summaryrefslogtreecommitdiff
path: root/libs/assimp/code/AssetLib/SIB/SIBImporter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libs/assimp/code/AssetLib/SIB/SIBImporter.cpp')
-rw-r--r--libs/assimp/code/AssetLib/SIB/SIBImporter.cpp889
1 files changed, 0 insertions, 889 deletions
diff --git a/libs/assimp/code/AssetLib/SIB/SIBImporter.cpp b/libs/assimp/code/AssetLib/SIB/SIBImporter.cpp
deleted file mode 100644
index 7b66afa..0000000
--- a/libs/assimp/code/AssetLib/SIB/SIBImporter.cpp
+++ /dev/null
@@ -1,889 +0,0 @@
-/*
----------------------------------------------------------------------------
-Open Asset Import Library (assimp)
----------------------------------------------------------------------------
-
-Copyright (c) 2006-2022, assimp team
-
-All rights reserved.
-
-Redistribution and use of this software in source and binary forms,
-with or without modification, are permitted provided that the following
-conditions are met:
-
-* Redistributions of source code must retain the above
- copyright notice, this list of conditions and the
- following disclaimer.
-
-* Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the
- following disclaimer in the documentation and/or other
- materials provided with the distribution.
-
-* Neither the name of the assimp team, nor the names of its
- contributors may be used to endorse or promote products
- derived from this software without specific prior
- written permission of the assimp team.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------------
-*/
-
-/** @file SIBImporter.cpp
- * @brief Implementation of the SIB importer class.
- *
- * The Nevercenter Silo SIB format is undocumented.
- * All details here have been reverse engineered from
- * studying the binary files output by Silo.
- *
- * Nevertheless, this implementation is reasonably complete.
- */
-
-#ifndef ASSIMP_BUILD_NO_SIB_IMPORTER
-
-// internal headers
-#include "SIBImporter.h"
-#include <assimp/ByteSwapper.h>
-#include <assimp/StreamReader.h>
-#include <assimp/TinyFormatter.h>
-#ifdef ASSIMP_USE_HUNTER
-#include <utf8.h>
-#else
-#include "../contrib/utf8cpp/source/utf8.h"
-#endif
-#include <assimp/importerdesc.h>
-#include <assimp/scene.h>
-#include <assimp/DefaultLogger.hpp>
-#include <assimp/IOSystem.hpp>
-#include <assimp/StringUtils.h>
-
-#include <map>
-
-using namespace Assimp;
-
-static const aiImporterDesc desc = {
- "Silo SIB Importer",
- "Richard Mitton (http://www.codersnotes.com/about)",
- "",
- "Does not apply subdivision.",
- aiImporterFlags_SupportBinaryFlavour,
- 0, 0,
- 0, 0,
- "sib"
-};
-
-struct SIBChunk {
- uint32_t Tag;
- uint32_t Size;
-} PACK_STRUCT;
-
-enum {
- POS,
- NRM,
- UV,
- N
-};
-
-typedef std::pair<uint32_t, uint32_t> SIBPair;
-
-struct SIBEdge {
- uint32_t faceA, faceB;
- bool creased;
-};
-
-struct SIBMesh {
- aiMatrix4x4 axis;
- uint32_t numPts;
- std::vector<aiVector3D> pos, nrm, uv;
- std::vector<uint32_t> idx;
- std::vector<uint32_t> faceStart;
- std::vector<uint32_t> mtls;
- std::vector<SIBEdge> edges;
- std::map<SIBPair, uint32_t> edgeMap;
-};
-
-struct SIBObject {
- aiString name;
- aiMatrix4x4 axis;
- size_t meshIdx, meshCount;
-};
-
-struct SIB {
- std::vector<aiMaterial *> mtls;
- std::vector<aiMesh *> meshes;
- std::vector<aiLight *> lights;
- std::vector<SIBObject> objs, insts;
-};
-
-// ------------------------------------------------------------------------------------------------
-static SIBEdge &GetEdge(SIBMesh *mesh, uint32_t posA, uint32_t posB) {
- SIBPair pair = (posA < posB) ? SIBPair(posA, posB) : SIBPair(posB, posA);
- std::map<SIBPair, uint32_t>::iterator it = mesh->edgeMap.find(pair);
- if (it != mesh->edgeMap.end())
- return mesh->edges[it->second];
-
- SIBEdge edge;
- edge.creased = false;
- edge.faceA = edge.faceB = 0xffffffff;
- mesh->edgeMap[pair] = static_cast<uint32_t>(mesh->edges.size());
- mesh->edges.push_back(edge);
- return mesh->edges.back();
-}
-
-// ------------------------------------------------------------------------------------------------
-// Helpers for reading chunked data.
