summaryrefslogtreecommitdiff
path: root/libs/assimp/code/PostProcessing/PretransformVertices.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libs/assimp/code/PostProcessing/PretransformVertices.cpp')
-rw-r--r--libs/assimp/code/PostProcessing/PretransformVertices.cpp688
1 files changed, 688 insertions, 0 deletions
diff --git a/libs/assimp/code/PostProcessing/PretransformVertices.cpp b/libs/assimp/code/PostProcessing/PretransformVertices.cpp
new file mode 100644
index 0000000..ec7b878
--- /dev/null
+++ b/libs/assimp/code/PostProcessing/PretransformVertices.cpp
@@ -0,0 +1,688 @@
+/*
+---------------------------------------------------------------------------
+Open Asset Import Library (assimp)
+---------------------------------------------------------------------------
+
+Copyright (c) 2006-2022, assimp team
+
+
+
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the following
+conditions are met:
+
+* Redistributions of source code must retain the above
+ copyright notice, this list of conditions and the
+ following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the
+ following disclaimer in the documentation and/or other
+ materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+ contributors may be used to endorse or promote products
+ derived from this software without specific prior
+ written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+---------------------------------------------------------------------------
+*/
+
+/** @file PretransformVertices.cpp
+ * @brief Implementation of the "PretransformVertices" post processing step
+*/
+
+#include "PretransformVertices.h"
+#include "ConvertToLHProcess.h"
+#include "ProcessHelper.h"
+#include <assimp/Exceptional.h>
+#include <assimp/SceneCombiner.h>
+
+using namespace Assimp;
+
+// some array offsets
+#define AI_PTVS_VERTEX 0x0
+#define AI_PTVS_FACE 0x1
+
+// ------------------------------------------------------------------------------------------------
+// Constructor to be privately used by Importer
+PretransformVertices::PretransformVertices() :
+ configKeepHierarchy(false),
+ configNormalize(false),
+ configTransform(false),
+ configTransformation(),
+ mConfigPointCloud(false) {
+ // empty
+}
+
+// ------------------------------------------------------------------------------------------------
+// Destructor, private as well
+PretransformVertices::~PretransformVertices() {
+ // nothing to do here
+}
+
+// ------------------------------------------------------------------------------------------------
+// Returns whether the processing step is present in the given flag field.
+bool PretransformVertices::IsActive(unsigned int pFlags) const {
+ return (pFlags & aiProcess_PreTransformVertices) != 0;
+}
+
+// ------------------------------------------------------------------------------------------------
+// Setup import configuration
+void PretransformVertices::SetupProperties(const Importer *pImp) {
+ // Get the current value of AI_CONFIG_PP_PTV_KEEP_HIERARCHY, AI_CONFIG_PP_PTV_NORMALIZE,
+ // AI_CONFIG_PP_PTV_ADD_ROOT_TRANSFORMATION and AI_CONFIG_PP_PTV_ROOT_TRANSFORMATION
+ configKeepHierarchy = (0 != pImp->GetPropertyInteger(AI_CONFIG_PP_PTV_KEEP_HIERARCHY, 0));
+ configNormalize = (0 != pImp->GetPropertyInteger(AI_CONFIG_PP_PTV_NORMALIZE, 0));
+ configTransform = (0 != pImp->GetPropertyInteger(AI_CONFIG_PP_PTV_ADD_ROOT_TRANSFORMATION, 0));
+
+ configTransformation = pImp->GetPropertyMatrix(AI_CONFIG_PP_PTV_ROOT_TRANSFORMATION, aiMatrix4x4());
+
+ mConfigPointCloud = pImp->GetPropertyBool(AI_CONFIG_EXPORT_POINT_CLOUDS);
+}
+
+// ------------------------------------------------------------------------------------------------
+// Count the number of nodes
+unsigned int PretransformVertices::CountNodes(const aiNode *pcNode) const {
+ unsigned int iRet = 1;
+ for (unsigned int i = 0; i < pcNode->mNumChildren; ++i) {
+ iRet += CountNodes(pcNode->mChildren[i]);
+ }
+ return iRet;
+}
+
+// ------------------------------------------------------------------------------------------------
+// Get a bitwise combination identifying the vertex format of a mesh
+unsigned int PretransformVertices::GetMeshVFormat(aiMesh *pcMesh) const {
+ // the vertex format is stored in aiMesh::mBones for later retrieval.
