diff options
Diffstat (limited to 'libs/assimp/code/AssetLib/Irr/IRRLoader.cpp')
-rw-r--r-- | libs/assimp/code/AssetLib/Irr/IRRLoader.cpp | 1359 |
1 files changed, 1359 insertions, 0 deletions
diff --git a/libs/assimp/code/AssetLib/Irr/IRRLoader.cpp b/libs/assimp/code/AssetLib/Irr/IRRLoader.cpp new file mode 100644 index 0000000..0061634 --- /dev/null +++ b/libs/assimp/code/AssetLib/Irr/IRRLoader.cpp @@ -0,0 +1,1359 @@ +/* +--------------------------------------------------------------------------- +Open Asset Import Library (assimp) +--------------------------------------------------------------------------- + +Copyright (c) 2006-2022, assimp team + +All rights reserved. + +Redistribution and use of this software in source and binary forms, +with or without modification, are permitted provided that the following +conditions are met: + +* Redistributions of source code must retain the above + copyright notice, this list of conditions and the + following disclaimer. + +* Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the + following disclaimer in the documentation and/or other + materials provided with the distribution. + +* Neither the name of the assimp team, nor the names of its + contributors may be used to endorse or promote products + derived from this software without specific prior + written permission of the assimp team. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +--------------------------------------------------------------------------- +*/ + +/** @file IRRLoader.cpp + * @brief Implementation of the Irr importer class + */ + +#ifndef ASSIMP_BUILD_NO_IRR_IMPORTER + +#include "AssetLib/Irr/IRRLoader.h" +#include "Common/Importer.h" + +#include <assimp/GenericProperty.h> +#include <assimp/MathFunctions.h> +#include <assimp/ParsingUtils.h> +#include <assimp/SceneCombiner.h> +#include <assimp/StandardShapes.h> +#include <assimp/fast_atof.h> +#include <assimp/importerdesc.h> +#include <assimp/material.h> +#include <assimp/mesh.h> +#include <assimp/postprocess.h> +#include <assimp/scene.h> +#include <assimp/DefaultLogger.hpp> +#include <assimp/IOSystem.hpp> + +#include <memory> + +using namespace Assimp; + +static const aiImporterDesc desc = { + "Irrlicht Scene Reader", + "", + "", + "http://irrlicht.sourceforge.net/", + aiImporterFlags_SupportTextFlavour, + 0, + 0, + 0, + 0, + "irr xml" +}; + +// ------------------------------------------------------------------------------------------------ +// Constructor to be privately used by Importer +IRRImporter::IRRImporter() : + fps(), configSpeedFlag() { + // empty +} + +// ------------------------------------------------------------------------------------------------ +// Destructor, private as well +IRRImporter::~IRRImporter() { + // empty +} + +// ------------------------------------------------------------------------------------------------ +// Returns whether the class can handle the format of the given file. +bool IRRImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const { + static const char *tokens[] = { "irr_scene" }; + return SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens)); +} + +// ------------------------------------------------------------------------------------------------ +const aiImporterDesc *IRRImporter::GetInfo() const { + return &desc; +} + +// ------------------------------------------------------------------------------------------------ +void IRRImporter::SetupProperties(const Importer *pImp) { + // read the output frame rate of all node animation channels + fps = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_IRR_ANIM_FPS, 100); + if (fps < 10.) { + ASSIMP_LOG_ERROR("IRR: Invalid FPS configuration"); + fps = 100; + } + + // AI_CONFIG_FAVOUR_SPEED + configSpeedFlag = (0 != pImp->GetPropertyInteger(AI_CONFIG_FAVOUR_SPEED, 0)); +} + +// ------------------------------------------------------------------------------------------------ +// Build a mesh that consists of a single squad (a side of a skybox) +aiMesh *IRRImporter::BuildSingleQuadMesh(const SkyboxVertex &v1, + const SkyboxVertex &v2, + const SkyboxVertex &v3, + const SkyboxVertex &v4) { + // allocate and prepare the mesh + aiMesh *out = new aiMesh(); + + out->mPrimitiveTypes = aiPrimitiveType_POLYGON; + out->mNumFaces = 1; + + // build the face + out->mFaces = new aiFace[1]; + aiFace &face = out->mFaces[0]; + + face.mNumIndices = 4; + face.mIndices = new unsigned int[4]; + for (unsigned int i = 0; i < 4; ++i) + face.mIndices[i] = i; + + out->mNumVertices = 4; + + // copy vertex positions + aiVector3D *vec = out->mVertices = new aiVector3D[4]; + *vec++ = v1.position; + *vec++ = v2.position; + *vec++ = v3.position; + *vec = v4.position; + + // copy vertex normals + vec = out->mNormals = new aiVector3D[4]; + *vec++ = v1.normal; + *vec++ = v2.normal; + *vec++ = v3.normal; + *vec = v4.normal; + + // copy texture coordinates + vec = out->mTextureCoords[0] = new aiVector3D[4]; + *vec++ = v1.uv; + *vec++ = v2.uv; + *vec++ = v3.uv; + *vec = v4.uv; + return out; +} + +// ------------------------------------------------------------------------------------------------ +void IRRImporter::BuildSkybox(std::vector<aiMesh *> &meshes, std::vector<aiMaterial *> materials) { + // Update the material of the skybox - replace the name and disable shading for skyboxes. + for (unsigned int i = 0; i < 6; ++i) { + aiMaterial *out = (aiMaterial *)(*(materials.end() - (6 - i))); + + aiString s; + s.length = ::ai_snprintf(s.data, MAXLEN, "SkyboxSide_%u", i); + out->AddProperty(&s, AI_MATKEY_NAME); + + int shading = aiShadingMode_NoShading; + out->AddProperty(&shading, 1, AI_MATKEY_SHADING_MODEL); + } + + // Skyboxes are much more difficult. They