-
-#define TAG(A, B, C, D) ((A << 24) | (B << 16) | (C << 8) | D)
-
-static SIBChunk ReadChunk(StreamReaderLE *stream) {
- SIBChunk chunk;
- chunk.Tag = stream->GetU4();
- chunk.Size = stream->GetU4();
- if (chunk.Size > stream->GetRemainingSizeToLimit())
- ASSIMP_LOG_ERROR("SIB: Chunk overflow");
- ByteSwap::Swap4(&chunk.Tag);
- return chunk;
-}
-
-static aiColor3D ReadColor(StreamReaderLE *stream) {
- float r = stream->GetF4();
- float g = stream->GetF4();
- float b = stream->GetF4();
- stream->GetU4(); // Colors have an unused(?) 4th component.
- return aiColor3D(r, g, b);
-}
-
-static void UnknownChunk(StreamReaderLE * /*stream*/, const SIBChunk &chunk) {
- char temp[4] = {
- static_cast<char>((chunk.Tag >> 24) & 0xff),
- static_cast<char>((chunk.Tag >> 16) & 0xff),
- static_cast<char>((chunk.Tag >> 8) & 0xff),
- static_cast<char>(chunk.Tag & 0xff)
- };
-
- ASSIMP_LOG_WARN("SIB: Skipping unknown '", ai_str_toprintable(temp, 4), "' chunk.");
-}
-
-// Reads a UTF-16LE string and returns it at UTF-8.
-static aiString ReadString(StreamReaderLE *stream, uint32_t numWChars) {
- if (nullptr == stream || 0 == numWChars) {
- return aiString();
- }
-
- // Allocate buffers (max expansion is 1 byte -> 4 bytes for UTF-8)
- std::vector<unsigned char> str;
- str.reserve(numWChars * 4 + 1);
- uint16_t *temp = new uint16_t[numWChars];
- for (uint32_t n = 0; n < numWChars; ++n) {
- temp[n] = stream->GetU2();
- }
-
- // Convert it and NUL-terminate.
- const uint16_t *start(temp), *end(temp + numWChars);
- utf8::utf16to8(start, end, back_inserter(str));
- str[str.size() - 1] = '\0';
-
- // Return the final string.
- aiString result = aiString((const char *)&str[0]);
- delete[] temp;
-
- return result;
-}
-
-// ------------------------------------------------------------------------------------------------
-// Constructor to be privately used by Importer
-SIBImporter::SIBImporter() {
- // empty
-}
-
-// ------------------------------------------------------------------------------------------------
-// Destructor, private as well
-SIBImporter::~SIBImporter() {
- // empty
-}
-
-// ------------------------------------------------------------------------------------------------
-// Returns whether the class can handle the format of the given file.
-bool SIBImporter::CanRead(const std::string &filename, IOSystem * /*pIOHandler*/, bool /*checkSig*/) const {
- return SimpleExtensionCheck(filename, "sib");
-}
-
-// ------------------------------------------------------------------------------------------------
-const aiImporterDesc *SIBImporter::GetInfo() const {
- return &desc;
-}
-
-// ------------------------------------------------------------------------------------------------
-static void ReadVerts(SIBMesh *mesh, StreamReaderLE *stream, uint32_t count) {
- if (nullptr == mesh || nullptr == stream) {
- return;
- }
-
- mesh->pos.resize(count);
- for (uint32_t n = 0; n < count; ++n) {
- mesh->pos[n].x = stream->GetF4();
- mesh->pos[n].y = stream->GetF4();
- mesh->pos[n].z = stream->GetF4();
- }
-}
-
-// ------------------------------------------------------------------------------------------------
-static void ReadFaces(SIBMesh *mesh, StreamReaderLE *stream) {
- uint32_t ptIdx = 0;
- while (stream->GetRemainingSizeToLimit() > 0) {
- uint32_t numPoints = stream->GetU4();
-
- // Store room for the N index channels, plus the point count.
- size_t pos = mesh->idx.size() + 1;
- mesh->idx.resize(pos + numPoints * N);
- mesh->idx[pos - 1] = numPoints;
- uint32_t *idx = &mesh->idx[pos];
-
- mesh->faceStart.push_back(static_cast<uint32_t>(pos - 1));
- mesh->mtls.push_back(0);
-
- // Read all the position data.
- // UV/normals will be supplied later.
- // Positions are supplied indexed already, so we preserve that
- // mapping. UVs are supplied uniquely, so we allocate unique indices.
