diff options
Diffstat (limited to 'libs/assimp/code/PostProcessing/TriangulateProcess.cpp')
-rw-r--r-- | libs/assimp/code/PostProcessing/TriangulateProcess.cpp | 628 |
1 files changed, 0 insertions, 628 deletions
diff --git a/libs/assimp/code/PostProcessing/TriangulateProcess.cpp b/libs/assimp/code/PostProcessing/TriangulateProcess.cpp deleted file mode 100644 index a18bf1c..0000000 --- a/libs/assimp/code/PostProcessing/TriangulateProcess.cpp +++ /dev/null @@ -1,628 +0,0 @@ -/* ---------------------------------------------------------------------------- -Open Asset Import Library (assimp) ---------------------------------------------------------------------------- - -Copyright (c) 2006-2022, assimp team - -All rights reserved. - -Redistribution and use of this software in source and binary forms, -with or without modification, are permitted provided that the following -conditions are met: - -* Redistributions of source code must retain the above - copyright notice, this list of conditions and the - following disclaimer. - -* Redistributions in binary form must reproduce the above - copyright notice, this list of conditions and the - following disclaimer in the documentation and/or other - materials provided with the distribution. - -* Neither the name of the assimp team, nor the names of its - contributors may be used to endorse or promote products - derived from this software without specific prior - written permission of the assimp team. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------- -*/ - -/** @file TriangulateProcess.cpp - * @brief Implementation of the post processing step to split up - * all faces with more than three indices into triangles. - * - * - * The triangulation algorithm will handle concave or convex polygons. - * Self-intersecting or non-planar polygons are not rejected, but - * they're probably not triangulated correctly. - * - * DEBUG SWITCHES - do not enable any of them in release builds: - * - * AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING - * - generates vertex colors to represent the face winding order. - * the first vertex of a polygon becomes red, the last blue. - * AI_BUILD_TRIANGULATE_DEBUG_POLYS - * - dump all polygons and their triangulation sequences to - * a file - */ -#ifndef ASSIMP_BUILD_NO_TRIANGULATE_PROCESS - -#include "PostProcessing/TriangulateProcess.h" -#include "PostProcessing/ProcessHelper.h" -#include "Common/PolyTools.h" - -#include <memory> -#include <cstdint> - -//#define AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING -//#define AI_BUILD_TRIANGULATE_DEBUG_POLYS - -#define POLY_GRID_Y 40 -#define POLY_GRID_X 70 -#define POLY_GRID_XPAD 20 -#define POLY_OUTPUT_FILE "assimp_polygons_debug.txt" - -using namespace Assimp; - -namespace { - - /** - * @brief Helper struct used to simplify NGON encoding functions. - */ - struct NGONEncoder { - NGONEncoder() : mLastNGONFirstIndex((unsigned int)-1) {} - - /** - * @brief Encode the current triangle, and make sure it is recognized as a triangle. - * - * This method will rotate indices in tri if needed in order to avoid tri to be considered - * part of the previous ngon. This method is to be used whenever you want to emit a real triangle, - * and make sure it is seen as a triangle. - * - * @param tri Triangle to encode. - */ - void ngonEncodeTriangle(aiFace * tri) { - ai_assert(tri->mNumIndices == 3); - - // Rotate indices in new triangle to avoid ngon encoding false ngons - // Otherwise, the new triangle would be considered part of the previous NGON. - if (isConsideredSameAsLastNgon(tri)) { - std::swap(tri->mIndices[0], tri->mIndices[2]); - std::swap(tri->mIndices[1], tri->mIndices[2]); - } - - mLastNGONFirstIndex = tri->mIndices[0]; - } - - /** - * @brief Encode a quad (2 triangles) in ngon encoding, and make sure they are seen as a single ngon. - * - * @param tri1 First quad triangle - * @param