMap &layer_map,
+ int64_t start, int64_t stop,
+ double &max_time,
+ double &min_time) {
+ std::unique_ptr<aiNodeAnim> na(new aiNodeAnim());
+ na->mNodeName.Set(name);
+
+ ConvertScaleKeys(na.get(), curves, layer_map, start, stop, max_time, min_time);
+
+ // dummy rotation key
+ na->mRotationKeys = new aiQuatKey[1];
+ na->mNumRotationKeys = 1;
+
+ na->mRotationKeys[0].mTime = 0.;
+ na->mRotationKeys[0].mValue = aiQuaternion();
+
+ // dummy position key
+ na->mPositionKeys = new aiVectorKey[1];
+ na->mNumPositionKeys = 1;
+
+ na->mPositionKeys[0].mTime = 0.;
+ na->mPositionKeys[0].mValue = aiVector3D();
+
+ return na.release();
+}
+
+aiNodeAnim *FBXConverter::GenerateTranslationNodeAnim(const std::string &name,
+ const Model & /*target*/,
+ const std::vector<const AnimationCurveNode *> &curves,
+ const LayerMap &layer_map,
+ int64_t start, int64_t stop,
+ double &max_time,
+ double &min_time,
+ bool inverse) {
+ std::unique_ptr<aiNodeAnim> na(new aiNodeAnim());
+ na->mNodeName.Set(name);
+
+ ConvertTranslationKeys(na.get(), curves, layer_map, start, stop, max_time, min_time);
+
+ if (inverse) {
+ for (unsigned int i = 0; i < na->mNumPositionKeys; ++i) {
+ na->mPositionKeys[i].mValue *= -1.0f;
+ }
+ }
+
+ // dummy scaling key
+ na->mScalingKeys = new aiVectorKey[1];
+ na->mNumScalingKeys = 1;
+
+ na->mScalingKeys[0].mTime = 0.;
+ na->mScalingKeys[0].mValue = aiVector3D(1.0f, 1.0f, 1.0f);
+
+ // dummy rotation key
+ na->mRotationKeys = new aiQuatKey[1];
+ na->mNumRotationKeys = 1;
+
+ na->mRotationKeys[0].mTime = 0.;
+ na->mRotationKeys[0].mValue = aiQuaternion();
+
+ return na.release();
+}
+
+aiNodeAnim* FBXConverter::GenerateSimpleNodeAnim(const std::string& name,
+ const Model& target,
+ NodeMap::const_iterator chain[TransformationComp_MAXIMUM],
+ NodeMap::const_iterator iterEnd,
+ int64_t start, int64_t stop,
+ double& maxTime,
+ double& minTime)
+{
+ std::unique_ptr<aiNodeAnim> na(new aiNodeAnim());
+ na->mNodeName.Set(name);
+
+ const PropertyTable &props = target.Props();
+
+ // collect unique times and keyframe lists
+ KeyFrameListList keyframeLists[TransformationComp_MAXIMUM];
+ KeyTimeList keytimes;
+
+ for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
+ if (chain[i] == iterEnd)
+ continue;
+
+ if (i == TransformationComp_Rotation || i == TransformationComp_PreRotation
+ || i == TransformationComp_PostRotation || i == TransformationComp_GeometricRotation) {
+ keyframeLists[i] = GetRotationKeyframeList((*chain[i]).second, start, stop);
+ } else {
+ keyframeLists[i] = GetKeyframeList((*chain[i]).second, start, stop);
+ }
+
+ for (KeyFrameListList::const_iterator it = keyframeLists[i].begin(); it != keyframeLists[i].end(); ++it) {
+ const KeyTimeList& times = *std::get<0>(*it);
+ keytimes.insert(keytimes.end(), times.begin(), times.end());
+ }
+
+ // remove duplicates