+ // there isn't a good reason to compute it a few hundred times
+ // from scratch. The pointer is unused as animations are lost
+ // during PretransformVertices.
+ if (pcMesh->mBones)
+ return (unsigned int)(uint64_t)pcMesh->mBones;
+
+ const unsigned int iRet = GetMeshVFormatUnique(pcMesh);
+
+ // store the value for later use
+ pcMesh->mBones = (aiBone **)(uint64_t)iRet;
+ return iRet;
+}
+
+// ------------------------------------------------------------------------------------------------
+// Count the number of vertices in the whole scene and a given
+// material index
+void PretransformVertices::CountVerticesAndFaces(const aiScene *pcScene, const aiNode *pcNode, unsigned int iMat,
+ unsigned int iVFormat, unsigned int *piFaces, unsigned int *piVertices) const {
+ for (unsigned int i = 0; i < pcNode->mNumMeshes; ++i) {
+ aiMesh *pcMesh = pcScene->mMeshes[pcNode->mMeshes[i]];
+ if (iMat == pcMesh->mMaterialIndex && iVFormat == GetMeshVFormat(pcMesh)) {
+ *piVertices += pcMesh->mNumVertices;
+ *piFaces += pcMesh->mNumFaces;
+ }
+ }
+ for (unsigned int i = 0; i < pcNode->mNumChildren; ++i) {
+ CountVerticesAndFaces(pcScene, pcNode->mChildren[i], iMat,
+ iVFormat, piFaces, piVertices);
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Collect vertex/face data
+void PretransformVertices::CollectData(const aiScene *pcScene, const aiNode *pcNode, unsigned int iMat,
+ unsigned int iVFormat, aiMesh *pcMeshOut,
+ unsigned int aiCurrent[2], unsigned int *num_refs) const {
+ // No need to multiply if there's no transformation
+ const bool identity = pcNode->mTransformation.IsIdentity();
+ for (unsigned int i = 0; i < pcNode->mNumMeshes; ++i) {
+ aiMesh *pcMesh = pcScene->mMeshes[pcNode->mMeshes[i]];
+ if (iMat == pcMesh->mMaterialIndex && iVFormat == GetMeshVFormat(pcMesh)) {
+ // Decrement mesh reference counter
+ unsigned int &num_ref = num_refs[pcNode->mMeshes[i]];
+ ai_assert(0 != num_ref);
+ --num_ref;
+ // Save the name of the last mesh
+ if (num_ref == 0) {
+ pcMeshOut->mName = pcMesh->mName;
+ }
+
+ if (identity) {
+ // copy positions without modifying them
+ ::memcpy(pcMeshOut->mVertices + aiCurrent[AI_PTVS_VERTEX],
+ pcMesh->mVertices,
+ pcMesh->mNumVertices * sizeof(aiVector3D));
+
+ if (iVFormat & 0x2) {
+ // copy normals without modifying them
+ ::memcpy(pcMeshOut->mNormals + aiCurrent[AI_PTVS_VERTEX],
+ pcMesh->mNormals,
+ pcMesh->mNumVertices * sizeof(aiVector3D));
+ }
+ if (iVFormat & 0x4) {
+ // copy tangents without modifying them
+ ::memcpy(pcMeshOut->mTangents + aiCurrent[AI_PTVS_VERTEX],
+ pcMesh->mTangents,
+ pcMesh->mNumVertices * sizeof(aiVector3D));
+ // copy bitangents without modifying them
+ ::memcpy(pcMeshOut->mBitangents + aiCurrent[AI_PTVS_VERTEX],
+ pcMesh->mBitangents,
+ pcMesh->mNumVertices * sizeof(aiVector3D));
+ }
+ } else {
+ // copy positions, transform them to worldspace
+ for (unsigned int n = 0; n < pcMesh->mNumVertices; ++n) {
