summaryrefslogtreecommitdiff
path: root/libs/assimp/code/AssetLib/IFC/IFCOpenings.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libs/assimp/code/AssetLib/IFC/IFCOpenings.cpp')
-rw-r--r--libs/assimp/code/AssetLib/IFC/IFCOpenings.cpp1955
1 files changed, 1955 insertions, 0 deletions
diff --git a/libs/assimp/code/AssetLib/IFC/IFCOpenings.cpp b/libs/assimp/code/AssetLib/IFC/IFCOpenings.cpp
new file mode 100644
index 0000000..7420019
--- /dev/null
+++ b/libs/assimp/code/AssetLib/IFC/IFCOpenings.cpp
@@ -0,0 +1,1955 @@
+/*
+Open Asset Import Library (assimp)
+----------------------------------------------------------------------
+
+Copyright (c) 2006-2022, assimp team
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the
+following conditions are met:
+
+* Redistributions of source code must retain the above
+ copyright notice, this list of conditions and the
+ following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the
+ following disclaimer in the documentation and/or other
+ materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+ contributors may be used to endorse or promote products
+ derived from this software without specific prior
+ written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+----------------------------------------------------------------------
+*/
+
+/** @file IFCOpenings.cpp
+ * @brief Implements a subset of Ifc CSG operations for pouring
+ * holes for windows and doors into walls.
+ */
+
+
+#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
+#include "IFCUtil.h"
+#include "Common/PolyTools.h"
+#include "PostProcessing/ProcessHelper.h"
+
+#ifdef ASSIMP_USE_HUNTER
+# include <poly2tri/poly2tri.h>
+# include <polyclipping/clipper.hpp>
+#else
+# include "../contrib/poly2tri/poly2tri/poly2tri.h"
+# include "../contrib/clipper/clipper.hpp"
+#endif
+
+#include <iterator>
+#include <forward_list>
+#include <deque>
+
+namespace Assimp {
+ namespace IFC {
+
+ using ClipperLib::ulong64;
+ // XXX use full -+ range ...
+ const ClipperLib::long64 max_ulong64 = 1518500249; // clipper.cpp / hiRange var
+
+ //#define to_int64(p) (static_cast<ulong64>( std::max( 0., std::min( static_cast<IfcFloat>((p)), 1.) ) * max_ulong64 ))
+#define to_int64(p) (static_cast<ulong64>(static_cast<IfcFloat>((p) ) * max_ulong64 ))
+#define from_int64(p) (static_cast<IfcFloat>((p)) / max_ulong64)
+#define one_vec (IfcVector2(static_cast<IfcFloat>(1.0),static_cast<IfcFloat>(1.0)))
+
+
+ // fallback method to generate wall openings
+ bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,
+ TempMesh& curmesh);
+
+
+typedef std::pair< IfcVector2, IfcVector2 > BoundingBox;
+typedef std::map<IfcVector2,size_t,XYSorter> XYSortedField;
+
+
+// ------------------------------------------------------------------------------------------------
+void QuadrifyPart(const IfcVector2& pmin, const IfcVector2& pmax, XYSortedField& field,
+ const std::vector< BoundingBox >& bbs,
+ std::vector<IfcVector2>& out)
+{
+ if (!(pmin.x-pmax.x) || !(pmin.y-pmax.y)) {
+ return;
+ }
+
+ IfcFloat xs = 1e10, xe = 1e10;
+ bool found = false;
+
+ // Search along the x-axis until we find an opening
+ XYSortedField::iterator start = field.begin();
+ for(; start != field.end(); ++start) {
+ const BoundingBox& bb = bbs[(*start).second];
+ if(bb.first.x >= pmax.x) {
+ break;
+ }
+
+ if (bb.second.x > pmin.x && bb.second.y > pmin.y && bb.first.y < pmax.y) {
+ xs = bb.first.x;
+ xe = bb.second.x;
+ found = true;
+ break;
+ }
+ }
+
+ if (!found) {
+ // the rectangle [pmin,pend] is opaque, fill it
+ out.push_back(pmin);
+ out.push_back(IfcVector2(pmin.x,pmax.y));
+ out.push_back(pmax);
+ out.push_back(IfcVector2(pmax.x,pmin.y));
+ return;
+ }
+
+ xs = std::max(pmin.x,xs);
+ xe = std::min(pmax.x,xe);
+
+ // see if there's an offset to fill at the top of our quad
+ if (xs - pmin.x) {
+ out.push_back(pmin);
+ out.push_back(IfcVector2(pmin.x,pmax.y));
+ out.push_back(IfcVector2(xs,pmax.y));
+ out.push_back(IfcVector2(xs,pmin.y));
+ }
+
+ // search along the y-axis for all openings that overlap xs and our quad
+ IfcFloat ylast = pmin.y;
+ found = false;
+ for(; start != field.end(); ++start) {
+ const BoundingBox& bb = bbs[(*start).second];
+ if (bb.first.x > xs || bb.first.y >= pmax.y) {
+ break;
+ }
+
+ if (bb.second.y > ylast) {
+
+ found = true;
+ const IfcFloat ys = std::max(bb.first.y,pmin.y), ye = std::min(bb.second.y,pmax.y);
+ if (ys - ylast > 0.0f) {
+ QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,ys) ,field,bbs,out);
+ }
+
+ // the following are the window vertices
+
+ /*wnd.push_back(IfcVector2(xs,ys));
+ wnd.push_back(IfcVector2(xs,ye));
+ wnd.push_back(IfcVector2(xe,ye));
+ wnd.push_back(IfcVector2(xe,ys));*/
+ ylast = ye;
+ }
+ }
+ if (!found) {
+ // the rectangle [pmin,pend] is opaque, fill it
+ out.push_back(IfcVector2(xs,pmin.y));
+ out.push_back(IfcVector2(xs,pmax.y));
+ out.push_back(IfcVector2(xe,pmax.y));
+ out.push_back(IfcVector2(xe,pmin.y));
+ return;
+ }
+ if (ylast < pmax.y) {
+ QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,pmax.y) ,field,bbs,out);
+ }
+
+ // now for the whole rest
+ if (pmax.x-xe) {
+ QuadrifyPart(IfcVector2(xe,pmin.y), pmax ,field,bbs,out);
+ }
+}
+
+typedef std::vector<IfcVector2> Contour;
+typedef std::vector<bool> SkipList; // should probably use int for performance reasons
+
+struct ProjectedWindowContour
+{
+ Contour contour;
+ BoundingBox bb;
+ SkipList skiplist;
+ bool is_rectangular;
+
+
+ ProjectedWindowContour(const Contour& contour, const BoundingBox& bb, bool is_rectangular)
+ : contour(contour)
+ , bb(bb)
+ , is_rectangular(is_rectangular)
+ {}
+
+
+ bool IsInvalid() const {
+ return contour.empty();
+ }
+
+ void FlagInvalid() {
+ contour.clear();
+ }
+
+ void PrepareSkiplist() {
+ skiplist.resize(contour.size(),false);
+ }
+};
+
+typedef std::vector< ProjectedWindowContour > ContourVector;
+
+// ------------------------------------------------------------------------------------------------
+bool BoundingBoxesOverlapping( const BoundingBox &ibb, const BoundingBox &bb )
+{
+ // count the '=' case as non-overlapping but as adjacent to each other
+ return ibb.first.x < bb.second.x && ibb.second.x > bb.first.x &&
+ ibb.first.y < bb.second.y && ibb.second.y > bb.first.y;
+}
+
+// ------------------------------------------------------------------------------------------------
+bool IsDuplicateVertex(const IfcVector2& vv, const std::vector<IfcVector2>& temp_contour)
+{
+ // sanity check for duplicate vertices
+ for(const IfcVector2& cp : temp_contour) {
+ if ((cp-vv).SquareLength() < 1e-5f) {
+ return true;
+ }
+ }
+ return false;
+}
+
+// ------------------------------------------------------------------------------------------------
+void ExtractVerticesFromClipper(const ClipperLib::Polygon& poly, std::vector<IfcVector2>& temp_contour,
+ bool filter_duplicates = false)
+{
+ temp_contour.clear();
+ for(const ClipperLib::IntPoint& point : poly) {
+ IfcVector2 vv = IfcVector2( from_int64(point.X), from_int64(point.Y));
+ vv = std::max(vv,IfcVector2());
+ vv = std::min(vv,one_vec);
+
+ if (!filter_duplicates || !IsDuplicateVertex(vv, temp_contour)) {
+ temp_contour.push_back(vv);
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+BoundingBox GetBoundingBox(const ClipperLib::Polygon& poly)
+{
+ IfcVector2 newbb_min, newbb_max;
+ MinMaxChooser<IfcVector2>()(newbb_min, newbb_max);
+
+ for(const ClipperLib::IntPoint& point : poly) {
+ IfcVector2 vv = IfcVector2( from_int64(point.X), from_int64(point.Y));
+
+ // sanity rounding
+ vv = std::max(vv,IfcVector2());
+ vv = std::min(vv,one_vec);
+
+ newbb_min = std::min(newbb_min,vv);
+ newbb_max = std::max(newbb_max,vv);
+ }
+ return BoundingBox(newbb_min, newbb_max);
+}
+
+// ------------------------------------------------------------------------------------------------
+void InsertWindowContours(const ContourVector& contours,
+ const std::vector<TempOpening>& /*openings*/,
+ TempMesh& curmesh)
+{
+ // fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now
+ for(size_t i = 0; i < contours.size();++i) {
+ const BoundingBox& bb = contours[i].bb;
+ const std::vector<IfcVector2>& contour = contours[i].contour;
+ if(contour.empty()) {
+ continue;
+ }
+
+ // check if we need to do it at all - many windows just fit perfectly into their quadratic holes,
+ // i.e. their contours *are* already their bounding boxes.