are represented + // by six single planes with different textures, so we'll + // need to build six meshes. + + const ai_real l = 10.0; // the size used by Irrlicht + + // FRONT SIDE + meshes.push_back(BuildSingleQuadMesh( + SkyboxVertex(-l, -l, -l, 0, 0, 1, 1.0, 1.0), + SkyboxVertex(l, -l, -l, 0, 0, 1, 0.0, 1.0), + SkyboxVertex(l, l, -l, 0, 0, 1, 0.0, 0.0), + SkyboxVertex(-l, l, -l, 0, 0, 1, 1.0, 0.0))); + meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 6u); + + // LEFT SIDE + meshes.push_back(BuildSingleQuadMesh( + SkyboxVertex(l, -l, -l, -1, 0, 0, 1.0, 1.0), + SkyboxVertex(l, -l, l, -1, 0, 0, 0.0, 1.0), + SkyboxVertex(l, l, l, -1, 0, 0, 0.0, 0.0), + SkyboxVertex(l, l, -l, -1, 0, 0, 1.0, 0.0))); + meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 5u); + + // BACK SIDE + meshes.push_back(BuildSingleQuadMesh( + SkyboxVertex(l, -l, l, 0, 0, -1, 1.0, 1.0), + SkyboxVertex(-l, -l, l, 0, 0, -1, 0.0, 1.0), + SkyboxVertex(-l, l, l, 0, 0, -1, 0.0, 0.0), + SkyboxVertex(l, l, l, 0, 0, -1, 1.0, 0.0))); + meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 4u); + + // RIGHT SIDE + meshes.push_back(BuildSingleQuadMesh( + SkyboxVertex(-l, -l, l, 1, 0, 0, 1.0, 1.0), + SkyboxVertex(-l, -l, -l, 1, 0, 0, 0.0, 1.0), + SkyboxVertex(-l, l, -l, 1, 0, 0, 0.0, 0.0), + SkyboxVertex(-l, l, l, 1, 0, 0, 1.0, 0.0))); + meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 3u); + + // TOP SIDE + meshes.push_back(BuildSingleQuadMesh( + SkyboxVertex(l, l, -l, 0, -1, 0, 1.0, 1.0), + SkyboxVertex(l, l, l, 0, -1, 0, 0.0, 1.0), + SkyboxVertex(-l, l, l, 0, -1, 0, 0.0, 0.0), + SkyboxVertex(-l, l, -l, 0, -1, 0, 1.0, 0.0))); + meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 2u); + + // BOTTOM SIDE + meshes.push_back(BuildSingleQuadMesh( + SkyboxVertex(l, -l, l, 0, 1, 0, 0.0, 0.0), + SkyboxVertex(l, -l, -l, 0, 1, 0, 1.0, 0.0), + SkyboxVertex(-l, -l, -l, 0, 1, 0, 1.0, 1.0), + SkyboxVertex(-l, -l, l, 0, 1, 0, 0.0, 1.0))); + meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 1u); +} + +// ------------------------------------------------------------------------------------------------ +void IRRImporter::CopyMaterial(std::vector<aiMaterial *> &materials, + std::vector<std::pair<aiMaterial *, unsigned int>> &inmaterials, + unsigned int &defMatIdx, + aiMesh *mesh) { + if (inmaterials.empty()) { + // Do we have a default material? If not we need to create one + if (UINT_MAX == defMatIdx) { + defMatIdx = (unsigned int)materials.size(); + //TODO: add this materials to someone? + /*aiMaterial* mat = new aiMaterial(); + + aiString s; + s.Set(AI_DEFAULT_MATERIAL_NAME); + mat->AddProperty(&s,AI_MATKEY_NAME); + + aiColor3D c(0.6f,0.6f,0.6f); + mat->AddProperty(&c,1,AI_MATKEY_COLOR_DIFFUSE);*/ + } + mesh->mMaterialIndex = defMatIdx; + return; + } else if (inmaterials.size() > 1) { + ASSIMP_LOG_INFO("IRR: Skipping additional materials"); + } + + mesh->mMaterialIndex = (unsigned int)materials.size(); + materials.push_back(inmaterials[0].first); +} + +// ------------------------------------------------------------------------------------------------ +inline int ClampSpline(int idx, int size) { + return (idx < 0 ? size + idx : (idx >= size ? idx - size : idx)); +} + +// ------------------------------------------------------------------------------------------------ +inline void FindSuitableMultiple(int &angle) { + if (angle < 3) + angle = 3; + else if (angle < 10) + angle = 10; + else if (angle < 20) + angle = 20; + else if (angle < 30) + angle = 30; +} + +// ------------------------------------------------------------------------------------------------ +void IRRImporter::ComputeAnimations(Node *root, aiNode *real, std::vector<aiNodeAnim *> &anims) { + ai_assert(nullptr != root && nullptr != real); + + // XXX totally WIP - doesn't produce proper results, need to evaluate + // whether there's any use for Irrlicht's proprietary scene format + // outside Irrlicht ... + // This also applies to the above function of FindSuitableMultiple and ClampSpline which are + // solely used in this function + + if (root->animators.empty()) { + return; + } + unsigned int total(0); + for (std::list<Animator>::iterator it = root->animators.begin(); it != root->animators.end(); ++it) { + if ((*it).type == Animator::UNKNOWN || (*it).type == Animator::OTHER) { + ASSIMP_LOG_WARN("IRR: Skipping unknown or unsupported animator"); + continue; + } + ++total; + } + if (!total) { + return; + } else if (1 == total) { + ASSIMP_LOG_WARN("IRR: Adding dummy nodes to simulate multiple animators"); + } + + // NOTE: 1 tick == i millisecond + + unsigned int cur = 0; + for (std::list<Animator>::iterator it = root->animators.begin(); + it != root->animators.end(); ++it) { + if ((*it).type == Animator::UNKNOWN || (*it).type == Animator::OTHER) continue; + + Animator &in = *it; + aiNodeAnim *anim = new aiNodeAnim(); + + if (cur != total - 1) { + // Build a new name - a prefix instead of a suffix because it is + // easier to check against + anim->mNodeName.length = ::ai_snprintf(anim->mNodeName.data, MAXLEN, + "$INST_DUMMY_%i_%s", total - 1, + (root->name.length() ? root->name.c_str() : "")); + + // we'll also need to insert a dummy in the node hierarchy. + aiNode *dummy = new aiNode(); + + for (unsigned int i = 0; i < real->mParent->mNumChildren; ++i) + if (real->mParent->mChildren[i] == real) + real->mParent->mChildren[i] = dummy; + + dummy->mParent = real->mParent; + dummy->mName = anim->mNodeName; + + dummy->mNumChildren = 1; + dummy->mChildren = new aiNode *[dummy->mNumChildren]; + dummy->mChildren[0] = real; + + // the transformation matrix of the dummy node is the identity + + real->mParent = dummy; + } else + anim->mNodeName.Set(root->name); + ++cur; + + switch (in.type) { + case Animator::ROTATION: { + // ----------------------------------------------------- + // find out how long a full rotation will take + // This is the least common multiple of 360.f and all + // three euler angles. Although we'll surely find a + // possible multiple (haha) it could be somewhat large + // for our purposes. So we need to modify the angles + // here in order to get good results. + // ----------------------------------------------------- + int angles[3]; + angles[0] = (int)(in.direction.x * 100); + angles[1] = (int)(in.direction.y * 100); + angles[2] = (int)(in.direction.z * 100); + + angles[0] %= 360; + angles[1] %= 360; + angles[2] %= 360; + + if ((angles[0] * angles[1]) != 0 && (angles[1] * angles[2]) != 0) { + FindSuitableMultiple(angles[0]); + FindSuitableMultiple(angles[1]); + FindSuitableMultiple(angles[2]); + } + + int lcm = 360; + + if (angles[0]) + lcm = Math::lcm(lcm, angles[0]); + + if (angles[1]) + lcm = Math::lcm(lcm, angles[1]); + + if (angles[2]) + lcm = Math::lcm(lcm, angles[2]); + + if (360 == lcm) + break; + + + // find out how many time units we'll need for the finest + // track (in seconds) - this defines the number of output + // keys (fps * seconds) + float max = 0.f; + if (angles[0]) + max = (float)lcm / angles[0]; + if (angles[1]) + max = std::max(max, (float)lcm / angles[1]); + if (angles[2]) + max = std::max(max, (float)lcm / angles[2]); + + anim->mNumRotationKeys = (unsigned int)(max * fps); + anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys]; + + // begin with a zero angle + aiVector3D angle; + for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) { + // build the quaternion for the given euler angles + aiQuatKey &q = anim->mRotationKeys[i]; + + q.mValue = aiQuaternion(angle.x, angle.y, angle.z); + q.mTime = (double)i; + + // increase the angle + angle += in.direction; + } + + // This animation is repeated and repeated ... + anim->mPostState = anim->mPreState = aiAnimBehaviour_REPEAT; + } break; + + case Animator::FLY_CIRCLE: { + // ----------------------------------------------------- + // Find out how much time we'll need to perform a + // full circle. + // ----------------------------------------------------- + const double seconds = (1. / in.speed) / 1000.; + const double tdelta = 1000. / fps; + + anim->mNumPositionKeys = (unsigned int)(fps * seconds); + anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys]; + + // from Irrlicht, what else should we do than copying it? + aiVector3D vecU, vecV; + if (in.direction.y) { + vecV = aiVector3D(50, 0, 0) ^ in.direction; + } else + vecV = aiVector3D(0, 50, 00) ^ in.direction; + vecV.Normalize(); + vecU = (vecV ^ in.direction).Normalize(); + + // build the output keys + for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) { + aiVectorKey &key = anim->mPositionKeys[i]; + key.mTime = i * tdelta; + + const ai_real t = (ai_real)(in.speed * key.mTime); + key.mValue = in.circleCenter + in.circleRadius * ((vecU * std::cos(t)) + (vecV * std::sin(t))); + } + + // This animation is repeated and repeated ... + anim->mPostState = anim->mPreState = aiAnimBehaviour_REPEAT; + } break; + + case Animator::FLY_STRAIGHT: { + anim->mPostState = anim->mPreState = (in.loop ? aiAnimBehaviour_REPEAT : aiAnimBehaviour_CONSTANT); + const double seconds = in.timeForWay / 1000.; + const double tdelta = 1000. / fps; + + anim->mNumPositionKeys = (unsigned int)(fps * seconds); + anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys]; + + aiVector3D diff = in.direction - in.circleCenter; + const ai_real lengthOfWay = diff.Length(); + diff.Normalize(); + + const double timeFactor = lengthOfWay / in.timeForWay; + + // build the output keys + for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) { + aiVectorKey &key = anim->mPositionKeys[i]; + key.mTime = i * tdelta; + key.mValue = in.circleCenter + diff * ai_real(timeFactor * key.mTime); + } + } break; + + case Animator::FOLLOW_SPLINE: { + // repeat outside the defined time range + anim->mPostState = anim->mPreState = aiAnimBehaviour_REPEAT; + const int size = (int)in.splineKeys.size(); + if (!size) { + // We have no point in the spline. That's bad. Really bad. + ASSIMP_LOG_WARN("IRR: Spline animators with no points defined"); + + delete anim; + anim = nullptr; + break; + } else if (size == 1) { + // We have just one point in the spline so we don't need the full calculation + anim->mNumPositionKeys = 1; + anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys]; + + anim->mPositionKeys[0].mValue = in.splineKeys[0].mValue; + anim->mPositionKeys[0].mTime = 0.f; + break; + } + + unsigned int ticksPerFull = 15; + anim->mNumPositionKeys = (unsigned int)(ticksPerFull * fps); + anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys]; + + for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) { + aiVectorKey &key = anim->mPositionKeys[i]; + + const ai_real dt = (i * in.speed * ai_real(0.001)); + const ai_real u = dt - std::floor(dt); + const int idx = (int)std::floor(dt) % size; + + // get the 4 current points to evaluate the spline + const aiVector3D &p0 = in.splineKeys[ClampSpline(idx - 1, size)].mValue; + const aiVector3D &p1 = in.splineKeys[ClampSpline(idx + 0, size)].mValue; + const aiVector3D &p2 = in.splineKeys[ClampSpline(idx + 1, size)].mValue; + const aiVector3D &p3 = in.splineKeys[ClampSpline(idx + 2, size)].mValue; + + // compute polynomials + const ai_real u2 = u * u; + const ai_real u3 = u2 * 2; + + const ai_real h1 = ai_real(2.0) * u3 - ai_real(3.0) * u2 + ai_real(1.0); + const ai_real h2 = ai_real(-2.0) * u3 + ai_real(3.0) * u3; + const ai_real h3 = u3 - ai_real(2.0) * u3; + const ai_real h4 = u3 - u2; + + // compute the spline tangents + const aiVector3D t1 = (p2 - p0) * in.tightness; + aiVector3D t2 = (p3 - p1) * in.tightness; + + // and use them to get the interpolated point + t2 = (h1 * p1 + p2 * h2 + t1 * h3 + h4 * t2); + + // build a simple translation matrix from it + key.mValue = t2; + key.mTime = (double)i; + } + } break; + default: + // UNKNOWN , OTHER + break; + }; + if (anim) { + anims.push_back(anim); + ++total; + } + } +} + +// ------------------------------------------------------------------------------------------------ +// This function is maybe more generic than we'd need it here +void SetupMapping(aiMaterial *mat, aiTextureMapping mode, const aiVector3D &axis = aiVector3D(0.f, 0.f, -1.f)) { + if (nullptr == mat) { + return; + } + + // Check whether there are texture properties defined - setup + // the desired texture mapping mode for all of them and ignore + // all UV settings we might encounter. WE HAVE NO UVS! + + std::vector<aiMaterialProperty *> p; + p.reserve(mat->mNumProperties + 1); + + for (unsigned int i = 0; i < mat->mNumProperties; ++i) { + aiMaterialProperty *prop = mat->mProperties[i]; + if (!::strcmp(prop->mKey.data, "$tex.file")) { + // Setup the mapping key + aiMaterialProperty *m = new aiMaterialProperty(); + m->mKey.Set("$tex.mapping"); + m->mIndex = prop->mIndex; + m->mSemantic = prop->mSemantic; + m->mType = aiPTI_Integer; + + m->mDataLength = 4; + m->mData = new char[4]; + *((int *)m->mData) = mode; + + p.push_back(prop); + p.push_back(m); + + // Setup the mapping axis + if (mode == aiTextureMapping_CYLINDER || mode == aiTextureMapping_PLANE || mode == aiTextureMapping_SPHERE) { + m = new aiMaterialProperty(); + m->mKey.Set("$tex.mapaxis"); + m->mIndex = prop->mIndex; + m->mSemantic = prop->mSemantic; + m->mType = aiPTI_Float; + + m->mDataLength = 12; + m->mData = new char[12]; + *((aiVector3D *)m->mData) = axis; + p.push_back(m); + } + } else if (!::strcmp(prop->mKey.data, "$tex.uvwsrc")) { + delete mat->mProperties[i]; + } else + p.push_back(prop); + } + + if (p.empty()) return; + + // rebuild the output array + if (p.size() > mat->mNumAllocated) { + delete[] mat->mProperties; + mat->mProperties = new aiMaterialProperty *[p.size() * 2]; + + mat->mNumAllocated = static_cast<unsigned int>(p.size() * 2); + } + mat->mNumProperties = (unsigned int)p.size(); + ::memcpy(mat->mProperties, &p[0], sizeof(void *) * mat->mNumProperties); +} + +// ------------------------------------------------------------------------------------------------ +void IRRImporter::GenerateGraph(Node *root, aiNode *rootOut, aiScene *scene, + BatchLoader &batch, + std::vector<aiMesh *> &meshes, + std::vector<aiNodeAnim *> &anims, + std::vector<AttachmentInfo> &attach, + std::vector<aiMaterial *> &materials, + unsigned int &defMatIdx) { + unsigned int oldMeshSize = (unsigned int)meshes.size(); + //unsigned int meshTrafoAssign = 0; + + // Now determine the type of the node + switch (root->type) { + case Node::ANIMMESH: + case Node::MESH: { + if (!root->meshPath.length()) + break; + + // Get the loaded mesh from the scene and add it to + // the list of all scenes to be attached to the + // graph we're currently building + aiScene *localScene = batch.GetImport(root->id); + if (!localScene) { + ASSIMP_LOG_ERROR("IRR: Unable to load external file: ", root->meshPath); + break; + } + attach.push_back(AttachmentInfo(localScene, rootOut)); + + // Now combine the material we've loaded for this mesh + // with the real materials we got from the file. As we + // don't execute any pp-steps on the file, the numbers + // should be equal. If they are not, we can impossibly + // do this ... + if (root->materials.size() != (unsigned int)localScene->mNumMaterials) { + ASSIMP_LOG_WARN("IRR: Failed to match imported materials " + "with the materials found in the IRR scene file"); + + break; + } + for (unsigned int i = 0; i < localScene->mNumMaterials; ++i) { + // Delete the old material, we don't need it anymore + delete localScene->mMaterials[i]; + + std::pair<aiMaterial *, unsigned int> &src = root->materials[i]; + localScene->mMaterials[i] = src.first; + } + + // NOTE: Each mesh should have exactly one material assigned, + // but we do it in a separate loop if this behavior changes + // in future. + for (unsigned int i = 0; i < localScene->mNumMeshes; ++i) { + // Process material flags + aiMesh *mesh = localScene->mMeshes[i]; + + // If "trans_vertex_alpha" mode is enabled, search all vertex colors + // and check whether they have a common alpha value. This is quite + // often the case so we can simply extract it to a shared oacity + // value. + std::pair<aiMaterial *, unsigned int> &src = root->materials[mesh->mMaterialIndex]; + aiMaterial *mat = (aiMaterial *)src.first; + + if (mesh->HasVertexColors(0) && src.second & AI_IRRMESH_MAT_trans_vertex_alpha) { + bool bdo = true; + for (unsigned int a = 1; a < mesh->mNumVertices; ++a) { + + if (mesh->mColors[0][a].a != mesh->mColors[0][a - 1].a) { + bdo = false; + break; + } + } + if (bdo) { + ASSIMP_LOG_INFO("IRR: Replacing mesh vertex alpha with common opacity"); + + for (unsigned int a = 0; a < mesh->mNumVertices; ++a) + mesh->mColors[0][a].a = 1.f; + + mat->AddProperty(&mesh->mColors[0][0].a, 1, AI_MATKEY_OPACITY); + } + } + + // If we have a second texture coordinate set and a second texture + // (either light-map, normal-map, 2layered material) we need to + // setup the correct UV index for it. The texture can either + // be diffuse (light-map & 2layer) or a normal map (normal & parallax) + if (mesh->HasTextureCoords(1)) { + + int idx = 1; + if (src.second & (AI_IRRMESH_MAT_solid_2layer | AI_IRRMESH_MAT_lightmap)) { + mat->AddProperty(&idx, 