+ pcMeshOut->mVertices[aiCurrent[AI_PTVS_VERTEX] + n] = pcNode->mTransformation * pcMesh->mVertices[n];
+ }
+ aiMatrix4x4 mWorldIT = pcNode->mTransformation;
+ mWorldIT.Inverse().Transpose();
+
+ // TODO: implement Inverse() for aiMatrix3x3
+ aiMatrix3x3 m = aiMatrix3x3(mWorldIT);
+
+ if (iVFormat & 0x2) {
+ // copy normals, transform them to worldspace
+ for (unsigned int n = 0; n < pcMesh->mNumVertices; ++n) {
+ pcMeshOut->mNormals[aiCurrent[AI_PTVS_VERTEX] + n] =
+ (m * pcMesh->mNormals[n]).Normalize();
+ }
+ }
+ if (iVFormat & 0x4) {
+ // copy tangents and bitangents, transform them to worldspace
+ for (unsigned int n = 0; n < pcMesh->mNumVertices; ++n) {
+ pcMeshOut->mTangents[aiCurrent[AI_PTVS_VERTEX] + n] = (m * pcMesh->mTangents[n]).Normalize();
+ pcMeshOut->mBitangents[aiCurrent[AI_PTVS_VERTEX] + n] = (m * pcMesh->mBitangents[n]).Normalize();
+ }
+ }
+ }
+ unsigned int p = 0;
+ while (iVFormat & (0x100 << p)) {
+ // copy texture coordinates
+ memcpy(pcMeshOut->mTextureCoords[p] + aiCurrent[AI_PTVS_VERTEX],
+ pcMesh->mTextureCoords[p],
+ pcMesh->mNumVertices * sizeof(aiVector3D));
+ ++p;
+ }
+ p = 0;
+ while (iVFormat & (0x1000000 << p)) {
+ // copy vertex colors
+ memcpy(pcMeshOut->mColors[p] + aiCurrent[AI_PTVS_VERTEX],
+ pcMesh->mColors[p],
+ pcMesh->mNumVertices * sizeof(aiColor4D));
+ ++p;
+ }
+ // now we need to copy all faces. since we will delete the source mesh afterwards,
+ // we don't need to reallocate the array of indices except if this mesh is
+ // referenced multiple times.
+ for (unsigned int planck = 0; planck < pcMesh->mNumFaces; ++planck) {
+ aiFace &f_src = pcMesh->mFaces[planck];
+ aiFace &f_dst = pcMeshOut->mFaces[aiCurrent[AI_PTVS_FACE] + planck];
+
+ const unsigned int num_idx = f_src.mNumIndices;
+
+ f_dst.mNumIndices = num_idx;
+
+ unsigned int *pi;
+ if (!num_ref) { /* if last time the mesh is referenced -> no reallocation */
+ pi = f_dst.mIndices = f_src.mIndices;
+
+ // offset all vertex indices
+ for (unsigned int hahn = 0; hahn < num_idx; ++hahn) {
+ pi[hahn] += aiCurrent[AI_PTVS_VERTEX];
+ }
+ } else {
+ pi = f_dst.mIndices = new unsigned int[num_idx];
+
+ // copy and offset all vertex indices
+ for (unsigned int hahn = 0; hahn < num_idx; ++hahn) {
+ pi[hahn] = f_src.mIndices[hahn] + aiCurrent[AI_PTVS_VERTEX];
+ }
+ }
+
+ // Update the mPrimitiveTypes member of the mesh
+ switch (pcMesh->mFaces[planck].mNumIndices) {
+ case 0x1:
+ pcMeshOut->mPrimitiveTypes |= aiPrimitiveType_POINT;
+ break;
+ case 0x2:
+ pcMeshOut->mPrimitiveTypes |= aiPrimitiveType_LINE;
+ break;
+ case 0x3:
+ pcMeshOut->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
+ break;
+ default:
+ pcMeshOut->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
+ break;
+ };
+ }
+ aiCurrent[AI_PTVS_VERTEX] += pcMesh->mNumVertices;
+ aiCurrent[AI_PTVS_FACE] += pcMesh->mNumFaces;
+ }
+ }
+
+ // append all children of us