+ std::sort(keytimes.begin(), keytimes.end());
+
+ auto last = std::unique(keytimes.begin(), keytimes.end());
+ keytimes.erase(last, keytimes.end());
+ }
+
+ const Model::RotOrder rotOrder = target.RotationOrder();
+ const size_t keyCount = keytimes.size();
+
+ aiVector3D defTranslate = PropertyGet(props, "Lcl Translation", aiVector3D(0.f, 0.f, 0.f));
+ aiVector3D defRotation = PropertyGet(props, "Lcl Rotation", aiVector3D(0.f, 0.f, 0.f));
+ aiVector3D defScale = PropertyGet(props, "Lcl Scaling", aiVector3D(1.f, 1.f, 1.f));
+ aiQuaternion defQuat = EulerToQuaternion(defRotation, rotOrder);
+
+ aiVectorKey* outTranslations = new aiVectorKey[keyCount];
+ aiQuatKey* outRotations = new aiQuatKey[keyCount];
+ aiVectorKey* outScales = new aiVectorKey[keyCount];
+
+ if (keyframeLists[TransformationComp_Translation].size() > 0) {
+ InterpolateKeys(outTranslations, keytimes, keyframeLists[TransformationComp_Translation], defTranslate, maxTime, minTime);
+ } else {
+ for (size_t i = 0; i < keyCount; ++i) {
+ outTranslations[i].mTime = CONVERT_FBX_TIME(keytimes[i]) * anim_fps;
+ outTranslations[i].mValue = defTranslate;
+ }
+ }
+
+ if (keyframeLists[TransformationComp_Rotation].size() > 0) {
+ InterpolateKeys(outRotations, keytimes, keyframeLists[TransformationComp_Rotation], defRotation, maxTime, minTime, rotOrder);
+ } else {
+ for (size_t i = 0; i < keyCount; ++i) {
+ outRotations[i].mTime = CONVERT_FBX_TIME(keytimes[i]) * anim_fps;
+ outRotations[i].mValue = defQuat;
+ }
+ }
+
+ if (keyframeLists[TransformationComp_Scaling].size() > 0) {
+ InterpolateKeys(outScales, keytimes, keyframeLists[TransformationComp_Scaling], defScale, maxTime, minTime);
+ } else {
+ for (size_t i = 0; i < keyCount; ++i) {
+ outScales[i].mTime = CONVERT_FBX_TIME(keytimes[i]) * anim_fps;
+ outScales[i].mValue = defScale;
+ }
+ }
+
+ bool ok = false;
+
+ const float zero_epsilon = ai_epsilon;
+
+ const aiVector3D& preRotation = PropertyGet<aiVector3D>(props, "PreRotation", ok);
+ if (ok && preRotation.SquareLength() > zero_epsilon) {
+ const aiQuaternion preQuat = EulerToQuaternion(preRotation, Model::RotOrder_EulerXYZ);
+ for (size_t i = 0; i < keyCount; ++i) {
+ outRotations[i].mValue = preQuat * outRotations[i].mValue;
+ }
+ }
+
+ const aiVector3D& postRotation = PropertyGet<aiVector3D>(props, "PostRotation", ok);
+ if (ok && postRotation.SquareLength() > zero_epsilon) {
+ const aiQuaternion postQuat = EulerToQuaternion(postRotation, Model::RotOrder_EulerXYZ);
+ for (size_t i = 0; i < keyCount; ++i) {
+ outRotations[i].mValue = outRotations[i].mValue * postQuat;
+ }
+ }
+
+ // convert TRS to SRT
+ for (size_t i = 0; i < keyCount; ++i) {
+ aiQuaternion& r = outRotations[i].mValue;
+ aiVector3D& s = outScales[i].mValue;
+ aiVector3D& t = outTranslations[i].mValue;
+
+ aiMatrix4x4 mat, temp;
+ aiMatrix4x4::Translation(t, mat);