+ if (contour.size() == 4) {
+ std::set<IfcVector2,XYSorter> verts;
+ for(size_t n = 0; n < 4; ++n) {
+ verts.insert(contour[n]);
+ }
+ const std::set<IfcVector2,XYSorter>::const_iterator end = verts.end();
+ if (verts.find(bb.first)!=end && verts.find(bb.second)!=end
+ && verts.find(IfcVector2(bb.first.x,bb.second.y))!=end
+ && verts.find(IfcVector2(bb.second.x,bb.first.y))!=end
+ ) {
+ continue;
+ }
+ }
+
+ const IfcFloat diag = (bb.first-bb.second).Length();
+ const IfcFloat epsilon = diag/1000.f;
+
+ // walk through all contour points and find those that lie on the BB corner
+ size_t last_hit = (size_t)-1, very_first_hit = (size_t)-1;
+ IfcVector2 edge;
+ for(size_t n = 0, e=0, size = contour.size();; n=(n+1)%size, ++e) {
+
+ // sanity checking
+ if (e == size*2) {
+ IFCImporter::LogError("encountered unexpected topology while generating window contour");
+ break;
+ }
+
+ const IfcVector2& v = contour[n];
+
+ bool hit = false;
+ if (std::fabs(v.x-bb.first.x)<epsilon) {
+ edge.x = bb.first.x;
+ hit = true;
+ }
+ else if (std::fabs(v.x-bb.second.x)<epsilon) {
+ edge.x = bb.second.x;
+ hit = true;
+ }
+
+ if (std::fabs(v.y-bb.first.y)<epsilon) {
+ edge.y = bb.first.y;
+ hit = true;
+ }
+ else if (std::fabs(v.y-bb.second.y)<epsilon) {
+ edge.y = bb.second.y;
+ hit = true;
+ }
+
+ if (hit) {
+ if (last_hit != (size_t)-1) {
+
+ const size_t old = curmesh.mVerts.size();
+ size_t cnt = last_hit > n ? size-(last_hit-n) : n-last_hit;
+ for(size_t a = last_hit, ee = 0; ee <= cnt; a=(a+1)%size, ++ee) {
+ // hack: this is to fix cases where opening contours are self-intersecting.
+ // Clipper doesn't produce such polygons, but as soon as we're back in
+ // our brave new floating-point world, very small distances are consumed
+ // by the maximum available precision, leading to self-intersecting
+ // polygons. This fix makes concave windows fail even worse, but
+ // anyway, fail is fail.
+ if ((contour[a] - edge).SquareLength() > diag*diag*0.7) {
+ continue;
+ }
+ curmesh.mVerts.push_back(IfcVector3(contour[a].x, contour[a].y, 0.0f));
+ }
+
+ if (edge != contour[last_hit]) {
+
+ IfcVector2 corner = edge;
+
+ if (std::fabs(contour[last_hit].x-bb.first.x)<epsilon) {
+ corner.x = bb.first.x;
+ }
+ else if (std::fabs(contour[last_hit].x-bb.second.x)<epsilon) {
+ corner.x = bb.second.x;
+ }
+
+ if (std::fabs(contour[last_hit].y-bb.first.y)<epsilon) {
+ corner.y = bb.first.y;
+ }
+ else if (std::fabs(contour[last_hit].y-bb.second.y)<epsilon) {
+ corner.y = bb.second.y;
+ }
+
+ curmesh.mVerts.push_back(IfcVector3(corner.x, corner.y, 0.0f));
+ }
+ else if (cnt == 1) {
+ // avoid degenerate polygons (also known as lines or points)
+ curmesh.mVerts.erase(curmesh.mVerts.begin()+old,curmesh.mVerts.end());
+ }
+
+ if (const size_t d = curmesh.mVerts.size()-old) {
+ curmesh.mVertcnt.push_back(static_cast<unsigned int>(d));
+ std::reverse(curmesh.mVerts.rbegin(),curmesh.mVerts.rbegin()+d);
+ }
+ if (n == very_first_hit) {
+ break;
+ }
+ }
+ else {
+ very_first_hit = n;
+ }
+
+ last_hit = n;
+ }
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void MergeWindowContours (const std::vector<IfcVector2>& a,
+ const std::vector<IfcVector2>& b,
+ ClipperLib::ExPolygons& out)
+{
+ out.clear();
+
+ ClipperLib::Clipper clipper;
+ ClipperLib::Polygon clip;
+
+ for(const IfcVector2& pip : a) {
+ clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
+ }
+
+ if (ClipperLib::Orientation(clip)) {
+ std::reverse(clip.begin(), clip.end());
+ }
+
+ clipper.AddPolygon(clip, ClipperLib::ptSubject);
+ clip.clear();
+
+ for(const IfcVector2& pip : b) {
+ clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
+ }
+
+ if (ClipperLib::Orientation(clip)) {
+ std::reverse(clip.begin(), clip.end());
+ }
+
+ clipper.AddPolygon(clip, ClipperLib::ptSubject);
+ clipper.Execute(ClipperLib::ctUnion, out,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
+}
+
+// ------------------------------------------------------------------------------------------------
+// Subtract a from b
+void MakeDisjunctWindowContours (const std::vector<IfcVector2>& a,
+ const std::vector<IfcVector2>& b,
+ ClipperLib::ExPolygons& out)
+{
+ out.clear();
+
+ ClipperLib::Clipper clipper;
+ ClipperLib::Polygon clip;
+
+ for(const IfcVector2& pip : a) {
+ clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
+ }
+
+ if (ClipperLib::Orientation(clip)) {
+ std::reverse(clip.begin(), clip.end());
+ }
+
+ clipper.AddPolygon(clip, ClipperLib::ptClip);
+ clip.clear();
+
+ for(const IfcVector2& pip : b) {
+ clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
+ }
+
+ if (ClipperLib::Orientation(clip)) {
+ std::reverse(clip.begin(), clip.end());
+ }
+
+ clipper.AddPolygon(clip, ClipperLib::ptSubject);
+ clipper.Execute(ClipperLib::ctDifference, out,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
+}
+
+// ------------------------------------------------------------------------------------------------
+void CleanupWindowContour(ProjectedWindowContour& window)
+{
+ std::vector<IfcVector2> scratch;
+ std::vector<IfcVector2>& contour = window.contour;
+
+ ClipperLib::Polygon subject;
+ ClipperLib::Clipper clipper;
+ ClipperLib::ExPolygons clipped;
+
+ for(const IfcVector2& pip : contour) {
+ subject.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
+ }
+
+ clipper.AddPolygon(subject,ClipperLib::ptSubject);
+ clipper.Execute(ClipperLib::ctUnion,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
+
+ // This should yield only one polygon or something went wrong
+ if (clipped.size() != 1) {
+
+ // Empty polygon? drop the contour altogether
+ if(clipped.empty()) {
+ IFCImporter::LogError("error during polygon clipping, window contour is degenerate");
+ window.FlagInvalid();
+ return;
+ }
+
+ // Else: take the first only
+ IFCImporter::LogError("error during polygon clipping, window contour is not convex");
+ }
+
+ ExtractVerticesFromClipper(clipped[0].outer, scratch);
+ // Assume the bounding box doesn't change during this operation
+}
+
+// ------------------------------------------------------------------------------------------------
+void CleanupWindowContours(ContourVector& contours)
+{
+ // Use PolyClipper to clean up window contours
+ try {
+ for(ProjectedWindowContour& window : contours) {
+ CleanupWindowContour(window);
+ }
+ }
+ catch (const char* sx) {
+ IFCImporter::LogError("error during polygon clipping, window shape may be wrong: (Clipper: "
+ + std::string(sx) + ")");
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void CleanupOuterContour(const std::vector<IfcVector2>& contour_flat, TempMesh& curmesh)
+{
+ std::vector<IfcVector3> vold;