+ for (unsigned int i = 0; i < pcNode->mNumChildren; ++i) {
+ CollectData(pcScene, pcNode->mChildren[i], iMat,
+ iVFormat, pcMeshOut, aiCurrent, num_refs);
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Get a list of all vertex formats that occur for a given material index
+// The output list contains duplicate elements
+void PretransformVertices::GetVFormatList(const aiScene *pcScene, unsigned int iMat,
+ std::list<unsigned int> &aiOut) const {
+ for (unsigned int i = 0; i < pcScene->mNumMeshes; ++i) {
+ aiMesh *pcMesh = pcScene->mMeshes[i];
+ if (iMat == pcMesh->mMaterialIndex) {
+ aiOut.push_back(GetMeshVFormat(pcMesh));
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Compute the absolute transformation matrices of each node
+void PretransformVertices::ComputeAbsoluteTransform(aiNode *pcNode) {
+ if (pcNode->mParent) {
+ pcNode->mTransformation = pcNode->mParent->mTransformation * pcNode->mTransformation;
+ }
+
+ for (unsigned int i = 0; i < pcNode->mNumChildren; ++i) {
+ ComputeAbsoluteTransform(pcNode->mChildren[i]);
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Apply the node transformation to a mesh
+void PretransformVertices::ApplyTransform(aiMesh *mesh, const aiMatrix4x4 &mat) const {
+ // Check whether we need to transform the coordinates at all
+ if (!mat.IsIdentity()) {
+
+ // Check for odd negative scale (mirror)
+ if (mesh->HasFaces() && mat.Determinant() < 0) {
+ // Reverse the mesh face winding order
+ FlipWindingOrderProcess::ProcessMesh(mesh);
+ }
+
+ // Update positions
+ if (mesh->HasPositions()) {
+ for (unsigned int i = 0; i < mesh->mNumVertices; ++i) {
+ mesh->mVertices[i] = mat * mesh->mVertices[i];
+ }
+ }
+
+ // Update normals and tangents
+ if (mesh->HasNormals() || mesh->HasTangentsAndBitangents()) {
+ const aiMatrix3x3 m = aiMatrix3x3(mat).Inverse().Transpose();
+
+ if (mesh->HasNormals()) {
+ for (unsigned int i = 0; i < mesh->mNumVertices; ++i) {
+ mesh->mNormals[i] = (m * mesh->mNormals[i]).Normalize();
+ }
+ }
+ if (mesh->HasTangentsAndBitangents()) {
+ for (unsigned int i = 0; i < mesh->mNumVertices; ++i) {
+ mesh->mTangents[i] = (m * mesh->mTangents[i]).Normalize();
+ mesh->mBitangents[i] = (m * mesh->mBitangents[i]).Normalize();
+ }
+ }
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Simple routine to build meshes in worldspace, no further optimization
+void PretransformVertices::BuildWCSMeshes(std::vector<aiMesh *> &out, aiMesh **in,
+ unsigned int numIn, aiNode *node) const {
+ // NOTE:
+ // aiMesh::mNumBones store original source mesh, or UINT_MAX if not a copy
+ // aiMesh::mBones store reference to abs. transform we multiplied with
+
+ // process meshes
+ for (unsigned int i = 0; i < node->mNumMeshes; ++i) {
+ aiMesh *mesh = in[node->mMeshes[i]];
+
+ // check whether we can operate on this mesh
+ if (!mesh->mBones || *reinterpret_cast<aiMatrix4x4 *>(mesh->mBones) == node->mTransformation) {
+ // yes, we can.