+ mat *= aiMatrix4x4(r.GetMatrix());
+ mat *= aiMatrix4x4::Scaling(s, temp);
+
+ mat.Decompose(s, r, t);
+ }
+
+ na->mNumScalingKeys = static_cast<unsigned int>(keyCount);
+ na->mNumRotationKeys = na->mNumScalingKeys;
+ na->mNumPositionKeys = na->mNumScalingKeys;
+
+ na->mScalingKeys = outScales;
+ na->mRotationKeys = outRotations;
+ na->mPositionKeys = outTranslations;
+
+ return na.release();
+}
+
+FBXConverter::KeyFrameListList FBXConverter::GetKeyframeList(const std::vector<const AnimationCurveNode *> &nodes, int64_t start, int64_t stop) {
+ KeyFrameListList inputs;
+ inputs.reserve(nodes.size() * 3);
+
+ //give some breathing room for rounding errors
+ int64_t adj_start = start - 10000;
+ int64_t adj_stop = stop + 10000;
+
+ for (const AnimationCurveNode *node : nodes) {
+ ai_assert(node);
+
+ const AnimationCurveMap &curves = node->Curves();
+ for (const AnimationCurveMap::value_type &kv : curves) {
+
+ unsigned int mapto;
+ if (kv.first == "d|X") {
+ mapto = 0;
+ } else if (kv.first == "d|Y") {
+ mapto = 1;
+ } else if (kv.first == "d|Z") {
+ mapto = 2;
+ } else {
+ FBXImporter::LogWarn("ignoring scale animation curve, did not recognize target component");
+ continue;
+ }
+
+ const AnimationCurve *const curve = kv.second;
+ ai_assert(curve->GetKeys().size() == curve->GetValues().size());
+ ai_assert(curve->GetKeys().size());
+
+ //get values within the start/stop time window
+ std::shared_ptr<KeyTimeList> Keys(new KeyTimeList());
+ std::shared_ptr<KeyValueList> Values(new KeyValueList());
+ const size_t count = curve->GetKeys().size();
+ Keys->reserve(count);
+ Values->reserve(count);
+ for (size_t n = 0; n < count; n++) {
+ int64_t k = curve->GetKeys().at(n);
+ if (k >= adj_start && k <= adj_stop) {
+ Keys->push_back(k);
+ Values->push_back(curve->GetValues().at(n));
+ }
+ }
+
+ inputs.push_back(std::make_tuple(Keys, Values, mapto));
+ }
+ }
+ return inputs; // pray for NRVO :-)
+}
+
+FBXConverter::KeyFrameListList FBXConverter::GetRotationKeyframeList(const std::vector<const AnimationCurveNode *> &nodes,
+ int64_t start, int64_t stop) {
+ KeyFrameListList inputs;
+ inputs.reserve(nodes.size() * 3);
+
+ //give some breathing room for rounding errors
+ const int64_t adj_start = start - 10000;
+ const int64_t adj_stop = stop + 10000;
+
+ for (const AnimationCurveNode *node : nodes) {
+ ai_assert(node);
+
+ const AnimationCurveMap &curves = node->Curves();
+ for (const AnimationCurveMap::value_type &kv : curves) {
+
+ unsigned int mapto;
+ if (kv.first == "d|X") {
+ mapto = 0;
+ } else if (kv.first == "d|Y") {
+ mapto = 1;
+ } else if (kv.first == "d|Z") {
+ mapto = 2;
+ } else {
+ FBXImporter::LogWarn("ignoring scale animation curve, did not recognize target component");
+ continue;
+ }
+
+ const AnimationCurve *const curve = kv.second;
+ ai_assert(curve->GetKeys().size() == curve->GetValues().size());