+ std::vector<unsigned int> iold;
+
+ vold.reserve(curmesh.mVerts.size());
+ iold.reserve(curmesh.mVertcnt.size());
+
+ // Fix the outer contour using polyclipper
+ try {
+
+ ClipperLib::Polygon subject;
+ ClipperLib::Clipper clipper;
+ ClipperLib::ExPolygons clipped;
+
+ ClipperLib::Polygon clip;
+ clip.reserve(contour_flat.size());
+ for(const IfcVector2& pip : contour_flat) {
+ clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
+ }
+
+ if (!ClipperLib::Orientation(clip)) {
+ std::reverse(clip.begin(), clip.end());
+ }
+
+ // We need to run polyclipper on every single polygon -- we can't run it one all
+ // of them at once or it would merge them all together which would undo all
+ // previous steps
+ subject.reserve(4);
+ size_t index = 0;
+ size_t countdown = 0;
+ for(const IfcVector3& pip : curmesh.mVerts) {
+ if (!countdown) {
+ countdown = curmesh.mVertcnt[index++];
+ if (!countdown) {
+ continue;
+ }
+ }
+ subject.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
+ if (--countdown == 0) {
+ if (!ClipperLib::Orientation(subject)) {
+ std::reverse(subject.begin(), subject.end());
+ }
+
+ clipper.AddPolygon(subject,ClipperLib::ptSubject);
+ clipper.AddPolygon(clip,ClipperLib::ptClip);
+
+ clipper.Execute(ClipperLib::ctIntersection,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
+
+ for(const ClipperLib::ExPolygon& ex : clipped) {
+ iold.push_back(static_cast<unsigned int>(ex.outer.size()));
+ for(const ClipperLib::IntPoint& point : ex.outer) {
+ vold.push_back(IfcVector3(
+ from_int64(point.X),
+ from_int64(point.Y),
+ 0.0f));
+ }
+ }
+
+ subject.clear();
+ clipped.clear();
+ clipper.Clear();
+ }
+ }
+ }
+ catch (const char* sx) {
+ IFCImporter::LogError("Ifc: error during polygon clipping, wall contour line may be wrong: (Clipper: "
+ + std::string(sx) + ")");
+
+ return;
+ }
+
+ // swap data arrays
+ std::swap(vold,curmesh.mVerts);
+ std::swap(iold,curmesh.mVertcnt);
+}
+
+typedef std::vector<TempOpening*> OpeningRefs;
+typedef std::vector<OpeningRefs > OpeningRefVector;
+
+typedef std::vector<std::pair<
+ ContourVector::const_iterator,
+ Contour::const_iterator>
+> ContourRefVector;
+
+// ------------------------------------------------------------------------------------------------
+bool BoundingBoxesAdjacent(const BoundingBox& bb, const BoundingBox& ibb)
+{
+ // TODO: I'm pretty sure there is a much more compact way to check this
+ const IfcFloat epsilon = Math::getEpsilon<float>();
+ return (std::fabs(bb.second.x - ibb.first.x) < epsilon && bb.first.y <= ibb.second.y && bb.second.y >= ibb.first.y) ||
+ (std::fabs(bb.first.x - ibb.second.x) < epsilon && ibb.first.y <= bb.second.y && ibb.second.y >= bb.first.y) ||
+ (std::fabs(bb.second.y - ibb.first.y) < epsilon && bb.first.x <= ibb.second.x && bb.second.x >= ibb.first.x) ||
+ (std::fabs(bb.first.y - ibb.second.y) < epsilon && ibb.first.x <= bb.second.x && ibb.second.x >= bb.first.x);
+}
+
+// ------------------------------------------------------------------------------------------------
+// Check if m0,m1 intersects n0,n1 assuming same ordering of the points in the line segments
+// output the intersection points on n0,n1
+bool IntersectingLineSegments(const IfcVector2& n0, const IfcVector2& n1,
+ const IfcVector2& m0, const IfcVector2& m1,
+ IfcVector2& out0, IfcVector2& out1)
+{
+ const IfcVector2 n0_to_n1 = n1 - n0;
+
+ const IfcVector2 n0_to_m0 = m0 - n0;
+ const IfcVector2 n1_to_m1 = m1 - n1;
+
+ const IfcVector2 n0_to_m1 = m1 - n0;
+
+ const IfcFloat e = 1e-5f;
+ const IfcFloat smalle = 1e-9f;
+
+ static const IfcFloat inf = std::numeric_limits<IfcFloat>::infinity();
+
+ if (!(n0_to_m0.SquareLength() < e*e || std::fabs(n0_to_m0 * n0_to_n1) / (n0_to_m0.Length() * n0_to_n1.Length()) > 1-1e-5 )) {
+ return false;
+ }
+
+ if (!(n1_to_m1.SquareLength() < e*e || std::fabs(n1_to_m1 * n0_to_n1) / (n1_to_m1.Length() * n0_to_n1.Length()) > 1-1e-5 )) {
+ return false;
+ }
+
+ IfcFloat s0;
+ IfcFloat s1;
+
+ // pick the axis with the higher absolute difference so the result
+ // is more accurate. Since we cannot guarantee that the axis with
+ // the higher absolute difference is big enough as to avoid
+ // divisions by zero, the case 0/0 ~ infinity is detected and
+ // handled separately.
+ if(std::fabs(n0_to_n1.x) > std::fabs(n0_to_n1.y)) {
+ s0 = n0_to_m0.x / n0_to_n1.x;
+ s1 = n0_to_m1.x / n0_to_n1.x;
+
+ if (std::fabs(s0) == inf && std::fabs(n0_to_m0.x) < smalle) {
+ s0 = 0.;
+ }
+ if (std::fabs(s1) == inf && std::fabs(n0_to_m1.x) < smalle) {
+ s1 = 0.;
+ }
+ }
+ else {
+ s0 = n0_to_m0.y / n0_to_n1.y;
+ s1 = n0_to_m1.y / n0_to_n1.y;
+
+ if (std::fabs(s0) == inf && std::fabs(n0_to_m0.y) < smalle) {
+ s0 = 0.;
+ }
+ if (std::fabs(s1) == inf && std::fabs(n0_to_m1.y) < smalle) {
+ s1 = 0.;
+ }
+ }
+
+ if (s1 < s0) {
+ std::swap(s1,s0);
+ }
+
+ s0 = std::max(0.0,s0);
+ s1 = std::max(0.0,s1);
+
+ s0 = std::min(1.0,s0);
+ s1 = std::min(1.0,s1);
+
+ if (std::fabs(s1-s0) < e) {
+ return false;
+ }
+
+ out0 = n0 + s0 * n0_to_n1;
+ out1 = n0 + s1 * n0_to_n1;
+
+ return true;
+}
+
+// ------------------------------------------------------------------------------------------------
+void FindAdjacentContours(ContourVector::iterator current, const ContourVector& contours)
+{
+ const IfcFloat sqlen_epsilon = static_cast<IfcFloat>(Math::getEpsilon<float>());
+ const BoundingBox& bb = (*current).bb;
+
+ // What is to be done here is to populate the skip lists for the contour
+ // and to add necessary padding points when needed.
+ SkipList& skiplist = (*current).skiplist;
+
+ // First step to find possible adjacent contours is to check for adjacent bounding
+ // boxes. If the bounding boxes are not adjacent, the contours lines cannot possibly be.
+ for (ContourVector::const_iterator it = contours.begin(), end = contours.end(); it != end; ++it) {
+ if ((*it).IsInvalid()) {
+ continue;
+ }
+
+ // this left here to make clear we also run on the current contour
+ // to check for overlapping contour segments (which can happen due
+ // to projection artifacts).
+ //if(it == current) {
+ // continue;
+ //}
+
+ const bool is_me = it == current;
+
+ const BoundingBox& ibb = (*it).bb;
+
+ // Assumption: the bounding boxes are pairwise disjoint or identical
+ ai_assert(is_me || !BoundingBoxesOverlapping(bb, ibb));
+
+ if (is_me || BoundingBoxesAdjacent(bb, ibb)) {
+
+ // Now do a each-against-everyone check for intersecting contour
+ // lines. This obviously scales terribly, but in typical real
+ // world Ifc files it will not matter since most windows that
+ // are adjacent to each others are rectangular anyway.