- for (uint32_t n = 0; n < numPoints; n++, idx += N, ptIdx++) {
- uint32_t p = stream->GetU4();
- if (p >= mesh->pos.size())
- throw DeadlyImportError("Vertex index is out of range.");
- idx[POS] = p;
- idx[NRM] = ptIdx;
- idx[UV] = ptIdx;
- }
- }
-
- // Allocate data channels for normals/UVs.
- mesh->nrm.resize(ptIdx, aiVector3D(0, 0, 0));
- mesh->uv.resize(ptIdx, aiVector3D(0, 0, 0));
-
- mesh->numPts = ptIdx;
-}
-
-// ------------------------------------------------------------------------------------------------
-static void ReadUVs(SIBMesh *mesh, StreamReaderLE *stream) {
- while (stream->GetRemainingSizeToLimit() > 0) {
- uint32_t faceIdx = stream->GetU4();
- uint32_t numPoints = stream->GetU4();
-
- if (faceIdx >= mesh->faceStart.size())
- throw DeadlyImportError("Invalid face index.");
-
- uint32_t pos = mesh->faceStart[faceIdx];
- uint32_t *idx = &mesh->idx[pos + 1];
-
- for (uint32_t n = 0; n < numPoints; n++, idx += N) {
- uint32_t id = idx[UV];
- mesh->uv[id].x = stream->GetF4();
- mesh->uv[id].y = stream->GetF4();
- }
- }
-}
-
-// ------------------------------------------------------------------------------------------------
-static void ReadMtls(SIBMesh *mesh, StreamReaderLE *stream) {
- // Material assignments are stored run-length encoded.
- // Also, we add 1 to each material so that we can use mtl #0
- // as the default material.
- uint32_t prevFace = stream->GetU4();
- uint32_t prevMtl = stream->GetU4() + 1;
- while (stream->GetRemainingSizeToLimit() > 0) {
- uint32_t face = stream->GetU4();
- uint32_t mtl = stream->GetU4() + 1;
- while (prevFace < face) {
- if (prevFace >= mesh->mtls.size())
- throw DeadlyImportError("Invalid face index.");
- mesh->mtls[prevFace++] = prevMtl;
- }
-
- prevFace = face;
- prevMtl = mtl;
- }
-
- while (prevFace < mesh->mtls.size())
- mesh->mtls[prevFace++] = prevMtl;
-}
-
-// ------------------------------------------------------------------------------------------------
-static void ReadAxis(aiMatrix4x4 &axis, StreamReaderLE *stream) {
- axis.a4 = stream->GetF4();
- axis.b4 = stream->GetF4();
- axis.c4 = stream->GetF4();
- axis.d4 = 1;
- axis.a1 = stream->GetF4();
- axis.b1 = stream->GetF4();
- axis.c1 = stream->GetF4();
- axis.d1 = 0;
- axis.a2 = stream->GetF4();
- axis.b2 = stream->GetF4();
- axis.c2 = stream->GetF4();
- axis.d2 = 0;
- axis.a3 = stream->GetF4();
- axis.b3 = stream->GetF4();
- axis.c3 = stream->GetF4();
- axis.d3 = 0;
-}
-
-// ------------------------------------------------------------------------------------------------
-static void ReadEdges(SIBMesh *mesh, StreamReaderLE *stream) {
- while (stream->GetRemainingSizeToLimit() > 0) {
- uint32_t posA = stream->GetU4();
- uint32_t posB = stream->GetU4();
- GetEdge(mesh, posA, posB);
- }
-}
-
-// ------------------------------------------------------------------------------------------------
-static void ReadCreases(SIBMesh *mesh, StreamReaderLE *stream) {
- while (stream->GetRemainingSizeToLimit() > 0) {
- uint32_t edge = stream->GetU4();
- if (edge >= mesh->edges.size())
- throw DeadlyImportError("SIB: Invalid edge index.");
- mesh->edges[edge].creased = true;
- }
-}
-
-// ------------------------------------------------------------------------------------------------
-static void ConnectFaces(SIBMesh *mesh) {
- // Find faces connected to each edge.
- size_t numFaces = mesh->faceStart.size();
- for (size_t faceIdx = 0; faceIdx < numFaces; faceIdx++) {
- uint32_t *idx = &mesh->idx[mesh->faceStart[faceIdx]];
- uint32_t numPoints = *idx++;
- uint32_t prev = idx[(numPoints - 1) * N + POS];
-
- for (uint32_t i = 0; i < numPoints; i++, idx += N) {
- uint32_t next = idx[POS];
-
- // Find this edge.