tri2 Second quad triangle - * - * @pre Triangles must be properly fanned from the most appropriate vertex. - */ - void ngonEncodeQuad(aiFace *tri1, aiFace *tri2) { - ai_assert(tri1->mNumIndices == 3); - ai_assert(tri2->mNumIndices == 3); - ai_assert(tri1->mIndices[0] == tri2->mIndices[0]); - - // If the selected fanning vertex is the same as the previously - // emitted ngon, we use the opposite vertex which also happens to work - // for tri-fanning a concave quad. - // ref: https://github.com/assimp/assimp/pull/3695#issuecomment-805999760 - if (isConsideredSameAsLastNgon(tri1)) { - // Right-rotate indices for tri1 (index 2 becomes the new fanning vertex) - std::swap(tri1->mIndices[0], tri1->mIndices[2]); - std::swap(tri1->mIndices[1], tri1->mIndices[2]); - - // Left-rotate indices for tri2 (index 2 becomes the new fanning vertex) - std::swap(tri2->mIndices[1], tri2->mIndices[2]); - std::swap(tri2->mIndices[0], tri2->mIndices[2]); - - ai_assert(tri1->mIndices[0] == tri2->mIndices[0]); - } - - mLastNGONFirstIndex = tri1->mIndices[0]; - } - - /** - * @brief Check whether this triangle would be considered part of the lastly emitted ngon or not. - * - * @param tri Current triangle. - * @return true If used as is, this triangle will be part of last ngon. - * @return false If used as is, this triangle is not considered part of the last ngon. - */ - bool isConsideredSameAsLastNgon(const aiFace * tri) const { - ai_assert(tri->mNumIndices == 3); - return tri->mIndices[0] == mLastNGONFirstIndex; - } - - private: - unsigned int mLastNGONFirstIndex; - }; - -} - - -// ------------------------------------------------------------------------------------------------ -// Constructor to be privately used by Importer -TriangulateProcess::TriangulateProcess() -{ - // nothing to do here -} - -// ------------------------------------------------------------------------------------------------ -// Destructor, private as well -TriangulateProcess::~TriangulateProcess() -{ - // nothing to do here -} - -// ------------------------------------------------------------------------------------------------ -// Returns whether the processing step is present in the given flag field. -bool TriangulateProcess::IsActive( unsigned int pFlags) const -{ - return (pFlags & aiProcess_Triangulate) != 0; -} - -// ------------------------------------------------------------------------------------------------ -// Executes the post processing step on the given imported data. -void TriangulateProcess::Execute( aiScene* pScene) -{ - ASSIMP_LOG_DEBUG("TriangulateProcess begin"); - - bool bHas = false; - for( unsigned int a = 0; a < pScene->mNumMeshes; a++) - { - if (pScene->mMeshes[ a ]) { - if ( TriangulateMesh( pScene->mMeshes[ a ] ) ) { - bHas = true; - } - } - } - if ( bHas ) { - ASSIMP_LOG_INFO( "TriangulateProcess finished. All polygons have been triangulated." ); - } else { - ASSIMP_LOG_DEBUG( "TriangulateProcess finished. There was nothing to be done." ); - } -} - -// ------------------------------------------------------------------------------------------------ -// Triangulates the given mesh. -bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh) -{ - // Now we have aiMesh::mPrimitiveTypes, so this is only here for test cases - if (!pMesh->mPrimitiveTypes) { - bool bNeed = false; - - for( unsigned int a = 0; a < pMesh->mNumFaces; a++) { - const aiFace& face = pMesh->mFaces[a]; - - if( face.mNumIndices != 3) { - bNeed = true; - } - } - if (!bNeed) - return false; - } - else if (!