+
+ Contour& ncontour = (*current).contour;
+ const Contour& mcontour = (*it).contour;
+
+ for (size_t n = 0; n < ncontour.size(); ++n) {
+ const IfcVector2 n0 = ncontour[n];
+ const IfcVector2 n1 = ncontour[(n+1) % ncontour.size()];
+
+ for (size_t m = 0, mend = (is_me ? n : mcontour.size()); m < mend; ++m) {
+ ai_assert(&mcontour != &ncontour || m < n);
+
+ const IfcVector2 m0 = mcontour[m];
+ const IfcVector2 m1 = mcontour[(m+1) % mcontour.size()];
+
+ IfcVector2 isect0, isect1;
+ if (IntersectingLineSegments(n0,n1, m0, m1, isect0, isect1)) {
+
+ if ((isect0 - n0).SquareLength() > sqlen_epsilon) {
+ ++n;
+
+ ncontour.insert(ncontour.begin() + n, isect0);
+ skiplist.insert(skiplist.begin() + n, true);
+ }
+ else {
+ skiplist[n] = true;
+ }
+
+ if ((isect1 - n1).SquareLength() > sqlen_epsilon) {
+ ++n;
+
+ ncontour.insert(ncontour.begin() + n, isect1);
+ skiplist.insert(skiplist.begin() + n, false);
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+AI_FORCE_INLINE bool LikelyBorder(const IfcVector2& vdelta)
+{
+ const IfcFloat dot_point_epsilon = static_cast<IfcFloat>(Math::getEpsilon<float>());
+ return std::fabs(vdelta.x * vdelta.y) < dot_point_epsilon;
+}
+
+// ------------------------------------------------------------------------------------------------
+void FindBorderContours(ContourVector::iterator current)
+{
+ const IfcFloat border_epsilon_upper = static_cast<IfcFloat>(1-1e-4);
+ const IfcFloat border_epsilon_lower = static_cast<IfcFloat>(1e-4);
+
+ bool outer_border = false;
+ bool start_on_outer_border = false;
+
+ SkipList& skiplist = (*current).skiplist;
+ IfcVector2 last_proj_point;
+
+ const Contour::const_iterator cbegin = (*current).contour.begin(), cend = (*current).contour.end();
+
+ for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
+ const IfcVector2& proj_point = *cit;
+
+ // Check if this connection is along the outer boundary of the projection
+ // plane. In such a case we better drop it because such 'edges' should
+ // not have any geometry to close them (think of door openings).
+ if (proj_point.x <= border_epsilon_lower || proj_point.x >= border_epsilon_upper ||
+ proj_point.y <= border_epsilon_lower || proj_point.y >= border_epsilon_upper) {
+
+ if (outer_border) {
+ ai_assert(cit != cbegin);
+ if (LikelyBorder(proj_point - last_proj_point)) {
+ skiplist[std::distance(cbegin, cit) - 1] = true;
+ }
+ }
+ else if (cit == cbegin) {
+ start_on_outer_border = true;
+ }
+
+ outer_border = true;
+ }
+ else {
+ outer_border = false;
+ }
+
+ last_proj_point = proj_point;
+ }
+
+ // handle last segment
+ if (outer_border && start_on_outer_border) {
+ const IfcVector2& proj_point = *cbegin;
+ if (LikelyBorder(proj_point - last_proj_point)) {
+ skiplist[skiplist.size()-1] = true;
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+AI_FORCE_INLINE bool LikelyDiagonal(IfcVector2 vdelta)
+{
+ vdelta.x = std::fabs(vdelta.x);
+ vdelta.y = std::fabs(vdelta.y);
+ return (std::fabs(vdelta.x-vdelta.y) < 0.8 * std::max(vdelta.x, vdelta.y));
+}
+
+// ------------------------------------------------------------------------------------------------
+void FindLikelyCrossingLines(ContourVector::iterator current)
+{
+ SkipList& skiplist = (*current).skiplist;
+ IfcVector2 last_proj_point;
+
+ const Contour::const_iterator cbegin = (*current).contour.begin(), cend = (*current).contour.end();
+ for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
+ const IfcVector2& proj_point = *cit;
+
+ if (cit != cbegin) {
+ IfcVector2 vdelta = proj_point - last_proj_point;
+ if (LikelyDiagonal(vdelta)) {
+ skiplist[std::distance(cbegin, cit) - 1] = true;
+ }
+ }
+
+ last_proj_point = proj_point;
+ }
+
+ // handle last segment
+ if (LikelyDiagonal(*cbegin - last_proj_point)) {
+ skiplist[skiplist.size()-1] = true;
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+size_t CloseWindows(ContourVector& contours,
+ const IfcMatrix4& minv,
+ OpeningRefVector& contours_to_openings,
+ TempMesh& curmesh)
+{
+ size_t closed = 0;
+ // For all contour points, check if one of the assigned openings does
+ // already have points assigned to it. In this case, assume this is
+ // the other side of the wall and generate connections between
+ // the two holes in order to close the window.
+
+ // All this gets complicated by the fact that contours may pertain to
+ // multiple openings(due to merging of adjacent or overlapping openings).
+ // The code is based on the assumption that this happens symmetrically
+ // on both sides of the wall. If it doesn't (which would be a bug anyway)
+ // wrong geometry may be generated.
+ for (ContourVector::iterator it = contours.begin(), end = contours.end(); it != end; ++it) {
+ if ((*it).IsInvalid()) {
+ continue;
+ }
+ OpeningRefs& refs = contours_to_openings[std::distance(contours.begin(), it)];
+
+ bool has_other_side = false;
+ for(const TempOpening* opening : refs) {
+ if(!opening->wallPoints.empty()) {
+ has_other_side = true;
+ break;
+ }
+ }
+
+ if (has_other_side) {
+
+ ContourRefVector adjacent_contours;
+
+ // prepare a skiplist for this contour. The skiplist is used to
+ // eliminate unwanted contour lines for adjacent windows and
+ // those bordering the outer frame.
+ (*it).PrepareSkiplist();
+
+ FindAdjacentContours(it, contours);
+ FindBorderContours(it);
+
+ // if the window is the result of a finite union or intersection of rectangles,
+ // there shouldn't be any crossing or diagonal lines in it. Such lines would
+ // be artifacts caused by numerical inaccuracies or other bugs in polyclipper
+ // and our own code. Since rectangular openings are by far the most frequent
+ // case, it is worth filtering for this corner case.
+ if((*it).is_rectangular) {
+ FindLikelyCrossingLines(it);
+ }
+
+ ai_assert((*it).skiplist.size() == (*it).contour.size());
+
+ SkipList::const_iterator skipbegin = (*it).skiplist.begin();
+
+ curmesh.mVerts.reserve(curmesh.mVerts.size() + (*it).contour.size() * 4);
+ curmesh.mVertcnt.reserve(curmesh.mVertcnt.size() + (*it).contour.size());
+
+ bool reverseCountourFaces = false;
+
+ // compare base poly normal and contour normal to detect if we need to reverse the face winding
+ if(curmesh.mVertcnt.size() > 0) {
+ IfcVector3 basePolyNormal = TempMesh::ComputePolygonNormal(curmesh.mVerts.data(), curmesh.mVertcnt.front());
+
+ std::vector<IfcVector3> worldSpaceContourVtx(it->contour.size());
+
+ for(size_t a = 0; a < it->contour.size(); ++a)
+ worldSpaceContourVtx[a] = minv * IfcVector3(it->contour[a].x, it->contour[a].y, 0.0);
+
+ IfcVector3 contourNormal = TempMesh::ComputePolygonNormal(worldSpaceContourVtx.data(), worldSpaceContourVtx.size());
+
+ reverseCountourFaces = (contourNormal * basePolyNormal) > 0.0;
+ }
+
+ // XXX this algorithm is really a bit inefficient - both in terms
+ // of constant factor and of asymptotic runtime.
+ std::vector<bool>::const_iterator skipit = skipbegin;
+
+ IfcVector3 start0;
+ IfcVector3 start1;
+
+ const Contour::const_iterator cbegin = (*it).contour.begin(), cend = (*it).contour.end();
+
+ bool drop_this_edge = false;
+ for (Contour::const_iterator cit = cbegin; cit != cend; ++cit, drop_this_edge = *skipit++) {
+ const IfcVector2& proj_point = *cit;
+
+ // Locate the closest opposite point. This should be a good heuristic to
+ // connect only the points that are really intended to be connected.
+ IfcFloat best = static_cast<IfcFloat>(1e10);
+ IfcVector3 bestv;
+
+ const IfcVector3 world_point = minv * IfcVector3(proj_point.x,proj_point.y,0.0f);
+
+ for(const TempOpening* opening : refs) {
+ for(const IfcVector3& other : opening->wallPoints) {
+ const IfcFloat sqdist = (world_point - other).SquareLength();
+
+ if (sqdist < best) {
+ // avoid self-connections
+ if(sqdist < 1e-5) {
+ continue;
+ }
+
+ bestv = other;
+ best = sqdist;
+ }
+ }
+ }
+
+ if (drop_this_edge) {
+ curmesh.mVerts.pop_back();
+ curmesh.mVerts.pop_back();
+ }
+ else {
+ curmesh.mVerts.push_back(((cit == cbegin) != reverseCountourFaces) ? world_point : bestv);
+ curmesh.mVerts.push_back(((cit == cbegin) != reverseCountourFaces) ? bestv : world_point);
+
+ curmesh.mVertcnt.push_back(4);
+ ++closed;
+ }
+
+ if (cit == cbegin) {
+ start0 = world_point;
+ start1 = bestv;
+ continue;
+ }
+
+ curmesh.mVerts.push_back(reverseCountourFaces ? bestv : world_point);
+ curmesh.mVerts.push_back(reverseCountourFaces ? world_point : bestv);
+
+ if (cit == cend - 1) {
+ drop_this_edge = *skipit;
+
+ // Check if the final connection (last to first element) is itself
+ // a border edge that needs to be dropped.