- SIBEdge &edge = GetEdge(mesh, prev, next);
-
- // Link this face onto it.
- // This gives potentially undesirable normals when used
- // with non-2-manifold surfaces, but then so does Silo to begin with.
- if (edge.faceA == 0xffffffff)
- edge.faceA = static_cast<uint32_t>(faceIdx);
- else if (edge.faceB == 0xffffffff)
- edge.faceB = static_cast<uint32_t>(faceIdx);
-
- prev = next;
- }
- }
-}
-
-// ------------------------------------------------------------------------------------------------
-static aiVector3D CalculateVertexNormal(SIBMesh *mesh, uint32_t faceIdx, uint32_t pos,
- const std::vector<aiVector3D> &faceNormals) {
- // Creased edges complicate this. We need to find the start/end range of the
- // ring of faces that touch this position.
- // We do this in two passes. The first pass is to find the end of the range,
- // the second is to work backwards to the start and calculate the final normal.
- aiVector3D vtxNormal;
- for (int pass = 0; pass < 2; pass++) {
- vtxNormal = aiVector3D(0, 0, 0);
- uint32_t startFaceIdx = faceIdx;
- uint32_t prevFaceIdx = faceIdx;
-
- // Process each connected face.
- while (true) {
- // Accumulate the face normal.
- vtxNormal += faceNormals[faceIdx];
-
- uint32_t nextFaceIdx = 0xffffffff;
-
- // Move to the next edge sharing this position.
- uint32_t *idx = &mesh->idx[mesh->faceStart[faceIdx]];
- uint32_t numPoints = *idx++;
- uint32_t posA = idx[(numPoints - 1) * N + POS];
- for (uint32_t n = 0; n < numPoints; n++, idx += N) {
- uint32_t posB = idx[POS];
-
- // Test if this edge shares our target position.
- if (posA == pos || posB == pos) {
- SIBEdge &edge = GetEdge(mesh, posA, posB);
-
- // Non-manifold meshes can produce faces which share
- // positions but have no edge entry, so check it.
- if (edge.faceA == faceIdx || edge.faceB == faceIdx) {
- // Move to whichever side we didn't just come from.
- if (!edge.creased) {
- if (edge.faceA != prevFaceIdx && edge.faceA != faceIdx && edge.faceA != 0xffffffff)
- nextFaceIdx = edge.faceA;
- else if (edge.faceB != prevFaceIdx && edge.faceB != faceIdx && edge.faceB != 0xffffffff)
- nextFaceIdx = edge.faceB;
- }
- }
- }
-
- posA = posB;
- }
-
- // Stop once we hit either an creased/unconnected edge, or we
- // wrapped around and hit our start point.
- if (nextFaceIdx == 0xffffffff || nextFaceIdx == startFaceIdx)
- break;
-
- prevFaceIdx = faceIdx;
- faceIdx = nextFaceIdx;
- }
- }
-
- // Normalize it.
- float len = vtxNormal.Length();
- if (len > 0.000000001f)
- vtxNormal /= len;
- return vtxNormal;
-}
-
-// ------------------------------------------------------------------------------------------------
-static void CalculateNormals(SIBMesh *mesh) {
- size_t numFaces = mesh->faceStart.size();
-
- // Calculate face normals.
- std::vector<aiVector3D> faceNormals(numFaces);
- for (size_t faceIdx = 0; faceIdx < numFaces; faceIdx++) {
- uint32_t *idx = &mesh->idx[mesh->faceStart[faceIdx]];
- uint32_t numPoints = *idx++;
-
- aiVector3D faceNormal(0, 0, 0);
-
- uint32_t *prev = &idx[(numPoints - 1) * N];
-
- for (uint32_t i = 0; i < numPoints; i++) {
- uint32_t *next = &idx[i * N];
-
- faceNormal += mesh->pos[prev[POS]] ^ mesh->pos[next[POS]];
- prev = next;
- }
-
- faceNormals[faceIdx] = faceNormal;
- }
-
- // Calculate vertex normals.