+ mesh->mBones = reinterpret_cast<aiBone **>(&node->mTransformation);
+ mesh->mNumBones = UINT_MAX;
+ } else {
+
+ // try to find us in the list of newly created meshes
+ for (unsigned int n = 0; n < out.size(); ++n) {
+ aiMesh *ctz = out[n];
+ if (ctz->mNumBones == node->mMeshes[i] && *reinterpret_cast<aiMatrix4x4 *>(ctz->mBones) == node->mTransformation) {
+
+ // ok, use this one. Update node mesh index
+ node->mMeshes[i] = numIn + n;
+ }
+ }
+ if (node->mMeshes[i] < numIn) {
+ // Worst case. Need to operate on a full copy of the mesh
+ ASSIMP_LOG_INFO("PretransformVertices: Copying mesh due to mismatching transforms");
+ aiMesh *ntz;
+
+ const unsigned int tmp = mesh->mNumBones; //
+ mesh->mNumBones = 0;
+ SceneCombiner::Copy(&ntz, mesh);
+ mesh->mNumBones = tmp;
+
+ ntz->mNumBones = node->mMeshes[i];
+ ntz->mBones = reinterpret_cast<aiBone **>(&node->mTransformation);
+
+ out.push_back(ntz);
+
+ node->mMeshes[i] = static_cast<unsigned int>(numIn + out.size() - 1);
+ }
+ }
+ }
+
+ // call children
+ for (unsigned int i = 0; i < node->mNumChildren; ++i)
+ BuildWCSMeshes(out, in, numIn, node->mChildren[i]);
+}
+
+// ------------------------------------------------------------------------------------------------
+// Reset transformation matrices to identity
+void PretransformVertices::MakeIdentityTransform(aiNode *nd) const {
+ nd->mTransformation = aiMatrix4x4();
+
+ // call children
+ for (unsigned int i = 0; i < nd->mNumChildren; ++i)
+ MakeIdentityTransform(nd->mChildren[i]);
+}
+
+// ------------------------------------------------------------------------------------------------
+// Build reference counters for all meshes
+void PretransformVertices::BuildMeshRefCountArray(const aiNode *nd, unsigned int *refs) const {
+ for (unsigned int i = 0; i < nd->mNumMeshes; ++i)
+ refs[nd->mMeshes[i]]++;
+
+ // call children
+ for (unsigned int i = 0; i < nd->mNumChildren; ++i)
+ BuildMeshRefCountArray(nd->mChildren[i], refs);
+}
+
+// ------------------------------------------------------------------------------------------------
+// Executes the post processing step on the given imported data.
+void PretransformVertices::Execute(aiScene *pScene) {
+ ASSIMP_LOG_DEBUG("PretransformVerticesProcess begin");
+
+ // Return immediately if we have no meshes
+ if (!pScene->mNumMeshes)
+ return;
+
+ const unsigned int iOldMeshes = pScene->mNumMeshes;
+ const unsigned int iOldAnimationChannels = pScene->mNumAnimations;
+ const unsigned int iOldNodes = CountNodes(pScene->mRootNode);
+
+ if (configTransform) {
+ pScene->mRootNode->mTransformation = configTransformation * pScene->mRootNode->mTransformation;
+ }
+
+ // first compute absolute transformation matrices for all nodes
+ ComputeAbsoluteTransform(pScene->mRootNode);
+
+ // Delete aiMesh::mBones for all meshes. The bones are
+ // removed during this step and we need the pointer as
+ // temporary storage
+ for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
+ aiMesh *mesh = pScene->mMeshes[i];
+
+ for (unsigned int a = 0; a < mesh->mNumBones; ++a)
+ delete mesh->mBones[a];
+
+ delete[] mesh->mBones;
+ mesh->mBones = nullptr;
+ }
+
+ // now build a list of output meshes
+ std::vector<aiMesh *> apcOutMeshes;
+
+ // Keep scene hierarchy? It's an easy job in this case ...