+ if (drop_this_edge) {
+ --closed;
+ curmesh.mVertcnt.pop_back();
+ curmesh.mVerts.pop_back();
+ curmesh.mVerts.pop_back();
+ }
+ else {
+ curmesh.mVerts.push_back(reverseCountourFaces ? start0 : start1);
+ curmesh.mVerts.push_back(reverseCountourFaces ? start1 : start0);
+ }
+ }
+ }
+ }
+ else {
+
+ const Contour::const_iterator cbegin = (*it).contour.begin(), cend = (*it).contour.end();
+ for(TempOpening* opening : refs) {
+ ai_assert(opening->wallPoints.empty());
+ opening->wallPoints.reserve(opening->wallPoints.capacity() + (*it).contour.size());
+ for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
+
+ const IfcVector2& proj_point = *cit;
+ opening->wallPoints.push_back(minv * IfcVector3(proj_point.x,proj_point.y,0.0f));
+ }
+ }
+ }
+ }
+ return closed;
+}
+
+// ------------------------------------------------------------------------------------------------
+void Quadrify(const std::vector< BoundingBox >& bbs, TempMesh& curmesh)
+{
+ ai_assert(curmesh.IsEmpty());
+
+ std::vector<IfcVector2> quads;
+ quads.reserve(bbs.size()*4);
+
+ // sort openings by x and y axis as a preliminiary to the QuadrifyPart() algorithm
+ XYSortedField field;
+ for (std::vector<BoundingBox>::const_iterator it = bbs.begin(); it != bbs.end(); ++it) {
+ if (field.find((*it).first) != field.end()) {
+ IFCImporter::LogWarn("constraint failure during generation of wall openings, results may be faulty");
+ }
+ field[(*it).first] = std::distance(bbs.begin(),it);
+ }
+
+ QuadrifyPart(IfcVector2(),one_vec,field,bbs,quads);
+ ai_assert(!(quads.size() % 4));
+
+ curmesh.mVertcnt.resize(quads.size()/4,4);
+ curmesh.mVerts.reserve(quads.size());
+ for(const IfcVector2& v2 : quads) {
+ curmesh.mVerts.push_back(IfcVector3(v2.x, v2.y, static_cast<IfcFloat>(0.0)));
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void Quadrify(const ContourVector& contours, TempMesh& curmesh)
+{
+ std::vector<BoundingBox> bbs;
+ bbs.reserve(contours.size());
+
+ for(const ContourVector::value_type& val : contours) {
+ bbs.push_back(val.bb);
+ }
+
+ Quadrify(bbs, curmesh);
+}
+
+// ------------------------------------------------------------------------------------------------
+IfcMatrix4 ProjectOntoPlane(std::vector<IfcVector2>& out_contour, const TempMesh& in_mesh,
+ bool &ok, IfcVector3& nor_out)
+{
+ const std::vector<IfcVector3>& in_verts = in_mesh.mVerts;
+ ok = true;
+
+ IfcMatrix4 m = IfcMatrix4(DerivePlaneCoordinateSpace(in_mesh, ok, nor_out));
+ if(!ok) {
+ return IfcMatrix4();
+ }
+#ifdef ASSIMP_BUILD_DEBUG
+ const IfcFloat det = m.Determinant();
+ ai_assert(std::fabs(det-1) < 1e-5);
+#endif
+
+ IfcFloat zcoord = 0;
+ out_contour.reserve(in_verts.size());
+
+
+ IfcVector3 vmin, vmax;
+ MinMaxChooser<IfcVector3>()(vmin, vmax);
+
+ // Project all points into the new coordinate system, collect min/max verts on the way
+ for(const IfcVector3& x : in_verts) {
+ const IfcVector3 vv = m * x;
+ // keep Z offset in the plane coordinate system. Ignoring precision issues
+ // (which are present, of course), this should be the same value for
+ // all polygon vertices (assuming the polygon is planar).
+
+ // XXX this should be guarded, but we somehow need to pick a suitable
+ // epsilon
+ // if(coord != -1.0f) {
+ // assert(std::fabs(coord - vv.z) < 1e-3f);
+ // }
+ zcoord += vv.z;
+ vmin = std::min(vv, vmin);
+ vmax = std::max(vv, vmax);
+
+ out_contour.push_back(IfcVector2(vv.x,vv.y));
+ }
+
+ zcoord /= in_verts.size();
+
+ // Further improve the projection by mapping the entire working set into
+ // [0,1] range. This gives us a consistent data range so all epsilons
+ // used below can be constants.
+ vmax -= vmin;
+ for(IfcVector2& vv : out_contour) {
+ vv.x = (vv.x - vmin.x) / vmax.x;
+ vv.y = (vv.y - vmin.y) / vmax.y;
+
+ // sanity rounding
+ vv = std::max(vv,IfcVector2());
+ vv = std::min(vv,one_vec);
+ }
+
+ IfcMatrix4 mult;
+ mult.a1 = static_cast<IfcFloat>(1.0) / vmax.x;
+ mult.b2 = static_cast<IfcFloat>(1.0) / vmax.y;
+
+ mult.a4 = -vmin.x * mult.a1;
+ mult.b4 = -vmin.y * mult.b2;
+ mult.c4 = -zcoord;
+ m = mult * m;
+
+ // debug code to verify correctness
+#ifdef ASSIMP_BUILD_DEBUG
+ std::vector<IfcVector2> out_contour2;
+ for(const IfcVector3& x : in_verts) {
+ const IfcVector3& vv = m * x;
+
+ out_contour2.push_back(IfcVector2(vv.x,vv.y));
+ ai_assert(std::fabs(vv.z) < vmax.z + 1e-8);
+ }
+
+ for(size_t i = 0; i < out_contour.size(); ++i) {
+ ai_assert((out_contour[i] - out_contour2[i]).SquareLength() < ai_epsilon);
+ }
+#endif
+
+ return m;
+}
+
+// ------------------------------------------------------------------------------------------------
+bool GenerateOpenings(std::vector<TempOpening>& openings,
+ TempMesh& curmesh,
+ bool check_intersection,
+ bool generate_connection_geometry,
+ const IfcVector3& wall_extrusion_axis)
+{
+ OpeningRefVector contours_to_openings;
+
+ // Try to derive a solid base plane within the current surface for use as
+ // working coordinate system. Map all vertices onto this plane and
+ // rescale them to [0,1] range. This normalization means all further
+ // epsilons need not be scaled.
+ bool ok = true;
+
+ std::vector<IfcVector2> contour_flat;
+
+ IfcVector3 nor;
+ const IfcMatrix4 m = ProjectOntoPlane(contour_flat, curmesh, ok, nor);
+ if(!ok) {
+ return false;
+ }
+
+ // Obtain inverse transform for getting back to world space later on
+ const IfcMatrix4 minv = IfcMatrix4(m).Inverse();
+
+ // Compute bounding boxes for all 2D openings in projection space
+ ContourVector contours;
+
+ std::vector<IfcVector2> temp_contour;
+ std::vector<IfcVector2> temp_contour2;
+
+ IfcVector3 wall_extrusion_axis_norm = wall_extrusion_axis;
+ wall_extrusion_axis_norm.Normalize();
+
+ for(TempOpening& opening :openings) {
+
+ // extrusionDir may be 0,0,0 on case where the opening mesh is not an
+ // IfcExtrudedAreaSolid but something else (i.e. a brep)
+ IfcVector3 norm_extrusion_dir = opening.extrusionDir;
+ if (norm_extrusion_dir.SquareLength() > 1e-10) {
+ norm_extrusion_dir.Normalize();
+ }
+ else {
+ norm_extrusion_dir = IfcVector3();
+ }
+
+ TempMesh* profile_data = opening.profileMesh.get();
+ bool is_2d_source = false;
+ if (opening.profileMesh2D && norm_extrusion_dir.SquareLength() > 0) {
+ if (std::fabs(norm_extrusion_dir * nor) > 0.9) {
+ profile_data = opening.profileMesh2D.get();
+ is_2d_source = true;
+ }
+ }
+ std::vector<IfcVector3> profile_verts = profile_data->mVerts;
+ std::vector<unsigned int> profile_vertcnts = profile_data->mVertcnt;
+ if(profile_verts.size() <= 2) {
+ continue;
+ }
+
+ // The opening meshes are real 3D meshes so skip over all faces
+ // clearly facing into the wrong direction. Also, we need to check
+ // whether the meshes do actually intersect the base surface plane.
+ // This is done by recording minimum and maximum values for the
+ // d component of the plane equation for all polys and checking
+ // against surface d.
+
+ // Use the sign of the dot product of the face normal to the plane
+ // normal to determine to which side of the difference mesh a
+ // triangle belongs. Get independent bounding boxes and vertex
+ // sets for both sides and take the better one (we can't just
+ // take both - this would likely cause major screwup of vertex
+ // winding, producing errors as late as in CloseWindows()).