+ ai_assert(curve->GetKeys().size());
+
+ //get values within the start/stop time window
+ std::shared_ptr<KeyTimeList> Keys(new KeyTimeList());
+ std::shared_ptr<KeyValueList> Values(new KeyValueList());
+ const size_t count = curve->GetKeys().size();
+
+ int64_t tp = curve->GetKeys().at(0);
+ float vp = curve->GetValues().at(0);
+ Keys->push_back(tp);
+ Values->push_back(vp);
+ if (count > 1) {
+ int64_t tc = curve->GetKeys().at(1);
+ float vc = curve->GetValues().at(1);
+ for (size_t n = 1; n < count; n++) {
+ while (std::abs(vc - vp) >= 180.0f) {
+ float step = std::floor(float(tc - tp) / (vc - vp) * 179.0f);
+ int64_t tnew = tp + int64_t(step);
+ float vnew = vp + (vc - vp) * step / float(tc - tp);
+ if (tnew >= adj_start && tnew <= adj_stop) {
+ Keys->push_back(tnew);
+ Values->push_back(vnew);
+ }
+ tp = tnew;
+ vp = vnew;
+ }
+ if (tc >= adj_start && tc <= adj_stop) {
+ Keys->push_back(tc);
+ Values->push_back(vc);
+ }
+ if (n + 1 < count) {
+ tp = tc;
+ vp = vc;
+ tc = curve->GetKeys().at(n + 1);
+ vc = curve->GetValues().at(n + 1);
+ }
+ }
+ }
+ inputs.push_back(std::make_tuple(Keys, Values, mapto));
+ }
+ }
+ return inputs;
+}
+
+KeyTimeList FBXConverter::GetKeyTimeList(const KeyFrameListList &inputs) {
+ ai_assert(!inputs.empty());
+
+ // reserve some space upfront - it is likely that the key-frame lists
+ // have matching time values, so max(of all key-frame lists) should
+ // be a good estimate.
+ KeyTimeList keys;
+
+ size_t estimate = 0;
+ for (const KeyFrameList &kfl : inputs) {
+ estimate = std::max(estimate, std::get<0>(kfl)->size());
+ }
+
+ keys.reserve(estimate);
+
+ std::vector<unsigned int> next_pos;
+ next_pos.resize(inputs.size(), 0);
+
+ const size_t count = inputs.size();
+ while (true) {
+
+ int64_t min_tick = std::numeric_limits<int64_t>::max();
+ for (size_t i = 0; i < count; ++i) {
+ const KeyFrameList &kfl = inputs[i];
+
+ if (std::get<0>(kfl)->size() > next_pos[i] && std::get<0>(kfl)->at(next_pos[i]) < min_tick) {
+ min_tick = std::get<0>(kfl)->at(next_pos[i]);
+ }
+ }
+
+ if (min_tick == std::numeric_limits<int64_t>::max()) {
+ break;
+ }
+ keys.push_back(min_tick);
+
+ for (size_t i = 0; i < count; ++i) {
+ const KeyFrameList &kfl = inputs[i];
+
+ while (std::get<0>(kfl)->size() > next_pos[i] && std::get<0>(kfl)->at(next_pos[i]) == min_tick) {
+ ++next_pos[i];
+ }
+ }
+ }
+
+ return keys;
+}
+
+void FBXConverter::InterpolateKeys(aiVectorKey *valOut, const KeyTimeList &keys, const KeyFrameListList &inputs,
+ const aiVector3D &def_value,
+ double &max_time,
+ double &min_time) {
+ ai_assert(!keys.empty());
+ ai_assert(nullptr != valOut);
+
+ std::vector<unsigned int> next_pos;
+ const size_t count(inputs.size());
+
+ next_pos.resize(inputs.size(), 0);
+
+ for (KeyTimeList::value_type time : keys) {
+ ai_real result[3] = { def_value.x, def_value.y, def_value.z };