+ // we go on and transform all meshes, if one is referenced by nodes
+ // with different absolute transformations a depth copy of the mesh
+ // is required.
+ if (configKeepHierarchy) {
+
+ // Hack: store the matrix we're transforming a mesh with in aiMesh::mBones
+ BuildWCSMeshes(apcOutMeshes, pScene->mMeshes, pScene->mNumMeshes, pScene->mRootNode);
+
+ // ... if new meshes have been generated, append them to the end of the scene
+ if (apcOutMeshes.size() > 0) {
+ aiMesh **npp = new aiMesh *[pScene->mNumMeshes + apcOutMeshes.size()];
+
+ memcpy(npp, pScene->mMeshes, sizeof(aiMesh *) * pScene->mNumMeshes);
+ memcpy(npp + pScene->mNumMeshes, &apcOutMeshes[0], sizeof(aiMesh *) * apcOutMeshes.size());
+
+ pScene->mNumMeshes += static_cast<unsigned int>(apcOutMeshes.size());
+ delete[] pScene->mMeshes;
+ pScene->mMeshes = npp;
+ }
+
+ // now iterate through all meshes and transform them to world-space
+ for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
+ ApplyTransform(pScene->mMeshes[i], *reinterpret_cast<aiMatrix4x4 *>(pScene->mMeshes[i]->mBones));
+
+ // prevent improper destruction
+ pScene->mMeshes[i]->mBones = nullptr;
+ pScene->mMeshes[i]->mNumBones = 0;
+ }
+ } else {
+ apcOutMeshes.reserve(static_cast<size_t>(pScene->mNumMaterials) << 1u);
+ std::list<unsigned int> aiVFormats;
+
+ std::vector<unsigned int> s(pScene->mNumMeshes, 0);
+ BuildMeshRefCountArray(pScene->mRootNode, &s[0]);
+
+ for (unsigned int i = 0; i < pScene->mNumMaterials; ++i) {
+ // get the list of all vertex formats for this material
+ aiVFormats.clear();
+ GetVFormatList(pScene, i, aiVFormats);
+ aiVFormats.sort();
+ aiVFormats.unique();
+ for (std::list<unsigned int>::const_iterator j = aiVFormats.begin(); j != aiVFormats.end(); ++j) {
+ unsigned int iVertices = 0;
+ unsigned int iFaces = 0;
+ CountVerticesAndFaces(pScene, pScene->mRootNode, i, *j, &iFaces, &iVertices);
+ if (0 != iFaces && 0 != iVertices) {
+ apcOutMeshes.push_back(new aiMesh());
+ aiMesh *pcMesh = apcOutMeshes.back();
+ pcMesh->mNumFaces = iFaces;
+ pcMesh->mNumVertices = iVertices;
+ pcMesh->mFaces = new aiFace[iFaces];
+ pcMesh->mVertices = new aiVector3D[iVertices];
+ pcMesh->mMaterialIndex = i;
+ if ((*j) & 0x2) pcMesh->mNormals = new aiVector3D[iVertices];
+ if ((*j) & 0x4) {
+ pcMesh->mTangents = new aiVector3D[iVertices];
+ pcMesh->mBitangents = new aiVector3D[iVertices];
+ }
+ iFaces = 0;
+ while ((*j) & (0x100 << iFaces)) {
+ pcMesh->mTextureCoords[iFaces] = new aiVector3D[iVertices];
+ if ((*j) & (0x10000 << iFaces))
+ pcMesh->mNumUVComponents[iFaces] = 3;
+ else
+ pcMesh->mNumUVComponents[iFaces] = 2;
+ iFaces++;
+ }
+ iFaces = 0;
+ while ((*j) & (0x1000000 << iFaces))
+ pcMesh->mColors[iFaces++] = new aiColor4D[iVertices];
+
+ // fill the mesh ...