+ IfcFloat dmin, dmax;
+ MinMaxChooser<IfcFloat>()(dmin,dmax);
+
+ temp_contour.clear();
+ temp_contour2.clear();
+
+ IfcVector2 vpmin,vpmax;
+ MinMaxChooser<IfcVector2>()(vpmin,vpmax);
+
+ IfcVector2 vpmin2,vpmax2;
+ MinMaxChooser<IfcVector2>()(vpmin2,vpmax2);
+
+ for (size_t f = 0, vi_total = 0, fend = profile_vertcnts.size(); f < fend; ++f) {
+
+ bool side_flag = true;
+ if (!is_2d_source) {
+ const IfcVector3 face_nor = ((profile_verts[vi_total+2] - profile_verts[vi_total]) ^
+ (profile_verts[vi_total+1] - profile_verts[vi_total])).Normalize();
+
+ const IfcFloat abs_dot_face_nor = std::abs(nor * face_nor);
+ if (abs_dot_face_nor < 0.9) {
+ vi_total += profile_vertcnts[f];
+ continue;
+ }
+
+ side_flag = nor * face_nor > 0;
+ }
+
+ for (unsigned int vi = 0, vend = profile_vertcnts[f]; vi < vend; ++vi, ++vi_total) {
+ const IfcVector3& x = profile_verts[vi_total];
+
+ const IfcVector3 v = m * x;
+ IfcVector2 vv(v.x, v.y);
+
+ //if(check_intersection) {
+ dmin = std::min(dmin, v.z);
+ dmax = std::max(dmax, v.z);
+ //}
+
+ // sanity rounding
+ vv = std::max(vv,IfcVector2());
+ vv = std::min(vv,one_vec);
+
+ if(side_flag) {
+ vpmin = std::min(vpmin,vv);
+ vpmax = std::max(vpmax,vv);
+ }
+ else {
+ vpmin2 = std::min(vpmin2,vv);
+ vpmax2 = std::max(vpmax2,vv);
+ }
+
+ std::vector<IfcVector2>& store = side_flag ? temp_contour : temp_contour2;
+
+ if (!IsDuplicateVertex(vv, store)) {
+ store.push_back(vv);
+ }
+ }
+ }
+
+ if (temp_contour2.size() > 2) {
+ ai_assert(!is_2d_source);
+ const IfcVector2 area = vpmax-vpmin;
+ const IfcVector2 area2 = vpmax2-vpmin2;
+ if (temp_contour.size() <= 2 || std::fabs(area2.x * area2.y) > std::fabs(area.x * area.y)) {
+ temp_contour.swap(temp_contour2);
+
+ vpmax = vpmax2;
+ vpmin = vpmin2;
+ }
+ }
+ if(temp_contour.size() <= 2) {
+ continue;
+ }
+
+ // TODO: This epsilon may be too large
+ const IfcFloat epsilon = std::fabs(dmax-dmin) * 0.0001;
+ if (!is_2d_source && check_intersection && (0 < dmin-epsilon || 0 > dmax+epsilon)) {
+ continue;
+ }
+
+ BoundingBox bb = BoundingBox(vpmin,vpmax);
+
+ // Skip over very small openings - these are likely projection errors
+ // (i.e. they don't belong to this side of the wall)
+ if(std::fabs(vpmax.x - vpmin.x) * std::fabs(vpmax.y - vpmin.y) < static_cast<IfcFloat>(1e-10)) {
+ continue;
+ }
+ std::vector<TempOpening*> joined_openings(1, &opening);
+
+ bool is_rectangle = temp_contour.size() == 4;
+
+ // See if this BB intersects or is in close adjacency to any other BB we have so far.
+ for (ContourVector::iterator it = contours.begin(); it != contours.end(); ) {
+ const BoundingBox& ibb = (*it).bb;
+
+ if (BoundingBoxesOverlapping(ibb, bb)) {
+
+ if (!(*it).is_rectangular) {
+ is_rectangle = false;
+ }
+
+ const std::vector<IfcVector2>& other = (*it).contour;
+ ClipperLib::ExPolygons poly;
+
+ // First check whether subtracting the old contour (to which ibb belongs)
+ // from the new contour (to which bb belongs) yields an updated bb which
+ // no longer overlaps ibb
+ MakeDisjunctWindowContours(other, temp_contour, poly);
+ if(poly.size() == 1) {
+
+ const BoundingBox newbb = GetBoundingBox(poly[0].outer);
+ if (!BoundingBoxesOverlapping(ibb, newbb )) {
+ // Good guy bounding box
+ bb = newbb ;
+
+ ExtractVerticesFromClipper(poly[0].outer, temp_contour, false);
+ continue;
+ }
+ }
+
+ // Take these two overlapping contours and try to merge them. If they
+ // overlap (which should not happen, but in fact happens-in-the-real-
+ // world [tm] ), resume using a single contour and a single bounding box.
+ MergeWindowContours(temp_contour, other, poly);
+
+ if (poly.size() > 1) {
+ return TryAddOpenings_Poly2Tri(openings, curmesh);
+ }
+ else if (poly.size() == 0) {
+ IFCImporter::LogWarn("ignoring duplicate opening");
+ temp_contour.clear();
+ break;
+ }
+ else {
+ IFCImporter::LogVerboseDebug("merging overlapping openings");
+ ExtractVerticesFromClipper(poly[0].outer, temp_contour, false);
+
+ // Generate the union of the bounding boxes
+ bb.first = std::min(bb.first, ibb.first);
+ bb.second = std::max(bb.second, ibb.second);
+
+ // Update contour-to-opening tables accordingly
+ if (generate_connection_geometry) {
+ std::vector<TempOpening*>& t = contours_to_openings[std::distance(contours.begin(),it)];
+ joined_openings.insert(joined_openings.end(), t.begin(), t.end());
+
+ contours_to_openings.erase(contours_to_openings.begin() + std::distance(contours.begin(),it));
+ }
+
+ contours.erase(it);
+
+ // Restart from scratch because the newly formed BB might now
+ // overlap any other BB which its constituent BBs didn't
+ // previously overlap.
+ it = contours.begin();
+ continue;
+ }
+ }
+ ++it;
+ }
+
+ if(!temp_contour.empty()) {
+ if (generate_connection_geometry) {
+ contours_to_openings.push_back(std::vector<TempOpening*>(
+ joined_openings.begin(),
+ joined_openings.end()));
+ }
+
+ contours.push_back(ProjectedWindowContour(temp_contour, bb, is_rectangle));
+ }
+ }
+
+ // Check if we still have any openings left - it may well be that this is
+ // not the cause, for example if all the opening candidates don't intersect
+ // this surface or point into a direction perpendicular to it.
+ if (contours.empty()) {
+ return false;
+ }
+
+ curmesh.Clear();
+
+ // Generate a base subdivision into quads to accommodate the given list
+ // of window bounding boxes.
+ Quadrify(contours,curmesh);
+
+ // Run a sanity cleanup pass on the window contours to avoid generating
+ // artifacts during the contour generation phase later on.
+ CleanupWindowContours(contours);
+
+ // Previously we reduced all windows to rectangular AABBs in projection
+ // space, now it is time to fill the gaps between the BBs and the real
+ // window openings.
+ InsertWindowContours(contours,openings, curmesh);
+
+ // Clip the entire outer contour of our current result against the real
+ // outer contour of the surface. This is necessary because the result
+ // of the Quadrify() algorithm is always a square area spanning
+ // over [0,1]^2 (i.e. entire projection space).
+ CleanupOuterContour(contour_flat, curmesh);
+
+ // Undo the projection and get back to world (or local object) space
+ for(IfcVector3& v3 : curmesh.mVerts) {
+ v3 = minv * v3;
+ }
+
+ // Generate window caps to connect the symmetric openings on both sides
+ // of the wall.
+ if (generate_connection_geometry) {
+ CloseWindows(contours, minv, contours_to_openings, curmesh);
+ }
+ return true;
+}
+
+std::vector<IfcVector2> GetContourInPlane2D(std::shared_ptr<TempMesh> mesh,IfcMatrix3 planeSpace,
+ IfcVector3 planeNor,IfcFloat planeOffset,
+ IfcVector3 extrusionDir,IfcVector3& wall_extrusion,bool& first,bool& ok) {
+ std::vector<IfcVector2> contour;
+
+ const auto outernor = ((mesh->mVerts[2] - mesh->mVerts[0]) ^ (mesh->mVerts[1] - mesh->mVerts[0])).Normalize();
+ const IfcFloat dot = planeNor * outernor;
+ if (std::fabs(dot) < 1.f - ai_epsilon) {
+ std::stringstream msg;
+ msg << "Skipping: Unaligned opening (" << planeNor.x << ", " << planeNor.y << ", " << planeNor.z << ")";
+ msg << " . ( " << outernor.x << ", " << outernor.y << ", " << outernor.z << ") = " << dot;
+ IFCImporter::LogDebug(msg.str().c_str());
+ ok = false;
+ return contour;
+ }
+
+ const std::vector<IfcVector3>& va = mesh->mVerts;
+ if(va.size() <= 2) {
+ std::stringstream msg;
+ msg << "Skipping: Only " << va.size() << " verticies in opening mesh.";
+ IFCImporter::LogDebug(msg.str().c_str());
+ ok = false;
+ return contour;
+ }
+
+ for(const IfcVector3& xx : mesh->mVerts) {
+ IfcVector3 vv = planeSpace * xx,vv_extr = planeSpace * (xx + extrusionDir);
+
+ const bool is_extruded_side = std::fabs(vv.z - planeOffset) > std::fabs(vv_extr.z - planeOffset);
+ if(first) {
+ first = false;
+ if(dot > 0.f) {
+ wall_extrusion = extrusionDir;
+ if(is_extruded_side) {
+ wall_extrusion = -wall_extrusion;
+ }
+ }
+ }
+
+ // XXX should not be necessary - but it is. Why? For precision reasons?
