summaryrefslogtreecommitdiff
path: root/libs/assimp/port/PyAssimp/scripts
diff options
context:
space:
mode:
Diffstat (limited to 'libs/assimp/port/PyAssimp/scripts')
-rwxr-xr-xlibs/assimp/port/PyAssimp/scripts/3d_viewer.py1318
-rwxr-xr-xlibs/assimp/port/PyAssimp/scripts/3d_viewer_py3.py1316
-rw-r--r--libs/assimp/port/PyAssimp/scripts/README.md13
-rwxr-xr-xlibs/assimp/port/PyAssimp/scripts/fixed_pipeline_3d_viewer.py372
-rwxr-xr-xlibs/assimp/port/PyAssimp/scripts/quicktest.py53
-rwxr-xr-xlibs/assimp/port/PyAssimp/scripts/sample.py89
-rw-r--r--libs/assimp/port/PyAssimp/scripts/transformations.py1705
7 files changed, 4866 insertions, 0 deletions
diff --git a/libs/assimp/port/PyAssimp/scripts/3d_viewer.py b/libs/assimp/port/PyAssimp/scripts/3d_viewer.py
new file mode 100755
index 0000000..08a6266
--- /dev/null
+++ b/libs/assimp/port/PyAssimp/scripts/3d_viewer.py
@@ -0,0 +1,1318 @@
+#!/usr/bin/env python
+# -*- coding: UTF-8 -*-
+
+""" This program loads a model with PyASSIMP, and display it.
+
+Based on:
+- pygame code from http://3dengine.org/Spectator_%28PyOpenGL%29
+- http://www.lighthouse3d.com/tutorials
+- http://www.songho.ca/opengl/gl_transform.html
+- http://code.activestate.com/recipes/325391/
+- ASSIMP's C++ SimpleOpenGL viewer
+
+Authors: Séverin Lemaignan, 2012-2016
+"""
+import sys
+import logging
+
+logger = logging.getLogger("pyassimp")
+gllogger = logging.getLogger("OpenGL")
+gllogger.setLevel(logging.WARNING)
+logging.basicConfig(level=logging.INFO)
+
+import OpenGL
+
+OpenGL.ERROR_CHECKING = False
+OpenGL.ERROR_LOGGING = False
+# OpenGL.ERROR_ON_COPY = True
+# OpenGL.FULL_LOGGING = True
+from OpenGL.GL import *
+from OpenGL.arrays import vbo
+from OpenGL.GL import shaders
+
+import pygame
+import pygame.font
+import pygame.image
+
+import math, random
+from numpy import linalg
+
+import pyassimp
+from pyassimp.postprocess import *
+from pyassimp.helper import *
+import transformations
+
+ROTATION_180_X = numpy.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]], dtype=numpy.float32)
+
+# rendering mode
+BASE = "BASE"
+COLORS = "COLORS"
+SILHOUETTE = "SILHOUETTE"
+HELPERS = "HELPERS"
+
+# Entities type
+ENTITY = "entity"
+CAMERA = "camera"
+MESH = "mesh"
+
+FLAT_VERTEX_SHADER_120 = """
+#version 120
+
+uniform mat4 u_viewProjectionMatrix;
+uniform mat4 u_modelMatrix;
+
+uniform vec4 u_materialDiffuse;
+
+attribute vec3 a_vertex;
+
+varying vec4 v_color;
+
+void main(void)
+{
+ v_color = u_materialDiffuse;
+ gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
+}
+"""
+
+FLAT_VERTEX_SHADER_130 = """
+#version 130
+
+uniform mat4 u_viewProjectionMatrix;
+uniform mat4 u_modelMatrix;
+
+uniform vec4 u_materialDiffuse;
+
+in vec3 a_vertex;
+
+out vec4 v_color;
+
+void main(void)
+{
+ v_color = u_materialDiffuse;
+ gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
+}
+"""
+
+BASIC_VERTEX_SHADER_120 = """
+#version 120
+
+uniform mat4 u_viewProjectionMatrix;
+uniform mat4 u_modelMatrix;
+uniform mat3 u_normalMatrix;
+uniform vec3 u_lightPos;
+
+uniform vec4 u_materialDiffuse;
+
+attribute vec3 a_vertex;
+attribute vec3 a_normal;
+
+varying vec4 v_color;
+
+void main(void)
+{
+ // Now the normal is in world space, as we pass the light in world space.
+ vec3 normal = u_normalMatrix * a_normal;
+
+ float dist = distance(a_vertex, u_lightPos);
+
+ // go to https://www.desmos.com/calculator/nmnaud1hrw to play with the parameters
+ // att is not used for now
+ float att=1.0/(1.0+0.8*dist*dist);
+
+ vec3 surf2light = normalize(u_lightPos - a_vertex);
+ vec3 norm = normalize(normal);
+ float dcont=max(0.0,dot(norm,surf2light));
+
+ float ambient = 0.3;
+ float intensity = dcont + 0.3 + ambient;
+
+ v_color = u_materialDiffuse * intensity;
+
+ gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
+}
+"""
+
+BASIC_VERTEX_SHADER_130 = """
+#version 130
+
+uniform mat4 u_viewProjectionMatrix;
+uniform mat4 u_modelMatrix;
+uniform mat3 u_normalMatrix;
+uniform vec3 u_lightPos;
+
+uniform vec4 u_materialDiffuse;
+
+in vec3 a_vertex;
+in vec3 a_normal;
+
+out vec4 v_color;
+
+void main(void)
+{
+ // Now the normal is in world space, as we pass the light in world space.