+ unsigned int aiTemp[2] = { 0, 0 };
+ CollectData(pScene, pScene->mRootNode, i, *j, pcMesh, aiTemp, &s[0]);
+ }
+ }
+ }
+
+ // If no meshes are referenced in the node graph it is possible that we get no output meshes.
+ if (apcOutMeshes.empty()) {
+
+ throw DeadlyImportError("No output meshes: all meshes are orphaned and are not referenced by any nodes");
+ } else {
+ // now delete all meshes in the scene and build a new mesh list
+ for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
+ aiMesh *mesh = pScene->mMeshes[i];
+ mesh->mNumBones = 0;
+ mesh->mBones = nullptr;
+
+ // we're reusing the face index arrays. avoid destruction
+ for (unsigned int a = 0; a < mesh->mNumFaces; ++a) {
+ mesh->mFaces[a].mNumIndices = 0;
+ mesh->mFaces[a].mIndices = nullptr;
+ }
+
+ delete mesh;
+
+ // Invalidate the contents of the old mesh array. We will most
+ // likely have less output meshes now, so the last entries of
+ // the mesh array are not overridden. We set them to nullptr to
+ // make sure the developer gets notified when his application
+ // attempts to access these fields ...
+ mesh = nullptr;
+ }
+
+ // It is impossible that we have more output meshes than
+ // input meshes, so we can easily reuse the old mesh array
+ pScene->mNumMeshes = (unsigned int)apcOutMeshes.size();
+ for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
+ pScene->mMeshes[i] = apcOutMeshes[i];
+ }
+ }
+ }
+
+ // remove all animations from the scene
+ for (unsigned int i = 0; i < pScene->mNumAnimations; ++i)
+ delete pScene->mAnimations[i];
+ delete[] pScene->mAnimations;
+
+ pScene->mAnimations = nullptr;
+ pScene->mNumAnimations = 0;
+
+ // --- we need to keep all cameras and lights
+ for (unsigned int i = 0; i < pScene->mNumCameras; ++i) {
+ aiCamera *cam = pScene->mCameras[i];
+ const aiNode *nd = pScene->mRootNode->FindNode(cam->mName);
+ ai_assert(nullptr != nd);
+
+ // multiply all properties of the camera with the absolute
+ // transformation of the corresponding node
+ cam->mPosition = nd->mTransformation * cam->mPosition;
+ cam->mLookAt = aiMatrix3x3(nd->mTransformation) * cam->mLookAt;
+ cam->mUp = aiMatrix3x3(nd->mTransformation) * cam->mUp;
+ }
+
+ for (unsigned int i = 0; i < pScene->mNumLights; ++i) {
+ aiLight *l = pScene->mLights[i];
+ const aiNode *nd = pScene->mRootNode->FindNode(l->mName);
+ ai_assert(nullptr != nd);
+
+ // multiply all properties of the camera with the absolute
+ // transformation of the corresponding node
+ l->mPosition = nd->mTransformation * l->mPosition;
+ l->mDirection = aiMatrix3x3(nd->mTransformation) * l->mDirection;
+ l->mUp = aiMatrix3x3(nd->mTransformation) * l->mUp;
+ }
+
+ if (!configKeepHierarchy) {
+
+ // now delete all nodes in the scene and build a new
+ // flat node graph with a root node and some level 1 children
+ aiNode *newRoot = new aiNode();
+ newRoot->mName = pScene->mRootNode->mName;