+
+ for (size_t i = 0; i < count; ++i) {
+ const KeyFrameList &kfl = inputs[i];
+
+ const size_t ksize = std::get<0>(kfl)->size();
+ if (ksize == 0) {
+ continue;
+ }
+ if (ksize > next_pos[i] && std::get<0>(kfl)->at(next_pos[i]) == time) {
+ ++next_pos[i];
+ }
+
+ const size_t id0 = next_pos[i] > 0 ? next_pos[i] - 1 : 0;
+ const size_t id1 = next_pos[i] == ksize ? ksize - 1 : next_pos[i];
+
+ // use lerp for interpolation
+ const KeyValueList::value_type valueA = std::get<1>(kfl)->at(id0);
+ const KeyValueList::value_type valueB = std::get<1>(kfl)->at(id1);
+
+ const KeyTimeList::value_type timeA = std::get<0>(kfl)->at(id0);
+ const KeyTimeList::value_type timeB = std::get<0>(kfl)->at(id1);
+
+ const ai_real factor = timeB == timeA ? ai_real(0.) : static_cast<ai_real>((time - timeA)) / (timeB - timeA);
+ const ai_real interpValue = static_cast<ai_real>(valueA + (valueB - valueA) * factor);
+
+ result[std::get<2>(kfl)] = interpValue;
+ }
+
+ // magic value to convert fbx times to seconds
+ valOut->mTime = CONVERT_FBX_TIME(time) * anim_fps;
+
+ min_time = std::min(min_time, valOut->mTime);
+ max_time = std::max(max_time, valOut->mTime);
+
+ valOut->mValue.x = result[0];
+ valOut->mValue.y = result[1];
+ valOut->mValue.z = result[2];
+
+ ++valOut;
+ }
+}
+
+void FBXConverter::InterpolateKeys(aiQuatKey *valOut, const KeyTimeList &keys, const KeyFrameListList &inputs,
+ const aiVector3D &def_value,
+ double &maxTime,
+ double &minTime,
+ Model::RotOrder order) {
+ ai_assert(!keys.empty());
+ ai_assert(nullptr != valOut);
+
+ std::unique_ptr<aiVectorKey[]> temp(new aiVectorKey[keys.size()]);
+ InterpolateKeys(temp.get(), keys, inputs, def_value, maxTime, minTime);
+
+ aiMatrix4x4 m;
+
+ aiQuaternion lastq;
+
+ for (size_t i = 0, c = keys.size(); i < c; ++i) {
+
+ valOut[i].mTime = temp[i].mTime;
+
+ GetRotationMatrix(order, temp[i].mValue, m);
+ aiQuaternion quat = aiQuaternion(aiMatrix3x3(m));
+
+ // take shortest path by checking the inner product
+ // http://www.3dkingdoms.com/weekly/weekly.php?a=36
+ if (quat.x * lastq.x + quat.y * lastq.y + quat.z * lastq.z + quat.w * lastq.w < 0) {
+ quat.Conjugate();
+ quat.w = -quat.w;
+ }
+ lastq = quat;
+
+ valOut[i].mValue = quat;
+ }
+}
+
+aiQuaternion FBXConverter::EulerToQuaternion(const aiVector3D &rot, Model::RotOrder order) {
+ aiMatrix4x4 m;
+ GetRotationMatrix(order, rot, m);
+
+ return aiQuaternion(aiMatrix3x3(m));
+}
+
+void FBXConverter::ConvertScaleKeys(aiNodeAnim *na, const std::vector<const AnimationCurveNode *> &nodes, const LayerMap & /*layers*/,
+ int64_t start, int64_t stop,
+ double &maxTime,
+ double &minTime) {
+ ai_assert(nodes.size());
+
+ // XXX for now, assume scale should be blended geometrically (i.e. two
+ // layers should be multiplied with each other). There is a FBX
+ // property in the layer to specify the behaviour, though.