1, AI_MATKEY_UVWSRC_DIFFUSE(0)); + } else if (src.second & AI_IRRMESH_MAT_normalmap_solid) { + mat->AddProperty(&idx, 1, AI_MATKEY_UVWSRC_NORMALS(0)); + } + } + } + } break; + + case Node::LIGHT: + case Node::CAMERA: + + // We're already finished with lights and cameras + break; + + case Node::SPHERE: { + // Generate the sphere model. Our input parameter to + // the sphere generation algorithm is the number of + // subdivisions of each triangle - but here we have + // the number of polygons on a specific axis. Just + // use some hard-coded limits to approximate this ... + unsigned int mul = root->spherePolyCountX * root->spherePolyCountY; + if (mul < 100) + mul = 2; + else if (mul < 300) + mul = 3; + else + mul = 4; + + meshes.push_back(StandardShapes::MakeMesh(mul, + &StandardShapes::MakeSphere)); + + // Adjust scaling + root->scaling *= root->sphereRadius / 2; + + // Copy one output material + CopyMaterial(materials, root->materials, defMatIdx, meshes.back()); + + // Now adjust this output material - if there is a first texture + // set, setup spherical UV mapping around the Y axis. + SetupMapping((aiMaterial *)materials.back(), aiTextureMapping_SPHERE); + } break; + + case Node::CUBE: { + // Generate an unit cube first + meshes.push_back(StandardShapes::MakeMesh( + &StandardShapes::MakeHexahedron)); + + // Adjust scaling + root->scaling *= root->sphereRadius; + + // Copy one output material + CopyMaterial(materials, root->materials, defMatIdx, meshes.back()); + + // Now adjust this output material - if there is a first texture + // set, setup cubic UV mapping + SetupMapping((aiMaterial *)materials.back(), aiTextureMapping_BOX); + } break; + + case Node::SKYBOX: { + // A sky-box is defined by six materials + if (root->materials.size() < 6) { + ASSIMP_LOG_ERROR("IRR: There should be six materials for a skybox"); + break; + } + + // copy those materials and generate 6 meshes for our new sky-box + materials.reserve(materials.size() + 6); + for (unsigned int i = 0; i < 6; ++i) + materials.insert(materials.end(), root->materials[i].first); + + BuildSkybox(meshes, materials); + + // ************************************************************* + // Skyboxes will require a different code path for rendering, + // so there must be a way for the user to add special support + // for IRR skyboxes. We add a 'IRR.SkyBox_' prefix to the node. + // ************************************************************* + root->name = "IRR.SkyBox_" + root->name; + ASSIMP_LOG_INFO("IRR: Loading skybox, this will " + "require special handling to be displayed correctly"); + } break; + + case Node::TERRAIN: { + // to support terrains, we'd need to have a texture decoder + ASSIMP_LOG_ERROR("IRR: Unsupported node - TERRAIN"); + } break; + default: + // DUMMY + break; + }; + + // Check whether we added a mesh (or more than one ...). In this case + // we'll also need to attach it to the node + if (oldMeshSize != (unsigned int)meshes.size()) { + + rootOut->mNumMeshes = (unsigned int)meshes.size() - oldMeshSize; + rootOut->mMeshes = new unsigned int[rootOut->mNumMeshes]; + + for (unsigned int a = 0; a < rootOut->mNumMeshes; ++a) { + rootOut->mMeshes[a] = oldMeshSize + a; + } + } + + // Setup the name of this node + rootOut->mName.Set(root->name); + + // Now compute the final local transformation matrix of the + // node from the given translation, rotation and scaling values. + // (the rotation is given in Euler angles, XYZ order) + //std::swap((float&)root->rotation.z,(float&)root->rotation.y); + rootOut->mTransformation.FromEulerAnglesXYZ(AI_DEG_TO_RAD(root->rotation)); + + // apply scaling + aiMatrix4x4 &mat = rootOut->mTransformation; + mat.a1 *= root->scaling.x; + mat.b1 *= root->scaling.x; + mat.c1 *= root->scaling.x; + mat.a2 *= root->scaling.y; + mat.b2 *= root->scaling.y; + mat.c2 *= root->scaling.y; + mat.a3 *= root->scaling.z; + mat.b3 *= root->scaling.z; + mat.c3 *= root->scaling.z; + + // apply translation + mat.a4 += root->position.x; + mat.b4 += root->position.y; + mat.c4 += root->position.z; + + // now compute animations for the node + ComputeAnimations(root, rootOut, anims); + + // Add all children recursively. First allocate enough storage + // for them, then call us again + rootOut->mNumChildren = (unsigned int)root->children.size(); + if (rootOut->mNumChildren) { + + rootOut->mChildren = new aiNode *[rootOut->mNumChildren]; + for (unsigned int i = 0; i < rootOut->mNumChildren; ++i) { + + aiNode *node = rootOut->mChildren[i] = new aiNode(); + node->mParent = rootOut; + GenerateGraph(root->children[i], node, scene, batch, meshes, + anims, attach, materials, defMatIdx); + } + } +} + +// ------------------------------------------------------------------------------------------------ +// Imports the given file into the given scene structure. +void IRRImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) { + std::unique_ptr<IOStream> file(pIOHandler->Open(pFile)); + + // Check whether we can read from the file + if (file.get() == nullptr) { + throw DeadlyImportError("Failed to open IRR file ", pFile); + } + + // Construct the irrXML parser + XmlParser st; + if (!st.parse( file.get() )) { + throw DeadlyImportError("XML parse error while loading IRR file ", pFile); + } + pugi::xml_node rootElement = st.getRootNode(); + + // The root node of the scene + Node *root = new Node(Node::DUMMY); + root->parent = nullptr; + root->name = "<IRRSceneRoot>"; + + // Current node parent + Node *curParent = root; + + // Scene-graph node we're currently working on + Node *curNode = nullptr; + + // List of output cameras + std::vector<aiCamera *> cameras; + + // List of output lights + std::vector<aiLight *> lights; + + // Batch