+ vv = is_extruded_side ? vv_extr : vv;
+ contour.push_back(IfcVector2(vv.x,vv.y));
+ }
+ ok = true;
+
+ return contour;
+}
+
+const float close{ ai_epsilon };
+
+static bool isClose(IfcVector2 first,IfcVector2 second) {
+ auto diff = (second - first);
+ return (std::fabs(diff.x) < close && std::fabs(diff.y) < close);
+}
+
+static void logSegment(std::pair<IfcVector2,IfcVector2> segment) {
+ std::stringstream msg2;
+ msg2 << " Segment: \n";
+ msg2 << " " << segment.first.x << " " << segment.first.y << " \n";
+ msg2 << " " << segment.second.x << " " << segment.second.y << " \n";
+ IFCImporter::LogInfo(msg2.str().c_str());
+}
+
+std::vector<std::vector<IfcVector2>> GetContoursInPlane3D(std::shared_ptr<TempMesh> mesh,IfcMatrix3 planeSpace,
+ IfcFloat planeOffset) {
+
+ {
+ std::stringstream msg;
+ msg << "GetContoursInPlane3D: planeSpace is \n";
+ msg << planeSpace.a1 << " " << planeSpace.a2 << " " << planeSpace.a3 << " " << "\n";
+ msg << planeSpace.b1 << " " << planeSpace.b2 << " " << planeSpace.b3 << " " << "\n";
+ msg << planeSpace.c1 << " " << planeSpace.c2 << " " << planeSpace.c3 << " " << "\n";
+ msg << "\n planeOffset is " << planeOffset;
+ IFCImporter::LogInfo(msg.str().c_str());
+ }
+
+ // we'll put our line segments in here, and then merge them together into contours later
+ std::deque<std::pair<IfcVector2,IfcVector2>> lineSegments;
+
+ // find the lines giving the intersection of the faces with the plane - we'll work in planeSpace throughout.
+ size_t vI0{ 0 }; // vertex index for first vertex in plane
+ for(auto nVertices : mesh->mVertcnt) { // iterate over faces
+ {
+ std::stringstream msg;
+ msg << "GetContoursInPlane3D: face (transformed) is \n";
+ for(auto vI = vI0; vI < vI0 + nVertices; vI++) {
+ auto v = planeSpace * mesh->mVerts[vI];
+ msg << " " << v.x << " " << v.y << " " << v.z << " " << "\n";
+ }
+ IFCImporter::LogInfo(msg.str().c_str());
+ }
+
+ if(nVertices <= 2) // not a plane, a point or line
+ {
+ std::stringstream msg;
+ msg << "GetContoursInPlane3D: found point or line when expecting plane (only " << nVertices << " vertices)";
+ IFCImporter::LogWarn(msg.str().c_str());
+ vI0 += nVertices;
+ continue;
+ }
+
+ auto v0 = planeSpace * mesh->mVerts[vI0];
+
+ // now calculate intersections between face and plane
+ IfcVector2 firstPoint;
+ bool gotFirstPoint(false);
+
+ if(std::fabs(v0.z - planeOffset) < close) {
+ // first point is on the plane
+ firstPoint.x = v0.x;
+ firstPoint.y = v0.y;
+ gotFirstPoint = true;
+ }
+
+ auto vn = v0;
+ for(auto vI = vI0 + 1; vI < vI0 + nVertices; vI++) {
+ auto vp = vn;
+ vn = planeSpace * mesh->mVerts[vI];
+ IfcVector3 intersection;
+
+ if(std::fabs(vn.z - planeOffset) < close) {
+ // on the plane
+ intersection = vn;
+ }
+ else if((vn.z > planeOffset) != (vp.z > planeOffset))
+ {
+ // passes through the plane
+ auto vdir = vn - vp;
+ auto scale = (planeOffset - vp.z) / vdir.z;
+ intersection = vp + scale * vdir;
+ }
+ else {
+ // nowhere near - move on
+ continue;
+ }
+
+ if(!gotFirstPoint) {
+ if(std::fabs(vp.z - planeOffset) < close) {
+ // just had a second line along the plane
+ firstPoint.x = vp.x;
+ firstPoint.y = vp.y;
+ IfcVector2 secondPoint(intersection.x,intersection.y);
+ auto s = std::pair<IfcVector2,IfcVector2>(firstPoint,secondPoint);
+ logSegment(s);
+ lineSegments.push_back(s);
+ // next firstpoint should be this one
+ }
+ else {
+ // store the first intersection point
+ firstPoint.x = intersection.x;
+ firstPoint.y = intersection.y;
+ gotFirstPoint = true;
+ }
+ }
+ else {
+ // now got the second point, so store the pair
+ IfcVector2 secondPoint(intersection.x,intersection.y);
+ auto s = std::pair<IfcVector2,IfcVector2>(firstPoint,secondPoint);
+ logSegment(s);
+ lineSegments.push_back(s);
+
+ // - note that we don't move onto the next face as a non-convex face can create two or more intersections with a plane
+ gotFirstPoint = false;
+ }
+ }
+ if(gotFirstPoint) {
+ IFCImporter::LogWarn("GetContoursInPlane3D: odd number of intersections with plane");
+ }
+ vI0 += nVertices;
+ }
+
+ {
+ std::stringstream msg;
+ msg << "GetContoursInPlane3D: found " << lineSegments.size() << " line segments:\n";
+ IFCImporter::LogInfo(msg.str().c_str());
+
+ for(auto& s : lineSegments) {
+ logSegment(s);
+ }
+
+ }
+
+ // now merge contours until we have the best-looking polygons we can
+ std::vector<Contour> contours;
+ while(!lineSegments.empty()) {
+ // start with a polygon and make the best closed contour we can
+ const auto& firstSeg = lineSegments.front();
+ std::deque<IfcVector2> contour{ firstSeg.first, firstSeg.second };
+ lineSegments.pop_front();
+ bool foundNextPoint{ true };
+ bool closedContour{ false };
+ while(foundNextPoint) {
+ foundNextPoint = false;
+ for(auto nextSeg = lineSegments.begin(); nextSeg != lineSegments.end(); nextSeg++) {
+ // see if we can match up both ends - in which case we've closed the contour
+ if((isClose(contour.front(),nextSeg->first) && isClose(contour.back(),nextSeg->second)) ||
+ (isClose(contour.back(),nextSeg->first) && isClose(contour.front(),nextSeg->second))
+ ) {
+ lineSegments.erase(nextSeg);
+ closedContour = true;
+ break;
+ }
+
+ // otherwise, see if we can match up either end
+ foundNextPoint = true;
+ if(isClose(contour.front(),nextSeg->first)) {
+ contour.push_front(nextSeg->second);
+ }
+ else if(isClose(contour.front(),nextSeg->second)) {
+ contour.push_front(nextSeg->first);
+ }
+ else if(isClose(contour.back(),nextSeg->first)) {
+ contour.push_back(nextSeg->second);
+ }
+ else if(isClose(contour.back(),nextSeg->second)) {
+ contour.push_back(nextSeg->first);
+ }
+ else {
+ foundNextPoint = false;
+ }
+ if(foundNextPoint) {
+ lineSegments.erase(nextSeg);
+ break;
+ }
+ }
+ }
+
+ if(!closedContour) {
+ IFCImporter::LogWarn("GetContoursInPlane3D: did not close contour");
+ }
+
+ // now add the contour if we can
+ if(contour.size() <= 2) {
+ IFCImporter::LogWarn("GetContoursInPlane3D: discarding line/point contour");
+ continue;
+ }
+ Contour c{};
+ for(auto p : contour)
+ {
+ c.push_back(p);
+ }
+ contours.push_back(c);
+ }
+
+ {
+ std::stringstream msg;
+ msg << "GetContoursInPlane3D: found " << contours.size() << " contours:\n";
+
+ for(auto c : contours) {
+ msg << " Contour: \n";
+ for(auto p : c) {
+ msg << " " << p.x << " " << p.y << " \n";
+ }
+ }
+
+ IFCImporter::LogInfo(msg.str().c_str());
+ }
+
+
+ return contours;
+}
+
+std::vector<std::vector<IfcVector2>> GetContoursInPlane(std::shared_ptr<TempMesh> mesh,IfcMatrix3 planeSpace,
+ IfcVector3 planeNor,IfcFloat planeOffset,
+ IfcVector3 extrusionDir,IfcVector3& wall_extrusion,bool& first) {
+
+ if(mesh->mVertcnt.size() == 1)
+ {
+ bool ok;
+ auto contour = GetContourInPlane2D(mesh,planeSpace,planeNor,planeOffset,extrusionDir,wall_extrusion,first,ok);
+ if(ok)
+ return std::vector<std::vector<IfcVector2>> {contour};
+ else
+ return std::vector<std::vector<IfcVector2>> {};
+ }
+ else
+ {
+ return GetContoursInPlane3D(mesh,planeSpace,planeOffset);
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,
+ TempMesh& curmesh)
+{
+ IFCImporter::LogWarn("forced to use poly2tri fallback method to generate wall openings");
+ std::vector<IfcVector3>& out = curmesh.mVerts;
+
+ bool result = false;
+
+ // Try to derive a solid base plane within the current surface for use as
+ // working coordinate system.