+
+ const KeyFrameListList &inputs = GetKeyframeList(nodes, start, stop);
+ const KeyTimeList &keys = GetKeyTimeList(inputs);
+
+ na->mNumScalingKeys = static_cast<unsigned int>(keys.size());
+ na->mScalingKeys = new aiVectorKey[keys.size()];
+ if (keys.size() > 0) {
+ InterpolateKeys(na->mScalingKeys, keys, inputs, aiVector3D(1.0f, 1.0f, 1.0f), maxTime, minTime);
+ }
+}
+
+void FBXConverter::ConvertTranslationKeys(aiNodeAnim *na, const std::vector<const AnimationCurveNode *> &nodes,
+ const LayerMap & /*layers*/,
+ int64_t start, int64_t stop,
+ double &maxTime,
+ double &minTime) {
+ ai_assert(nodes.size());
+
+ // XXX see notes in ConvertScaleKeys()
+ const KeyFrameListList &inputs = GetKeyframeList(nodes, start, stop);
+ const KeyTimeList &keys = GetKeyTimeList(inputs);
+
+ na->mNumPositionKeys = static_cast<unsigned int>(keys.size());
+ na->mPositionKeys = new aiVectorKey[keys.size()];
+ if (keys.size() > 0)
+ InterpolateKeys(na->mPositionKeys, keys, inputs, aiVector3D(0.0f, 0.0f, 0.0f), maxTime, minTime);
+}
+
+void FBXConverter::ConvertRotationKeys(aiNodeAnim *na, const std::vector<const AnimationCurveNode *> &nodes,
+ const LayerMap & /*layers*/,
+ int64_t start, int64_t stop,
+ double &maxTime,
+ double &minTime,
+ Model::RotOrder order) {
+ ai_assert(nodes.size());
+
+ // XXX see notes in ConvertScaleKeys()
+ const std::vector<KeyFrameList> &inputs = GetRotationKeyframeList(nodes, start, stop);
+ const KeyTimeList &keys = GetKeyTimeList(inputs);
+
+ na->mNumRotationKeys = static_cast<unsigned int>(keys.size());
+ na->mRotationKeys = new aiQuatKey[keys.size()];
+ if (!keys.empty()) {
+ InterpolateKeys(na->mRotationKeys, keys, inputs, aiVector3D(0.0f, 0.0f, 0.0f), maxTime, minTime, order);
+ }
+}
+
+void FBXConverter::ConvertGlobalSettings() {
+ if (nullptr == mSceneOut) {
+ return;
+ }
+
+ const bool hasGenerator = !doc.Creator().empty();
+
+ mSceneOut->mMetaData = aiMetadata::Alloc(16 + (hasGenerator ? 1 : 0));
+ mSceneOut->mMetaData->Set(0, "UpAxis", doc.GlobalSettings().UpAxis());
+ mSceneOut->mMetaData->Set(1, "UpAxisSign", doc.GlobalSettings().UpAxisSign());
+ mSceneOut->mMetaData->Set(2, "FrontAxis", doc.GlobalSettings().FrontAxis());
+ mSceneOut->mMetaData->Set(3, "FrontAxisSign", doc.GlobalSettings().FrontAxisSign());
+ mSceneOut->mMetaData->Set(4, "CoordAxis", doc.GlobalSettings().CoordAxis());
+ mSceneOut->mMetaData->Set(5, "CoordAxisSign", doc.GlobalSettings().CoordAxisSign());
+ mSceneOut->mMetaData->Set(6, "OriginalUpAxis", doc.GlobalSettings().OriginalUpAxis());
+ mSceneOut->mMetaData->Set(7, "OriginalUpAxisSign", doc.GlobalSettings().OriginalUpAxisSign());
+ //const double unitScaleFactor = (double)doc.GlobalSettings().UnitScaleFactor();
+ mSceneOut->mMetaData->Set(8, "UnitScaleFactor", doc.GlobalSettings().UnitScaleFactor());
+ mSceneOut->mMetaData->Set(9, "OriginalUnitScaleFactor", doc.GlobalSettings().OriginalUnitScaleFactor());
+ mSceneOut->mMetaData->Set(10, "AmbientColor", doc.GlobalSettings().AmbientColor());
+ mSceneOut->mMetaData->Set(11, "FrameRate", (int)doc.GlobalSettings().TimeMode());
+ mSceneOut->mMetaData->Set(12, "TimeSpanStart", doc.GlobalSettings().TimeSpanStart());
+ mSceneOut->mMetaData->Set(13, "TimeSpanStop", doc.GlobalSettings().TimeSpanStop());
+ mSceneOut->mMetaData->Set(14, "CustomFrameRate", doc.GlobalSettings().CustomFrameRate());
+ mSceneOut->mMetaData->Set(15, AI_METADATA_SOURCE_FORMAT_VERSION, aiString(ai_to_string(doc.FBXVersion())));
+ if (hasGenerator) {
+ mSceneOut->mMetaData->Set(16, AI_METADATA_SOURCE_GENERATOR, aiString(doc.Creator()));
+ }
+}
+
+void FBXConverter::TransferDataToScene() {
+ ai_assert(!mSceneOut->mMeshes);
+ ai_assert(!mSceneOut->mNumMeshes);
+
+ // note: the trailing () ensures initialization with nullptr - not
+ // many C++ users seem to know this, so pointing it out to avoid
+ // confusion why this code works.