- for (size_t faceIdx = 0; faceIdx < numFaces; faceIdx++) {
- uint32_t *idx = &mesh->idx[mesh->faceStart[faceIdx]];
- uint32_t numPoints = *idx++;
-
- for (uint32_t i = 0; i < numPoints; i++) {
- uint32_t pos = idx[i * N + POS];
- uint32_t nrm = idx[i * N + NRM];
- aiVector3D vtxNorm = CalculateVertexNormal(mesh, static_cast<uint32_t>(faceIdx), pos, faceNormals);
- mesh->nrm[nrm] = vtxNorm;
- }
- }
-}
-
-// ------------------------------------------------------------------------------------------------
-struct TempMesh {
- std::vector<aiVector3D> vtx;
- std::vector<aiVector3D> nrm;
- std::vector<aiVector3D> uv;
- std::vector<aiFace> faces;
-};
-
-static void ReadShape(SIB *sib, StreamReaderLE *stream) {
- SIBMesh smesh;
- aiString name;
-
- while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk)) {
- SIBChunk chunk = ReadChunk(stream);
- unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);
-
- switch (chunk.Tag) {
- case TAG('M', 'I', 'R', 'P'): break; // mirror plane maybe?
- case TAG('I', 'M', 'R', 'P'): break; // instance mirror? (not supported here yet)
- case TAG('D', 'I', 'N', 'F'): break; // display info, not needed
- case TAG('P', 'I', 'N', 'F'): break; // ?
- case TAG('V', 'M', 'I', 'R'): break; // ?
- case TAG('F', 'M', 'I', 'R'): break; // ?
- case TAG('T', 'X', 'S', 'M'): break; // ?
- case TAG('F', 'A', 'H', 'S'): break; // ?
- case TAG('V', 'R', 'T', 'S'): ReadVerts(&smesh, stream, chunk.Size / 12); break;
- case TAG('F', 'A', 'C', 'S'): ReadFaces(&smesh, stream); break;
- case TAG('F', 'T', 'V', 'S'): ReadUVs(&smesh, stream); break;
- case TAG('S', 'N', 'A', 'M'): name = ReadString(stream, chunk.Size / 2); break;
- case TAG('F', 'A', 'M', 'A'): ReadMtls(&smesh, stream); break;
- case TAG('A', 'X', 'I', 'S'): ReadAxis(smesh.axis, stream); break;
- case TAG('E', 'D', 'G', 'S'): ReadEdges(&smesh, stream); break;
- case TAG('E', 'C', 'R', 'S'): ReadCreases(&smesh, stream); break;
- default: UnknownChunk(stream, chunk); break;
- }
-
- stream->SetCurrentPos(stream->GetReadLimit());
- stream->SetReadLimit(oldLimit);
- }
-
- ai_assert(smesh.faceStart.size() == smesh.mtls.size()); // sanity check
-
- // Silo doesn't store any normals in the file - we need to compute
- // them ourselves. We can't let AssImp handle it as AssImp doesn't
- // know about our creased edges.
- ConnectFaces(&smesh);
- CalculateNormals(&smesh);
-
- // Construct the transforms.
- aiMatrix4x4 worldToLocal = smesh.axis;
- worldToLocal.Inverse();
- aiMatrix4x4 worldToLocalN = worldToLocal;
- worldToLocalN.a4 = worldToLocalN.b4 = worldToLocalN.c4 = 0.0f;
- worldToLocalN.Inverse().Transpose();
-
- // Allocate final mesh data.
- // We'll allocate one mesh for each material. (we'll strip unused ones after)
- std::vector<TempMesh> meshes(sib->mtls.size());
-
- // Un-index the source data and apply to each vertex.
- for (unsigned fi = 0; fi < smesh.faceStart.size(); fi++) {
- uint32_t start = smesh.faceStart[fi];
- uint32_t mtl = smesh.mtls[fi];
- uint32_t *idx = &smesh.idx[start];
-
- if (mtl >= meshes.size()) {
- ASSIMP_LOG_ERROR("SIB: Face material index is invalid.");
- mtl = 0;
- }
-
- TempMesh &dest = meshes[mtl];
-
- aiFace face;
- face.mNumIndices = *idx++;
- face.mIndices = new unsigned[face.mNumIndices];
- for (unsigned pt = 0; pt < face.mNumIndices; pt++, idx += N) {
- size_t vtxIdx = dest.vtx.size();
- face.mIndices[pt] = static_cast<unsigned int>(vtxIdx);
-
- // De-index it. We don't need to validate here as
- // we did it when creating the data.
- aiVector3D pos = smesh.pos[idx[POS]];
- aiVector3D nrm = smesh.nrm[idx[NRM]];
- aiVector3D uv = smesh.uv[idx[UV]];
-
- // The verts are supplied in world-space, so let's
- // transform them back into the local space of this mesh:
- pos = worldToLocal * pos;
- nrm = worldToLocalN * nrm;
-
- dest.vtx.push_back(pos);
- dest.nrm.push_back(nrm);
- dest.uv.push_back(uv);
- }
- dest.faces.push_back(face);
- }
-
- SIBObject obj;
- obj.name = name;
- obj.axis = smesh.axis;
- obj.meshIdx = sib->meshes.size();
-
- // Now that we know the size of everything,
- // we can build the final one-material-per-mesh data.