(pMesh->mPrimitiveTypes & aiPrimitiveType_POLYGON)) { - return false; - } - - // Find out how many output faces we'll get - uint32_t numOut = 0, max_out = 0; - bool get_normals = true; - for( unsigned int a = 0; a < pMesh->mNumFaces; a++) { - aiFace& face = pMesh->mFaces[a]; - if (face.mNumIndices <= 4) { - get_normals = false; - } - if( face.mNumIndices <= 3) { - numOut++; - - } - else { - numOut += face.mNumIndices-2; - max_out = std::max(max_out,face.mNumIndices); - } - } - - // Just another check whether aiMesh::mPrimitiveTypes is correct - ai_assert(numOut != pMesh->mNumFaces); - - aiVector3D *nor_out = nullptr; - - // if we don't have normals yet, but expect them to be a cheap side - // product of triangulation anyway, allocate storage for them. - if (!pMesh->mNormals && get_normals) { - // XXX need a mechanism to inform the GenVertexNormals process to treat these normals as preprocessed per-face normals - // nor_out = pMesh->mNormals = new aiVector3D[pMesh->mNumVertices]; - } - - // the output mesh will contain triangles, but no polys anymore - pMesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE; - pMesh->mPrimitiveTypes &= ~aiPrimitiveType_POLYGON; - - // The mesh becomes NGON encoded now, during the triangulation process. - pMesh->mPrimitiveTypes |= aiPrimitiveType_NGONEncodingFlag; - - aiFace* out = new aiFace[numOut](), *curOut = out; - std::vector<aiVector3D> temp_verts3d(max_out+2); /* temporary storage for vertices */ - std::vector<aiVector2D> temp_verts(max_out+2); - - NGONEncoder ngonEncoder; - - // Apply vertex colors to represent the face winding? -#ifdef AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING - if (!pMesh->mColors[0]) - pMesh->mColors[0] = new aiColor4D[pMesh->mNumVertices]; - else - new(pMesh->mColors[0]) aiColor4D[pMesh->mNumVertices]; - - aiColor4D* clr = pMesh->mColors[0]; -#endif - -#ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS - FILE* fout = fopen(POLY_OUTPUT_FILE,"a"); -#endif - - const aiVector3D* verts = pMesh->mVertices; - - // use std::unique_ptr to avoid slow std::vector<bool> specialiations - std::unique_ptr<bool[]> done(new bool[max_out]); - for( unsigned int a = 0; a < pMesh->mNumFaces; a++) { - aiFace& face = pMesh->mFaces[a]; - - unsigned int* idx = face.mIndices; - int num = (int)face.mNumIndices, ear = 0, tmp, prev = num-1, next = 0, max = num; - - // Apply vertex colors to represent the face winding? -#ifdef AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING - for (unsigned int i = 0; i < face.mNumIndices; ++i) { - aiColor4D& c = clr[idx[i]]; - c.r = (i+1) / (float)max; - c.b = 1.f - c.r; - } -#endif - - aiFace* const last_face = curOut; - - // if it's a simple point,line or triangle: just copy it - if( face.mNumIndices <= 3) - { - aiFace& nface = *curOut++; - nface.mNumIndices = face.mNumIndices; - nface.mIndices = face.mIndices; - face.mIndices = nullptr; - - // points and lines don't require ngon encoding (and are not supported either!) - if (nface.mNumIndices == 3) ngonEncoder.ngonEncodeTriangle(&nface); - - continue; - } - // optimized code for quadrilaterals - else if ( face.mNumIndices == 4) { - - // quads can have at maximum one concave vertex. Determine - // this vertex (if it exists) and start tri-fanning from - // it. - unsigned int start_vertex = 0; - for (unsigned int i = 0; i < 4; ++i) { - const aiVector3D& v0 = verts[face.mIndices[(i+3) % 4]]; - const aiVector3D& v1 = verts[face.mIndices[(i+2) % 4]]; - const aiVector3D& v2 = verts[face.mIndices[(i+1) % 4]]; - - const aiVector3D& v = verts[face.mIndices[i]]; - - aiVector3D left = (v0-v); - aiVector3D diag = (v1-v); - aiVector3D right = (v2-v); - - left.Normalize(); - diag.Normalize(); - right.Normalize(); - - const float angle = std::acos(left*diag) + std::acos(right*diag); - if (angle > AI_MATH_PI_F) { - // this is the concave point - start_vertex = i; - break; - } - } - - const unsigned int temp[] = {face.mIndices[0], face.mIndices[1], face.mIndices[2], face.mIndices[3]}; - - aiFace& nface = *curOut++; - nface.mNumIndices = 3; - nface.mIndices = face.mIndices; - - nface.mIndices[0] = temp[start_vertex]; - nface.mIndices[1] = temp[(start_vertex + 1) % 4]; - nface.mIndices[2] = temp[(start_vertex + 2) % 4]; - - aiFace& sface = *curOut++; - sface.mNumIndices = 3; - sface.mIndices = new unsigned int[3]; - - sface.mIndices[0] = temp[start_vertex]; - sface.mIndices[1] = temp[(start_vertex + 2) % 4]; - sface.mIndices[2] = temp[(start_vertex + 3) % 4]; - - // prevent double deletion of the indices field - face.mIndices = nullptr; - - ngonEncoder.ngonEncodeQuad(&nface, &sface); - - continue; - } - else - { - // A polygon with more than 3 vertices can be either concave or convex. - // Usually everything we're getting is convex and we could easily - // triangulate by tri-fanning. However, LightWave is probably the only - // modeling suite to make extensive use of highly concave, monster polygons ... - // so we need to apply the full 'ear cutting' algorithm to get it right. - - // REQUIREMENT: polygon is expected to be simple and *nearly* planar. - // We project it onto a plane to get a 2d triangle. - - // Collect all vertices of of the polygon. - for (tmp = 0; tmp < max; ++tmp) { - temp_verts3d[tmp] = verts[idx[tmp]]; - } - - // Get newell normal of the polygon. Store it for future use if it's a polygon-only mesh - aiVector3D n; - NewellNormal<3,3,3>(n,max,&temp_verts3d.front().x,&temp_verts3d.front().y,&temp_verts3d.front().z); - if (nor_out) { - for (tmp = 0; tmp < max; ++tmp) - nor_out[idx[tmp]] = n; - } - - // Select largest normal coordinate to ignore for projection - const float ax = (n.x>0 ? n.x : -n.x); - const float ay = (n.y>0 ? n.y : -n.y); - const float az = (n.z>0 ? n.z : -n.z); - - unsigned int ac = 0, bc = 1; /* no z coord. projection to xy */ - float inv = n.z; - if (ax > ay) { - if (ax > az) { /* no x coord. projection to yz */ - ac = 1; bc = 2; - inv = n.x; - } - } - else if (ay > az) { /* no y coord. projection to zy */ - ac = 2; bc = 0; - inv = n.y; - } - - // Swap projection axes to take the negated projection vector into account - if (inv < 0.f) { - std::swap(ac,bc); - } - - for (tmp =0; tmp < max; ++tmp) { - temp_verts[tmp].x = verts[idx[tmp]][ac]; - temp_verts[tmp].y = verts[idx[tmp]][bc]; - done[tmp] = false; - } - -#ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS - // plot the plane onto which we mapped the polygon to a 2D ASCII pic - aiVector2D bmin,bmax; - ArrayBounds(&temp_verts[0],max,bmin,bmax); - - char grid[POLY_GRID_Y][POLY_GRID_X+POLY_GRID_XPAD]; - std::fill_n((char*)grid,POLY_GRID_Y*(POLY_GRID_X+POLY_GRID_XPAD),' '); - - for (int i =0; i < max; ++i) { - const aiVector2D& v = (temp_verts[i] - bmin) / (bmax-bmin); - const size_t x = static_cast<size_t>(v.x*(POLY_GRID_X-1)), y = static_cast<size_t>(v.y*(POLY_GRID_Y-1)); - char* loc = grid[y]+x; - if (grid[y][x] != ' ') { - for(;*loc != ' '; ++loc); - *loc++ = '_'; - } - *(loc+::ai_snprintf(loc, POLY_GRID_XPAD,"%i",i)) = ' '; - } - - - for(size_t y = 0; y < POLY_GRID_Y; ++y) { - grid[y][POLY_GRID_X+POLY_GRID_XPAD-1] = '\0'; - fprintf(fout,"%s\n",grid[y]); - } - - fprintf(fout,"\ntriangulation sequence: "); -#endif - - // - // FIXME: currently this is the slow O(kn) variant with a worst case - // complexity of O(n^2) (I think). Can be done in O(n). - while (num > 3) { - - // Find the next ear of the polygon - int num_found = 0; - for (ear = next;;prev = ear,ear = next) { - - // break after we looped two times without a positive match - for (next=ear+1;done[(next>=max?next=0:next)];++next); - if (next < ear) { - if (++num_found == 2) { - break; - } - } - const aiVector2D* pnt1 = &temp_verts[ear], - *pnt0 = &temp_verts[prev], - *pnt2 = &temp_verts[next]; - - // Must be a convex point. Assuming ccw winding, it must be on the right of the line between p-1 and p+1. - if (OnLeftSideOfLine2D(*pnt0,*pnt2,*pnt1)) { - continue; - } - - // and no other point may be contained in this triangle - for ( tmp = 0; tmp < max; ++tmp) { - - // We need to compare the actual values because it's possible that multiple indexes in - // the polygon are referring to the same position. concave_polygon.obj is