+
+ if (!mMeshes.empty()) {
+ mSceneOut->mMeshes = new aiMesh *[mMeshes.size()]();
+ mSceneOut->mNumMeshes = static_cast<unsigned int>(mMeshes.size());
+
+ std::swap_ranges(mMeshes.begin(), mMeshes.end(), mSceneOut->mMeshes);
+ }
+
+ if (!materials.empty()) {
+ mSceneOut->mMaterials = new aiMaterial *[materials.size()]();
+ mSceneOut->mNumMaterials = static_cast<unsigned int>(materials.size());
+
+ std::swap_ranges(materials.begin(), materials.end(), mSceneOut->mMaterials);
+ }
+
+ if (!animations.empty()) {
+ mSceneOut->mAnimations = new aiAnimation *[animations.size()]();
+ mSceneOut->mNumAnimations = static_cast<unsigned int>(animations.size());
+
+ std::swap_ranges(animations.begin(), animations.end(), mSceneOut->mAnimations);
+ }
+
+ if (!lights.empty()) {
+ mSceneOut->mLights = new aiLight *[lights.size()]();
+ mSceneOut->mNumLights = static_cast<unsigned int>(lights.size());
+
+ std::swap_ranges(lights.begin(), lights.end(), mSceneOut->mLights);
+ }
+
+ if (!cameras.empty()) {
+ mSceneOut->mCameras = new aiCamera *[cameras.size()]();
+ mSceneOut->mNumCameras = static_cast<unsigned int>(cameras.size());
+
+ std::swap_ranges(cameras.begin(), cameras.end(), mSceneOut->mCameras);
+ }
+
+ if (!textures.empty()) {
+ mSceneOut->mTextures = new aiTexture *[textures.size()]();
+ mSceneOut->mNumTextures = static_cast<unsigned int>(textures.size());
+
+ std::swap_ranges(textures.begin(), textures.end(), mSceneOut->mTextures);
+ }
+}
+
+void FBXConverter::ConvertOrphanedEmbeddedTextures() {
+ // in C++14 it could be:
+ // for (auto&& [id, object] : objects)
+ for (auto &&id_and_object : doc.Objects()) {
+ auto &&id = std::get<0>(id_and_object);
+ auto &&object = std::get<1>(id_and_object);
+ // If an object doesn't have parent
+ if (doc.ConnectionsBySource().count(id) == 0) {
+ const Texture *realTexture = nullptr;
+ try {
+ const auto &element = object->GetElement();
+ const Token &key = element.KeyToken();
+ const char *obtype = key.begin();
+ const size_t length = static_cast<size_t>(key.end() - key.begin());
+ if (strncmp(obtype, "Texture", length) == 0) {
+ if (const Texture *texture = static_cast<const Texture *>(object->Get())) {
+ if (texture->Media() && texture->Media()->ContentLength() > 0) {
+ realTexture = texture;
+ }
+ }
+ }
+ } catch (...) {
+ // do nothing
+ }
+ if (realTexture) {
+ const Video *media = realTexture->Media();
+ unsigned int index = ConvertVideo(*media);
+ textures_converted[media] = index;
+ }
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void ConvertToAssimpScene(aiScene *out, const Document &doc, bool removeEmptyBones) {
+ FBXConverter converter(out, doc, removeEmptyBones);
+}
+
+} // namespace FBX
+} // namespace Assimp
+
+#endif