- for (size_t n = 0; n < meshes.size(); n++) {
- TempMesh &src = meshes[n];
- if (src.faces.empty())
- continue;
-
- aiMesh *mesh = new aiMesh;
- mesh->mName = name;
- mesh->mNumFaces = static_cast<unsigned int>(src.faces.size());
- mesh->mFaces = new aiFace[mesh->mNumFaces];
- mesh->mNumVertices = static_cast<unsigned int>(src.vtx.size());
- mesh->mVertices = new aiVector3D[mesh->mNumVertices];
- mesh->mNormals = new aiVector3D[mesh->mNumVertices];
- mesh->mTextureCoords[0] = new aiVector3D[mesh->mNumVertices];
- mesh->mNumUVComponents[0] = 2;
- mesh->mMaterialIndex = static_cast<unsigned int>(n);
-
- for (unsigned i = 0; i < mesh->mNumVertices; i++) {
- mesh->mVertices[i] = src.vtx[i];
- mesh->mNormals[i] = src.nrm[i];
- mesh->mTextureCoords[0][i] = src.uv[i];
- }
- for (unsigned i = 0; i < mesh->mNumFaces; i++) {
- mesh->mFaces[i] = src.faces[i];
- }
-
- sib->meshes.push_back(mesh);
- }
-
- obj.meshCount = sib->meshes.size() - obj.meshIdx;
- sib->objs.push_back(obj);
-}
-
-// ------------------------------------------------------------------------------------------------
-static void ReadMaterial(SIB *sib, StreamReaderLE *stream) {
- aiColor3D diff = ReadColor(stream);
- aiColor3D ambi = ReadColor(stream);
- aiColor3D spec = ReadColor(stream);
- aiColor3D emis = ReadColor(stream);
- float shiny = (float)stream->GetU4();
-
- uint32_t nameLen = stream->GetU4();
- aiString name = ReadString(stream, nameLen / 2);
- uint32_t texLen = stream->GetU4();
- aiString tex = ReadString(stream, texLen / 2);
-
- aiMaterial *mtl = new aiMaterial();
- mtl->AddProperty(&diff, 1, AI_MATKEY_COLOR_DIFFUSE);
- mtl->AddProperty(&ambi, 1, AI_MATKEY_COLOR_AMBIENT);
- mtl->AddProperty(&spec, 1, AI_MATKEY_COLOR_SPECULAR);
- mtl->AddProperty(&emis, 1, AI_MATKEY_COLOR_EMISSIVE);
- mtl->AddProperty(&shiny, 1, AI_MATKEY_SHININESS);
- mtl->AddProperty(&name, AI_MATKEY_NAME);
- if (tex.length > 0) {
- mtl->AddProperty(&tex, AI_MATKEY_TEXTURE_DIFFUSE(0));
- mtl->AddProperty(&tex, AI_MATKEY_TEXTURE_AMBIENT(0));
- }
-
- sib->mtls.push_back(mtl);
-}
-
-// ------------------------------------------------------------------------------------------------
-static void ReadLightInfo(aiLight *light, StreamReaderLE *stream) {
- uint32_t type = stream->GetU4();
- switch (type) {
- case 0: light->mType = aiLightSource_POINT; break;
- case 1: light->mType = aiLightSource_SPOT; break;
- case 2: light->mType = aiLightSource_DIRECTIONAL; break;
- default: light->mType = aiLightSource_UNDEFINED; break;
- }
-
- light->mPosition.x = stream->GetF4();
- light->mPosition.y = stream->GetF4();
- light->mPosition.z = stream->GetF4();
- light->mDirection.x = stream->GetF4();
- light->mDirection.y = stream->GetF4();
- light->mDirection.z = stream->GetF4();
- light->mColorDiffuse = ReadColor(stream);
- light->mColorAmbient = ReadColor(stream);
- light->mColorSpecular = ReadColor(stream);
- ai_real spotExponent = stream->GetF4();
- ai_real spotCutoff = stream->GetF4();
- light->mAttenuationConstant = stream->GetF4();
- light->mAttenuationLinear = stream->GetF4();
- light->mAttenuationQuadratic = stream->GetF4();
-
- // Silo uses the OpenGL default lighting model for it's
- // spot cutoff/exponent. AssImp unfortunately, does not.