loader used to load external models + BatchLoader batch(pIOHandler); + // batch.SetBasePath(pFile); + + cameras.reserve(5); + lights.reserve(5); + + bool inMaterials = false, inAnimator = false; + unsigned int guessedAnimCnt = 0, guessedMeshCnt = 0, guessedMatCnt = 0; + + // Parse the XML file + + //while (reader->read()) { + for (pugi::xml_node child : rootElement.children()) + switch (child.type()) { + case pugi::node_element: + if (!ASSIMP_stricmp(child.name(), "node")) { + // *********************************************************************** + /* What we're going to do with the node depends + * on its type: + * + * "mesh" - Load a mesh from an external file + * "cube" - Generate a cube + * "skybox" - Generate a skybox + * "light" - A light source + * "sphere" - Generate a sphere mesh + * "animatedMesh" - Load an animated mesh from an external file + * and join its animation channels with ours. + * "empty" - A dummy node + * "camera" - A camera + * "terrain" - a terrain node (data comes from a heightmap) + * "billboard", "" + * + * Each of these nodes can be animated and all can have multiple + * materials assigned (except lights, cameras and dummies, of course). + */ + // *********************************************************************** + //const char *sz = reader->getAttributeValueSafe("type"); + pugi::xml_attribute attrib = child.attribute("type"); + Node *nd; + if (!ASSIMP_stricmp(attrib.name(), "mesh") || !ASSIMP_stricmp(attrib.name(), "octTree")) { + // OctTree's and meshes are treated equally + nd = new Node(Node::MESH); + } else if (!ASSIMP_stricmp(attrib.name(), "cube")) { + nd = new Node(Node::CUBE); + ++guessedMeshCnt; + } else if (!ASSIMP_stricmp(attrib.name(), "skybox")) { + nd = new Node(Node::SKYBOX); + guessedMeshCnt += 6; + } else if (!ASSIMP_stricmp(attrib.name(), "camera")) { + nd = new Node(Node::CAMERA); + + // Setup a temporary name for the camera + aiCamera *cam = new aiCamera(); + cam->mName.Set(nd->name); + cameras.push_back(cam); + } else if (!ASSIMP_stricmp(attrib.name(), "light")) { + nd = new Node(Node::LIGHT); + + // Setup a temporary name for the light + aiLight *cam = new aiLight(); + cam->mName.Set(nd->name); + lights.push_back(cam); + } else if (!ASSIMP_stricmp(attrib.name(), "sphere")) { + nd = new Node(Node::SPHERE); + ++guessedMeshCnt; + } else if (!ASSIMP_stricmp(attrib.name(), "animatedMesh")) { + nd = new Node(Node::ANIMMESH); + } else if (!ASSIMP_stricmp(attrib.name(), "empty")) { + nd = new Node(Node::DUMMY); + } else if (!ASSIMP_stricmp(attrib.name(), "terrain")) { + nd = new Node(Node::TERRAIN); + } else if (!ASSIMP_stricmp(attrib.name(), "billBoard")) { + // We don't support billboards, so ignore them + ASSIMP_LOG_ERROR("IRR: Billboards are not supported by Assimp"); + nd = new Node(Node::DUMMY); + } else { + ASSIMP_LOG_WARN("IRR: Found unknown node: ", attrib.name()); + + /* We skip the contents of nodes we don't know. + * We parse the transformation and all animators + * and skip the rest. + */ + nd = new Node(Node::DUMMY); + } + + /* Attach the newly created node to the scene-graph + */ + curNode = nd; + nd->parent = curParent; + curParent->children.push_back(nd); + } else if (!ASSIMP_stricmp(child.name(), "materials")) { + inMaterials = true; + } else if (!ASSIMP_stricmp(child.name(), "animators")) { + inAnimator = true; + } else if (!ASSIMP_stricmp(child.name(), "attributes")) { + // We should have a valid node here + // FIX: no ... the scene root node is also contained in an attributes block + if (!curNode) { + continue; + } + + Animator *curAnim = nullptr; + + // Materials can occur for nearly any type of node + if (inMaterials && curNode->type != Node::DUMMY) { + // This is a material description - parse it! + curNode->materials.push_back(std::pair<aiMaterial *, unsigned int>()); + std::pair<aiMaterial *, unsigned int> &p = curNode->materials.back(); + + p.first = ParseMaterial(p.second); + ++guessedMatCnt; + continue; + } else if (inAnimator) { + // This is an animation path - add a new animator + // to the list. + curNode->animators.push_back(Animator()); + curAnim = &curNode->animators.back(); + + ++guessedAnimCnt; + } + + /* Parse all elements in the attributes block + * and process them. + */ + // while (reader->read()) { + for (pugi::xml_node attrib : child.children()) { + if (attrib.type() == pugi::node_element) { + //if (reader->getNodeType() == EXN_ELEMENT) { + //if (!ASSIMP_stricmp(reader->getNodeName(), "vector3d")) { + if (!ASSIMP_stricmp(attrib.name(), "vector3d")) { + VectorProperty prop; + ReadVectorProperty(prop); + + if (inAnimator) { + if (curAnim->type == Animator::ROTATION && prop.name == "Rotation") { + // We store the rotation euler angles in 'direction' + curAnim->direction = prop.value; + } else if (curAnim->type == Animator::FOLLOW_SPLINE) { + // Check whether the vector follows the PointN naming scheme, + // here N is the ONE-based index of the point + if (prop.name.length() >= 6 && prop.name.substr(0, 5) == "Point") { + // Add a new key to the list + curAnim->splineKeys.push_back(aiVectorKey()); + aiVectorKey &key = curAnim->splineKeys.back(); + + // and parse its properties + key.mValue = prop.value; + key.mTime = strtoul10(&prop.name[5]); + } + } else if (curAnim->type == Animator::FLY_CIRCLE) { + if (prop.name == "Center") { + curAnim->circleCenter = prop.value; + } else if (prop.name == "Direction") { + curAnim->direction = prop.value; + + // From Irrlicht's source - a workaround for backward compatibility with Irrlicht 1.1 + if (curAnim->direction == aiVector3D()) { + curAnim->direction = aiVector3D(0.f, 1.f, 0.f); + } else + curAnim->direction.Normalize(); + } + } else if (curAnim->type == Animator::FLY_STRAIGHT) { + if (prop.name == "Start") { + // We reuse the field here + curAnim->circleCenter = prop.value; + } else if (prop.name == "End") { + // We reuse the field here + curAnim->direction = prop.value; + } + } + } else { + if (prop.name == "Position") { + curNode->position = prop.value; + } else if (prop.name == "Rotation") { + curNode->rotation = prop.value; + } else if (prop.name == "Scale") { + curNode->scaling = prop.value; + } else if (Node::CAMERA == curNode->type) { + aiCamera *cam = cameras.back(); + if (prop.name == "Target") { + cam->mLookAt = prop.value; + } else if (prop.name == "UpVector") { + cam->mUp = prop.value; + } + } + } + //} else if (!ASSIMP_stricmp(reader->getNodeName(), "bool")) { + } else if (!ASSIMP_stricmp(attrib.name(), "bool")) { + BoolProperty prop; + ReadBoolProperty(prop); + + if (inAnimator && curAnim->type == Animator::FLY_CIRCLE && prop.name == "Loop") { + curAnim->loop = prop.value; + } + //} else if (!ASSIMP_stricmp(reader->getNodeName(), "float")) { + } else if (!ASSIMP_stricmp(attrib.name(), "float")) { + FloatProperty prop; + ReadFloatProperty(prop); + + if (inAnimator) { + // The speed property exists for several animators + if (prop.name == "Speed") { + curAnim->speed = prop.value; + } else if (curAnim->type == Animator::FLY_CIRCLE && prop.name == "Radius") { + curAnim->circleRadius = prop.value; + } else if (curAnim->type == Animator::FOLLOW_SPLINE && prop.name == "Tightness") { + curAnim->tightness = prop.value; + } + } else { + if (prop.name == "FramesPerSecond" && Node::ANIMMESH == curNode->type) { + curNode->framesPerSecond = prop.value; + } else if (Node::CAMERA == curNode->type) { + /* This is the vertical, not the horizontal FOV. + * We need to compute the right FOV from the + * screen aspect which we don't know yet. + */ + if (prop.name == "Fovy") { + cameras.back()->mHorizontalFOV = prop.value; + } else if (prop.name == "Aspect") { + cameras.back()->mAspect = prop.value; + } else if (prop.name == "ZNear") { + cameras.back()->mClipPlaneNear = prop.value; + } else if (prop.name == "ZFar") { + cameras.back()->mClipPlaneFar = prop.value; + } + } else if (Node::LIGHT == curNode->type) { + /* Additional light information + */ + if (prop.name == "Attenuation") { + lights.back()->mAttenuationLinear = prop.value; + } else if (prop.name == "OuterCone") { + lights.back()->mAngleOuterCone = AI_DEG_TO_RAD(prop.value); + } else if (prop.name == "InnerCone") { + lights.back()->mAngleInnerCone = AI_DEG_TO_RAD(prop.value); + } + } + // radius of the sphere to be generated - + // or alternatively, size of the cube + else if ((Node::SPHERE == curNode->type && prop.name == "Radius") || (Node::CUBE == curNode->type && prop.name == "Size")) { + + curNode->sphereRadius = prop.value; + } + } + //} else if (!ASSIMP_stricmp(reader->getNodeName(), "int")) { + } else if (!ASSIMP_stricmp(attrib.name(), "int")) { + IntProperty prop; + ReadIntProperty(prop); + + if (inAnimator) { + if (curAnim->type == Animator::FLY_STRAIGHT && prop.name == "TimeForWay") { + curAnim->timeForWay = prop.value; + } + } else { + // sphere polygon numbers in each direction + if (Node::SPHERE == curNode->type) { + + if (prop.name == "PolyCountX") { + curNode->spherePolyCountX = prop.value; + } else if (prop.name == "PolyCountY") { + curNode->spherePolyCountY = prop.value; + } + } + } + //} else if (!ASSIMP_stricmp(reader->getNodeName(), "string") || !ASSIMP_stricmp(reader->getNodeName(), "enum")) { + } else if (!ASSIMP_stricmp(attrib.name(), "string") || !ASSIMP_stricmp(attrib.name(), "enum")) { + StringProperty prop; + ReadStringProperty(prop); + if (prop.value.length()) { + if (prop.name == "Name") { + curNode->name = prop.value; + + /* If we're either a camera or a light source + * we need to update the name in the aiLight/ + * aiCamera structure, too. + */ + if (Node::CAMERA == curNode->type) { + cameras.back()->mName.Set(prop.value); + } else if (Node::LIGHT == curNode->type) { + lights.back()->mName.Set(prop.value); + } + } else if (Node::LIGHT == curNode->type && "LightType" == prop.name) { + if (prop.value == "Spot") + lights.back()->mType = aiLightSource_SPOT; + else if (prop.value == "Point") + lights.back()->mType = aiLightSource_POINT; + else if (prop.value == "Directional") + lights.back()->mType = aiLightSource_DIRECTIONAL; + else { + // We won't pass the validation with aiLightSourceType_UNDEFINED, + // so we remove the light and replace it with a silly dummy node + delete lights.back(); + lights.pop_back(); + curNode->type = Node::DUMMY; + + ASSIMP_LOG_ERROR("Ignoring light of unknown type: ", prop.value); + } + } else if ((prop.name == "Mesh" && Node::MESH == curNode->type) || + Node::ANIMMESH == curNode->type) { + /* This is the file name of the mesh - either + * animated or not. We need to make sure we setup + * the correct post-processing settings here. + */ + unsigned int pp = 0; + BatchLoader::PropertyMap map; + + /* If the mesh is a static one remove all animations from the impor data + */ + if (Node::ANIMMESH != curNode->type) { + pp |= aiProcess_RemoveComponent; + SetGenericProperty<int>(map.ints, AI_CONFIG_PP_RVC_FLAGS, + aiComponent_ANIMATIONS | aiComponent_BONEWEIGHTS); + } + + /* TODO: maybe implement the protection against recursive + * loading calls directly in BatchLoader? The current + * implementation is not absolutely safe. A LWS and an IRR + * file referencing each other *could* cause the system to + * recurse forever. + */ + + const std::string extension = GetExtension(prop.value); + if ("irr" == extension) { + ASSIMP_LOG_ERROR("IRR: Can't load another IRR file recursively"); + } else { + curNode->id = batch.AddLoadRequest(prop.value, pp, &map); + curNode->meshPath = prop.value; + } + } else if (inAnimator && prop.name == "Type") { + // type of the animator + if (prop.value == "rotation") { + curAnim->type = Animator::ROTATION; + } else if (prop.value == "flyCircle") { + curAnim->type = Animator::FLY_CIRCLE; + } else if (prop.value == "flyStraight") { + curAnim->type = Animator::FLY_CIRCLE; + } else if (prop.value == "followSpline") { + curAnim->type = Animator::FOLLOW_SPLINE; + } else { + ASSIMP_LOG_WARN("IRR: Ignoring unknown animator: ", prop.value); + + curAnim->type = Animator::UNKNOWN; + } + } + } + } + //} else if (reader->getNodeType() == EXN_ELEMENT_END && !ASSIMP_stricmp(reader->getNodeName(), "attributes")) { + } else if (attrib.type() == pugi::node_null && !ASSIMP_stricmp(attrib.name(), "attributes")) { + break; + } + } + } + break; + + /*case EXN_ELEMENT_END: + + // If we reached the end of a node, we need to continue processing its parent + if (!ASSIMP_stricmp(reader->getNodeName(), "node")) { + if (!curNode) { + // currently is no node set. We need to go + // back in the node hierarchy + if (!curParent) { + curParent = root; + ASSIMP_LOG_ERROR("IRR: Too many closing <node> elements"); + } else + curParent = curParent->parent; + } else + curNode = nullptr; + } + // clear all flags + else if (!ASSIMP_stricmp(reader->getNodeName(), "materials")) { + inMaterials = false; + } else if (!ASSIMP_stricmp(reader->getNodeName(), "animators")) { + inAnimator = false; + } + break;*/ + + default: + // GCC complains that not all enumeration values are handled + break; + } + //} + + // Now iterate through all cameras and compute their final (horizontal) FOV + for (aiCamera *cam : cameras) { + // screen aspect could be missing + if (cam->mAspect) { + cam->mHorizontalFOV *= cam->mAspect; + } else { + ASSIMP_LOG_WARN("IRR: Camera aspect is not given, can't compute horizontal FOV"); + } + } + + batch.LoadAll(); + + // Allocate a temporary scene data structure + aiScene *tempScene = new aiScene(); + tempScene->mRootNode = new aiNode(); + tempScene->mRootNode->mName.Set("<IRRRoot>"); + + // Copy the cameras to the output array + if (!cameras.empty()) { + tempScene->mNumCameras = (unsigned int)cameras.size(); + tempScene->mCameras = new aiCamera *[tempScene->mNumCameras]; + ::memcpy(tempScene->mCameras, &cameras[0], sizeof(void *) * tempScene->mNumCameras); + } + + // Copy the light sources to the output array + if (!lights.empty()) { + tempScene->mNumLights = (unsigned int)lights.size(); + tempScene->mLights = new aiLight *[tempScene->mNumLights]; + ::memcpy(tempScene->mLights, &lights[0], sizeof(void *) * tempScene->mNumLights); + } + + // temporary data + std::vector<aiNodeAnim *> anims; + std::vector<aiMaterial *> materials; + std::vector<AttachmentInfo> attach; + std::vector<aiMesh *> meshes; + + // try to guess how much storage we'll need + anims.reserve(guessedAnimCnt + (guessedAnimCnt >> 2)); + meshes.reserve(guessedMeshCnt + (guessedMeshCnt >> 2)); + materials.reserve(guessedMatCnt + (guessedMatCnt >> 2)); + + // Now process our scene-graph recursively: generate final + // meshes and generate animation channels for all nodes. + unsigned int defMatIdx = UINT_MAX; + GenerateGraph(root, tempScene->mRootNode, tempScene, + batch, meshes, anims, attach, materials, defMatIdx); + + if (!anims.empty()) { + tempScene->mNumAnimations = 1; + tempScene->mAnimations = new aiAnimation *[tempScene->mNumAnimations]; + aiAnimation *an = tempScene->mAnimations[0] = new aiAnimation(); + + // *********************************************************** + // This is only the global animation channel of the scene. + // If there are animated models, they will have separate + // animation channels in the scene. To display IRR scenes + // correctly, users will need to combine the global anim + // channel with all the local animations they want to play + // *********************************************************** + an->mName.Set("Irr_GlobalAnimChannel"); + + // copy all node animation channels to the global channel + an->mNumChannels = (unsigned int)anims.size(); + an->mChannels = new aiNodeAnim *[an->mNumChannels]; + ::memcpy(an->mChannels, &anims[0], sizeof(void *) * an->mNumChannels); + } + if (!meshes.empty()) { + // copy all meshes to the temporary scene + tempScene->mNumMeshes = (unsigned int)meshes.size(); + tempScene->mMeshes = new aiMesh *[tempScene->mNumMeshes]; + ::memcpy(tempScene->mMeshes, &meshes[0], tempScene->mNumMeshes * sizeof(void *)); + } + + // Copy all materials to the output array + if (!materials.empty()) { + tempScene->mNumMaterials = (unsigned int)materials.size(); + tempScene->mMaterials = new aiMaterial *[tempScene->mNumMaterials]; + ::memcpy(tempScene->mMaterials, &materials[0], sizeof(void *) * tempScene->mNumMaterials); + } + + // Now merge all sub scenes and attach them to the correct + // attachment points in the scenegraph. + SceneCombiner::MergeScenes(&pScene, tempScene, attach, + AI_INT_MERGE_SCENE_GEN_UNIQUE_NAMES | (!configSpeedFlag ? ( + AI_INT_MERGE_SCENE_GEN_UNIQUE_NAMES_IF_NECESSARY | AI_INT_MERGE_SCENE_GEN_UNIQUE_MATNAMES) : + 0)); + + // If we have no meshes | no materials now set the INCOMPLETE + // scene flag. This is necessary if we failed to load all + // models from external files + if (!pScene->mNumMeshes || !pScene->mNumMaterials) { + ASSIMP_LOG_WARN("IRR: No meshes loaded, setting AI_SCENE_FLAGS_INCOMPLETE"); + pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE; + } + + // Finished ... everything destructs automatically and all + // temporary scenes have already been deleted by MergeScenes() + delete root; +} + +#endif // !! ASSIMP_BUILD_NO_IRR_IMPORTER |