+ delete pScene->mRootNode;
+ pScene->mRootNode = newRoot;
+
+ if (1 == pScene->mNumMeshes && !pScene->mNumLights && !pScene->mNumCameras) {
+ pScene->mRootNode->mNumMeshes = 1;
+ pScene->mRootNode->mMeshes = new unsigned int[1];
+ pScene->mRootNode->mMeshes[0] = 0;
+ } else {
+ pScene->mRootNode->mNumChildren = pScene->mNumMeshes + pScene->mNumLights + pScene->mNumCameras;
+ aiNode **nodes = pScene->mRootNode->mChildren = new aiNode *[pScene->mRootNode->mNumChildren];
+
+ // generate mesh nodes
+ for (unsigned int i = 0; i < pScene->mNumMeshes; ++i, ++nodes) {
+ aiNode *pcNode = new aiNode();
+ *nodes = pcNode;
+ pcNode->mParent = pScene->mRootNode;
+ pcNode->mName = pScene->mMeshes[i]->mName;
+
+ // setup mesh indices
+ pcNode->mNumMeshes = 1;
+ pcNode->mMeshes = new unsigned int[1];
+ pcNode->mMeshes[0] = i;
+ }
+ // generate light nodes
+ for (unsigned int i = 0; i < pScene->mNumLights; ++i, ++nodes) {
+ aiNode *pcNode = new aiNode();
+ *nodes = pcNode;
+ pcNode->mParent = pScene->mRootNode;
+ pcNode->mName.length = ai_snprintf(pcNode->mName.data, MAXLEN, "light_%u", i);
+ pScene->mLights[i]->mName = pcNode->mName;
+ }
+ // generate camera nodes
+ for (unsigned int i = 0; i < pScene->mNumCameras; ++i, ++nodes) {
+ aiNode *pcNode = new aiNode();
+ *nodes = pcNode;
+ pcNode->mParent = pScene->mRootNode;
+ pcNode->mName.length = ::ai_snprintf(pcNode->mName.data, MAXLEN, "cam_%u", i);
+ pScene->mCameras[i]->mName = pcNode->mName;
+ }
+ }
+ } else {
+ // ... and finally set the transformation matrix of all nodes to identity
+ MakeIdentityTransform(pScene->mRootNode);
+ }
+
+ if (configNormalize) {
+ // compute the boundary of all meshes
+ aiVector3D min, max;
+ MinMaxChooser<aiVector3D>()(min, max);
+
+ for (unsigned int a = 0; a < pScene->mNumMeshes; ++a) {
+ aiMesh *m = pScene->mMeshes[a];
+ for (unsigned int i = 0; i < m->mNumVertices; ++i) {
+ min = std::min(m->mVertices[i], min);
+ max = std::max(m->mVertices[i], max);
+ }
+ }
+
+ // find the dominant axis
+ aiVector3D d = max - min;
+ const ai_real div = std::max(d.x, std::max(d.y, d.z)) * ai_real(0.5);
+
+ d = min + d * (ai_real)0.5;
+ for (unsigned int a = 0; a < pScene->mNumMeshes; ++a) {
+ aiMesh *m = pScene->mMeshes[a];
+ for (unsigned int i = 0; i < m->mNumVertices; ++i) {
+ m->mVertices[i] = (m->mVertices[i] - d) / div;
+ }
+ }
+ }
+
+ // print statistics
+ if (!DefaultLogger::isNullLogger()) {
+ ASSIMP_LOG_DEBUG("PretransformVerticesProcess finished");
+
+ ASSIMP_LOG_INFO("Removed ", iOldNodes, " nodes and ", iOldAnimationChannels, " animation channels (",
+ CountNodes(pScene->mRootNode), " output nodes)");
+ ASSIMP_LOG_INFO("Kept ", pScene->mNumLights, " lights and ", pScene->mNumCameras, " cameras.");
+ ASSIMP_LOG_INFO("Moved ", iOldMeshes, " meshes to WCS (number of output meshes: ", pScene->mNumMeshes, ")");
+ }
+}