- // Let's try and approximate it by solving for the
- // 99% and 1% percentiles.
- // OpenGL: I = cos(angle)^E
- // Solving: angle = acos(I^(1/E))
- ai_real E = ai_real(1.0) / std::max(spotExponent, (ai_real)0.00001);
- ai_real inner = std::acos(std::pow((ai_real)0.99, E));
- ai_real outer = std::acos(std::pow((ai_real)0.01, E));
-
- // Apply the cutoff.
- outer = std::min(outer, AI_DEG_TO_RAD(spotCutoff));
-
- light->mAngleInnerCone = std::min(inner, outer);
- light->mAngleOuterCone = outer;
-}
-
-static void ReadLight(SIB *sib, StreamReaderLE *stream) {
- aiLight *light = new aiLight();
-
- while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk)) {
- SIBChunk chunk = ReadChunk(stream);
- unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);
-
- switch (chunk.Tag) {
- case TAG('L', 'N', 'F', 'O'): ReadLightInfo(light, stream); break;
- case TAG('S', 'N', 'A', 'M'): light->mName = ReadString(stream, chunk.Size / 2); break;
- default: UnknownChunk(stream, chunk); break;
- }
-
- stream->SetCurrentPos(stream->GetReadLimit());
- stream->SetReadLimit(oldLimit);
- }
-
- sib->lights.push_back(light);
-}
-
-// ------------------------------------------------------------------------------------------------
-static void ReadScale(aiMatrix4x4 &axis, StreamReaderLE *stream) {
- aiMatrix4x4 scale;
- scale.a1 = stream->GetF4();
- scale.b1 = stream->GetF4();
- scale.c1 = stream->GetF4();
- scale.d1 = stream->GetF4();
- scale.a2 = stream->GetF4();
- scale.b2 = stream->GetF4();
- scale.c2 = stream->GetF4();
- scale.d2 = stream->GetF4();
- scale.a3 = stream->GetF4();
- scale.b3 = stream->GetF4();
- scale.c3 = stream->GetF4();
- scale.d3 = stream->GetF4();
- scale.a4 = stream->GetF4();
- scale.b4 = stream->GetF4();
- scale.c4 = stream->GetF4();
- scale.d4 = stream->GetF4();
-
- axis = axis * scale;
-}
-
-static void ReadInstance(SIB *sib, StreamReaderLE *stream) {
- SIBObject inst;
- uint32_t shapeIndex = 0;
-
- while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk)) {
- SIBChunk chunk = ReadChunk(stream);
- unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);
-
- switch (chunk.Tag) {
- case TAG('D', 'I', 'N', 'F'): break; // display info, not needed
- case TAG('P', 'I', 'N', 'F'): break; // ?
- case TAG('A', 'X', 'I', 'S'): ReadAxis(inst.axis, stream); break;
- case TAG('I', 'N', 'S', 'I'): shapeIndex = stream->GetU4(); break;
- case TAG('S', 'M', 'T', 'X'): ReadScale(inst.axis, stream); break;
- case TAG('S', 'N', 'A', 'M'): inst.name = ReadString(stream, chunk.Size / 2); break;
- default: UnknownChunk(stream, chunk); break;
- }
-
- stream->SetCurrentPos(stream->GetReadLimit());
- stream->SetReadLimit(oldLimit);
- }
-
- if (shapeIndex >= sib->objs.size()) {
- throw DeadlyImportError("SIB: Invalid shape index.");
- }
-
- const SIBObject &src = sib->objs[shapeIndex];
- inst.meshIdx = src.meshIdx;
- inst.meshCount = src.meshCount;
- sib->insts.push_back(inst);
-}
-
-// ------------------------------------------------------------------------------------------------
-static void CheckVersion(StreamReaderLE *stream) {
- uint32_t version = stream->GetU4();
- if (version < 1 || version > 2) {
- throw DeadlyImportError("SIB: Unsupported file version.");
- }
-}
-
-static void ReadScene(SIB *sib, StreamReaderLE *stream) {
- // Parse each chunk in turn.
- while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk)) {
- SIBChunk chunk = ReadChunk(stream);
- unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);
-
- switch (chunk.Tag) {
- case TAG('H', 'E', 'A', 'D'): CheckVersion(stream); break;
- case TAG('S', 'H', 'A', 'P'): ReadShape(sib, stream); break;
- case TAG('G', 'R', 'P', 'S'): break; // group assignment, we don't import this
- case TAG('T', 'E', 'X', 'P'): break; // ?