+ bool ok;
+ IfcVector3 nor;
+ const IfcMatrix3 m = DerivePlaneCoordinateSpace(curmesh, ok, nor);
+ if (!ok) {
+ return false;
+ }
+
+ const IfcMatrix3 minv = IfcMatrix3(m).Inverse();
+
+
+ IfcFloat coord = -1;
+
+ std::vector<IfcVector2> contour_flat;
+ contour_flat.reserve(out.size());
+
+ IfcVector2 vmin, vmax;
+ MinMaxChooser<IfcVector2>()(vmin, vmax);
+
+ // Move all points into the new coordinate system, collecting min/max verts on the way
+ for(IfcVector3& x : out) {
+ const IfcVector3 vv = m * x;
+
+ // keep Z offset in the plane coordinate system. Ignoring precision issues
+ // (which are present, of course), this should be the same value for
+ // all polygon vertices (assuming the polygon is planar).
+
+
+ // XXX this should be guarded, but we somehow need to pick a suitable
+ // epsilon
+ // if(coord != -1.0f) {
+ // assert(std::fabs(coord - vv.z) < 1e-3f);
+ // }
+
+ coord = vv.z;
+
+ vmin = std::min(IfcVector2(vv.x, vv.y), vmin);
+ vmax = std::max(IfcVector2(vv.x, vv.y), vmax);
+
+ contour_flat.push_back(IfcVector2(vv.x,vv.y));
+ }
+
+ // With the current code in DerivePlaneCoordinateSpace,
+ // vmin,vmax should always be the 0...1 rectangle (+- numeric inaccuracies)
+ // but here we won't rely on this.
+
+ vmax -= vmin;
+
+ // If this happens then the projection must have been wrong.
+ ai_assert(vmax.Length());
+
+ ClipperLib::ExPolygons clipped;
+ ClipperLib::Polygons holes_union;
+
+
+ IfcVector3 wall_extrusion;
+ bool first = true;
+
+ try {
+
+ ClipperLib::Clipper clipper_holes;
+
+ for(const TempOpening& t : openings) {
+ auto contours = GetContoursInPlane(t.profileMesh,m,nor,coord,t.extrusionDir,wall_extrusion,first);
+
+ for(auto& contour : contours) {
+ // scale to clipping space
+ ClipperLib::Polygon hole;
+ for(IfcVector2& pip : contour) {
+ pip.x = (pip.x - vmin.x) / vmax.x;
+ pip.y = (pip.y - vmin.y) / vmax.y;
+
+ hole.push_back(ClipperLib::IntPoint(to_int64(pip.x),to_int64(pip.y)));
+ }
+
+ if(!ClipperLib::Orientation(hole)) {
+ std::reverse(hole.begin(),hole.end());
+ // assert(ClipperLib::Orientation(hole));
+ }
+
+ /*ClipperLib::Polygons pol_temp(1), pol_temp2(1);
+ pol_temp[0] = hole;
+
+ ClipperLib::OffsetPolygons(pol_temp,pol_temp2,5.0);
+ hole = pol_temp2[0];*/
+
+ clipper_holes.AddPolygon(hole,ClipperLib::ptSubject);
+ {
+ std::stringstream msg;
+ msg << "- added polygon ";
+ for(auto elem : hole) {
+ msg << " (" << elem.X << ", " << elem.Y << ")";
+ }
+ IFCImporter::LogDebug(msg.str().c_str());
+ }
+ }
+ }
+
+ clipper_holes.Execute(ClipperLib::ctUnion,holes_union,
+ ClipperLib::pftNonZero,
+ ClipperLib::pftNonZero);
+
+ if (holes_union.empty()) {
+ return false;
+ }
+
+ // Now that we have the big union of all holes, subtract it from the outer contour
+ // to obtain the final polygon to feed into the triangulator.
+ {
+ ClipperLib::Polygon poly;
+ for(IfcVector2& pip : contour_flat) {
+ pip.x = (pip.x - vmin.x) / vmax.x;
+ pip.y = (pip.y - vmin.y) / vmax.y;
+
+ poly.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
+ }
+
+ if (ClipperLib::Orientation(poly)) {
+ std::reverse(poly.begin(), poly.end());
+ }
+ clipper_holes.Clear();
+ clipper_holes.AddPolygon(poly,ClipperLib::ptSubject);
+
+ clipper_holes.AddPolygons(holes_union,ClipperLib::ptClip);
+ clipper_holes.Execute(ClipperLib::ctDifference,clipped,
+ ClipperLib::pftNonZero,
+ ClipperLib::pftNonZero);
+ }
+
+ }
+ catch (const char* sx) {
+ IFCImporter::LogError("Ifc: error during polygon clipping, skipping openings for this face: (Clipper: "
+ + std::string(sx) + ")");
+
+ return false;
+ }
+
+ std::vector<IfcVector3> old_verts;
+ std::vector<unsigned int> old_vertcnt;
+
+ old_verts.swap(curmesh.mVerts);
+ old_vertcnt.swap(curmesh.mVertcnt);
+
+ std::vector< std::vector<p2t::Point*> > contours;
+ for(ClipperLib::ExPolygon& clip : clipped) {
+
+ contours.clear();
+
+ // Build the outer polygon contour line for feeding into poly2tri
+ std::vector<p2t::Point*> contour_points;
+ for(ClipperLib::IntPoint& point : clip.outer) {
+ contour_points.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) );
+ }
+
+ p2t::CDT* cdt ;
+ try {
+ // Note: this relies on custom modifications in poly2tri to raise runtime_error's
+ // instead if assertions. These failures are not debug only, they can actually
+ // happen in production use if the input data is broken. An assertion would be
+ // inappropriate.
+ cdt = new p2t::CDT(contour_points);
+ }
+ catch(const std::exception& e) {
+ IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
+ + std::string(e.what()) + ")");
+ continue;
+ }
+
+
+ // Build the poly2tri inner contours for all holes we got from ClipperLib
+ for(ClipperLib::Polygon& opening : clip.holes) {
+
+ contours.push_back(std::vector<p2t::Point*>());
+ std::vector<p2t::Point*>& contour = contours.back();
+
+ for(ClipperLib::IntPoint& point : opening) {
+ contour.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) );
+ }
+
+ cdt->AddHole(contour);
+ }
+
+ try {
+ // Note: See above
+ cdt->Triangulate();
+ }
+ catch(const std::exception& e) {
+ IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
+ + std::string(e.what()) + ")");
+ continue;
+ }
+
+ const std::vector<p2t::Triangle*> tris = cdt->GetTriangles();
+
+ // Collect the triangles we just produced
+ for(p2t::Triangle* tri : tris) {
+ for(int i = 0; i < 3; ++i) {
+
+ const IfcVector2 v = IfcVector2(
+ static_cast<IfcFloat>( tri->GetPoint(i)->x ),
+ static_cast<IfcFloat>( tri->GetPoint(i)->y )
+ );
+
+ ai_assert(v.x <= 1.0 && v.x >= 0.0 && v.y <= 1.0 && v.y >= 0.0);
+ const IfcVector3 v3 = minv * IfcVector3(vmin.x + v.x * vmax.x, vmin.y + v.y * vmax.y,coord) ;
+
+ curmesh.mVerts.push_back(v3);
+ }
+ curmesh.mVertcnt.push_back(3);
+ }
+
+ result = true;
+ }
+
+ if (!result) {
+ // revert -- it's a shame, but better than nothing
+ curmesh.mVerts.insert(curmesh.mVerts.end(),old_verts.begin(), old_verts.end());
+ curmesh.mVertcnt.insert(curmesh.mVertcnt.end(),old_vertcnt.begin(), old_vertcnt.end());
+
+ IFCImporter::LogError("Ifc: revert, could not generate openings for this wall");
+ }
+
+ return result;
+}
+
+
+ } // ! IFC
+} // ! Assimp
+
+#undef to_int64
+#undef from_int64
+#undef one_vec
+
+#endif