a sample - // - // FIXME: Use 'epsiloned' comparisons instead? Due to numeric inaccuracies in - // PointInTriangle() I'm guessing that it's actually possible to construct - // input data that would cause us to end up with no ears. The problem is, - // which epsilon? If we chose a too large value, we'd get wrong results - const aiVector2D& vtmp = temp_verts[tmp]; - if ( vtmp != *pnt1 && vtmp != *pnt2 && vtmp != *pnt0 && PointInTriangle2D(*pnt0,*pnt1,*pnt2,vtmp)) { - break; - } - } - if (tmp != max) { - continue; - } - - // this vertex is an ear - break; - } - if (num_found == 2) { - - // Due to the 'two ear theorem', every simple polygon with more than three points must - // have 2 'ears'. Here's definitely something wrong ... but we don't give up yet. - // - - // Instead we're continuing with the standard tri-fanning algorithm which we'd - // use if we had only convex polygons. That's life. - ASSIMP_LOG_ERROR("Failed to triangulate polygon (no ear found). Probably not a simple polygon?"); - -#ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS - fprintf(fout,"critical error here, no ear found! "); -#endif - num = 0; - break; - - /*curOut -= (max-num); // undo all previous work - for (tmp = 0; tmp < max-2; ++tmp) { - aiFace& nface = *curOut++; - - nface.mNumIndices = 3; - if (!nface.mIndices) - nface.mIndices = new unsigned int[3]; - - nface.mIndices[0] = 0; - nface.mIndices[1] = tmp+1; - nface.mIndices[2] = tmp+2; - - } - num = 0; - break;*/ - } - - aiFace& nface = *curOut++; - nface.mNumIndices = 3; - - if (!nface.mIndices) { - nface.mIndices = new unsigned int[3]; - } - - // setup indices for the new triangle ... - nface.mIndices[0] = prev; - nface.mIndices[1] = ear; - nface.mIndices[2] = next; - - // exclude the ear from most further processing - done[ear] = true; - --num; - } - if (num > 0) { - // We have three indices forming the last 'ear' remaining. Collect them. - aiFace& nface = *curOut++; - nface.mNumIndices = 3; - if (!nface.mIndices) { - nface.mIndices = new unsigned int[3]; - } - - for (tmp = 0; done[tmp]; ++tmp); - nface.mIndices[0] = tmp; - - for (++tmp; done[tmp]; ++tmp); - nface.mIndices[1] = tmp; - - for (++tmp; done[tmp]; ++tmp); - nface.mIndices[2] = tmp; - - } - } - -#ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS - - for(aiFace* f = last_face; f != curOut; ++f) { - unsigned int* i = f->mIndices; - fprintf(fout," (%i %i %i)",i[0],i[1],i[2]); - } - - fprintf(fout,"\n*********************************************************************\n"); - fflush(fout); - -#endif - - for(aiFace* f = last_face; f != curOut; ) { - unsigned int* i = f->mIndices; - - // drop dumb 0-area triangles - deactivated for now: - //FindDegenerates post processing step can do the same thing - //if (std::fabs(GetArea2D(temp_verts[i[0]],temp_verts[i[1]],temp_verts[i[2]])) < 1e-5f) { - // ASSIMP_LOG_VERBOSE_DEBUG("Dropping triangle with area 0"); - // --curOut; - - // delete[] f->mIndices; - // f->mIndices = nullptr; - - // for(aiFace* ff = f; ff != curOut; ++ff) { - // ff->mNumIndices = (ff+1)->mNumIndices; - // ff->mIndices = (ff+1)->mIndices; - // (ff+1)->mIndices = nullptr; - // } - // continue; - //} - - i[0] = idx[i[0]]; - i[1] = idx[i[1]]; - i[2] = idx[i[2]]; - - // IMPROVEMENT: Polygons are not supported yet by this ngon encoding + triangulation step. - // So we encode polygons as regular triangles. No way to reconstruct the original - // polygon in this case. - ngonEncoder.ngonEncodeTriangle(f); - ++f; - } - - delete[] face.mIndices; - face.mIndices = nullptr; - } - -#ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS - fclose(fout); -#endif - - // kill the old faces - delete [] pMesh->mFaces; - - // ... and store the new ones - pMesh->mFaces = out; - pMesh->mNumFaces = (unsigned int)(curOut-out); /* not necessarily equal to numOut */ - return true; -} - -#endif // !! ASSIMP_BUILD_NO_TRIANGULATE_PROCESS |