- case TAG('I', 'N', 'S', 'T'): ReadInstance(sib, stream); break;
- case TAG('M', 'A', 'T', 'R'): ReadMaterial(sib, stream); break;
- case TAG('L', 'G', 'H', 'T'): ReadLight(sib, stream); break;
- default: UnknownChunk(stream, chunk); break;
- }
-
- stream->SetCurrentPos(stream->GetReadLimit());
- stream->SetReadLimit(oldLimit);
- }
-}
-
-// ------------------------------------------------------------------------------------------------
-// Imports the given file into the given scene structure.
-void SIBImporter::InternReadFile(const std::string &pFile,
- aiScene *pScene, IOSystem *pIOHandler) {
-
- auto file = pIOHandler->Open(pFile, "rb");
- if (!file)
- throw DeadlyImportError("SIB: Could not open ", pFile);
-
- StreamReaderLE stream(file);
-
- // We should have at least one chunk
- if (stream.GetRemainingSize() < 16)
- throw DeadlyImportError("SIB file is either empty or corrupt: ", pFile);
-
- SIB sib;
-
- // Default material.
- aiMaterial *defmtl = new aiMaterial;
- aiString defname = aiString(AI_DEFAULT_MATERIAL_NAME);
- defmtl->AddProperty(&defname, AI_MATKEY_NAME);
- sib.mtls.push_back(defmtl);
-
- // Read it all.
- ReadScene(&sib, &stream);
-
- // Join the instances and objects together.
- size_t firstInst = sib.objs.size();
- sib.objs.insert(sib.objs.end(), sib.insts.begin(), sib.insts.end());
- sib.insts.clear();
-
- // Transfer to the aiScene.
- pScene->mNumMaterials = static_cast<unsigned int>(sib.mtls.size());
- pScene->mNumMeshes = static_cast<unsigned int>(sib.meshes.size());
- pScene->mNumLights = static_cast<unsigned int>(sib.lights.size());
- pScene->mMaterials = pScene->mNumMaterials ? new aiMaterial *[pScene->mNumMaterials] : nullptr;
- pScene->mMeshes = pScene->mNumMeshes ? new aiMesh *[pScene->mNumMeshes] : nullptr;
- pScene->mLights = pScene->mNumLights ? new aiLight *[pScene->mNumLights] : nullptr;
- if (pScene->mNumMaterials)
- memcpy(pScene->mMaterials, &sib.mtls[0], sizeof(aiMaterial *) * pScene->mNumMaterials);
- if (pScene->mNumMeshes)
- memcpy(pScene->mMeshes, &sib.meshes[0], sizeof(aiMesh *) * pScene->mNumMeshes);
- if (pScene->mNumLights)
- memcpy(pScene->mLights, &sib.lights[0], sizeof(aiLight *) * pScene->mNumLights);
-
- // Construct the root node.
- size_t childIdx = 0;
- aiNode *root = new aiNode();
- root->mName.Set("<SIBRoot>");
- root->mNumChildren = static_cast<unsigned int>(sib.objs.size() + sib.lights.size());
- root->mChildren = root->mNumChildren ? new aiNode *[root->mNumChildren] : nullptr;
- pScene->mRootNode = root;
-
- // Add nodes for each object.
- for (size_t n = 0; n < sib.objs.size(); n++) {
- ai_assert(root->mChildren);
- SIBObject &obj = sib.objs[n];
- aiNode *node = new aiNode;
- root->mChildren[childIdx++] = node;
- node->mName = obj.name;
- node->mParent = root;
- node->mTransformation = obj.axis;
-
- node->mNumMeshes = static_cast<unsigned int>(obj.meshCount);
- node->mMeshes = node->mNumMeshes ? new unsigned[node->mNumMeshes] : nullptr;
- for (unsigned i = 0; i < node->mNumMeshes; i++)
- node->mMeshes[i] = static_cast<unsigned int>(obj.meshIdx + i);
-
- // Mark instanced objects as being so.
- if (n >= firstInst) {
- node->mMetaData = aiMetadata::Alloc(1);
- node->mMetaData->Set(0, "IsInstance", true);
- }
- }
-
- // Add nodes for each light.
- // (no transformation as the light is already in world space)
- for (size_t n = 0; n < sib.lights.size(); n++) {
- ai_assert(root->mChildren);
- aiLight *light = sib.lights[n];
- if (nullptr != light) {
- aiNode *node = new aiNode;
- root->mChildren[childIdx++] = node;
- node->mName = light->mName;
- node->mParent = root;
- }
- }
-}
-
-#endif // !! ASSIMP_BUILD_NO_SIB_IMPORTER