+ vec3 normal = u_normalMatrix * a_normal;
+
+ float dist = distance(a_vertex, u_lightPos);
+
+ // go to https://www.desmos.com/calculator/nmnaud1hrw to play with the parameters
+ // att is not used for now
+ float att=1.0/(1.0+0.8*dist*dist);
+
+ vec3 surf2light = normalize(u_lightPos - a_vertex);
+ vec3 norm = normalize(normal);
+ float dcont=max(0.0,dot(norm,surf2light));
+
+ float ambient = 0.3;
+ float intensity = dcont + 0.3 + ambient;
+
+ v_color = u_materialDiffuse * intensity;
+
+ gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
+}
+"""
+
+BASIC_FRAGMENT_SHADER_120 = """
+#version 120
+
+varying vec4 v_color;
+
+void main() {
+ gl_FragColor = v_color;
+}
+"""
+
+BASIC_FRAGMENT_SHADER_130 = """
+#version 130
+
+in vec4 v_color;
+
+void main() {
+ gl_FragColor = v_color;
+}
+"""
+
+GOOCH_VERTEX_SHADER_120 = """
+#version 120
+
+// attributes
+attribute vec3 a_vertex; // xyz - position
+attribute vec3 a_normal; // xyz - normal
+
+// uniforms
+uniform mat4 u_modelMatrix;
+uniform mat4 u_viewProjectionMatrix;
+uniform mat3 u_normalMatrix;
+uniform vec3 u_lightPos;
+uniform vec3 u_camPos;
+
+// output data from vertex to fragment shader
+varying vec3 o_normal;
+varying vec3 o_lightVector;
+
+///////////////////////////////////////////////////////////////////
+
+void main(void)
+{
+ // transform position and normal to world space
+ vec4 positionWorld = u_modelMatrix * vec4(a_vertex, 1.0);
+ vec3 normalWorld = u_normalMatrix * a_normal;
+
+ // calculate and pass vectors required for lighting
+ o_lightVector = u_lightPos - positionWorld.xyz;
+ o_normal = normalWorld;
+
+ // project world space position to the screen and output it
+ gl_Position = u_viewProjectionMatrix * positionWorld;
+}
+"""
+
+GOOCH_VERTEX_SHADER_130 = """
+#version 130
+
+// attributes
+in vec3 a_vertex; // xyz - position
+in vec3 a_normal; // xyz - normal
+
+// uniforms
+uniform mat4 u_modelMatrix;
+uniform mat4 u_viewProjectionMatrix;
+uniform mat3 u_normalMatrix;
+uniform vec3 u_lightPos;
+uniform vec3 u_camPos;
+
+// output data from vertex to fragment shader
+out vec3 o_normal;
+out vec3 o_lightVector;
+
+///////////////////////////////////////////////////////////////////
+
+void main(void)
+{
+ // transform position and normal to world space
+ vec4 positionWorld = u_modelMatrix * vec4(a_vertex, 1.0);
+ vec3 normalWorld = u_normalMatrix * a_normal;
+
+ // calculate and pass vectors required for lighting
+ o_lightVector = u_lightPos - positionWorld.xyz;
+ o_normal = normalWorld;
+
+ // project world space position to the screen and output it
+ gl_Position = u_viewProjectionMatrix * positionWorld;
+}
+"""
+
+GOOCH_FRAGMENT_SHADER_120 = """
+#version 120
+
+// data from vertex shader
+varying vec3 o_normal;
+varying vec3 o_lightVector;
+
+// diffuse color of the object
+uniform vec4 u_materialDiffuse;
+// cool color of gooch shading
+uniform vec3 u_coolColor;
+// warm color of gooch shading
+uniform vec3 u_warmColor;
+// how much to take from object color in final cool color
+uniform float u_alpha;
+// how much to take from object color in final warm color
+uniform float u_beta;
+
+///////////////////////////////////////////////////////////
+
+void main(void)
+{
+ // normlize vectors for lighting
+ vec3 normalVector = normalize(o_normal);
+ vec3 lightVector = normalize(o_lightVector);
+ // intensity of diffuse lighting [-1, 1]
+ float diffuseLighting = dot(lightVector, normalVector);
+ // map intensity of lighting from range [-1; 1] to [0, 1]
+ float interpolationValue = (1.0 + diffuseLighting)/2;
+
+ //////////////////////////////////////////////////////////////////
+
+ // cool color mixed with color of the object
+ vec3 coolColorMod = u_coolColor + vec3(u_materialDiffuse) * u_alpha;
+ // warm color mixed with color of the object
+ vec3 warmColorMod = u_warmColor + vec3(u_materialDiffuse) * u_beta;
+ // interpolation of cool and warm colors according
+ // to lighting intensity. The lower the light intensity,
+ // the larger part of the cool color is used
+ vec3 colorOut = mix(coolColorMod, warmColorMod, interpolationValue);
+
+ //////////////////////////////////////////////////////////////////
+
+ // save color
+ gl_FragColor.rgb = colorOut;
+ gl_FragColor.a = 1;
+}
+"""
+
+GOOCH_FRAGMENT_SHADER_130 = """
+#version 130
+
+// data from vertex shader
+in vec3 o_normal;
+in vec3 o_lightVector;
+
+// diffuse color of the object
+uniform vec4 u_materialDiffuse;
+// cool color of gooch shading
+uniform vec3 u_coolColor;
+// warm color of gooch shading
+uniform vec3 u_warmColor;
+// how much to take from object color in final cool color
+uniform float u_alpha;
+// how much to take from object color in final warm color
+uniform float u_beta;
+
+// output to framebuffer
+out vec4 resultingColor;
+
+///////////////////////////////////////////////////////////
+
+void main(void)
+{
+ // normlize vectors for lighting
+ vec3 normalVector = normalize(o_normal);
+ vec3 lightVector = normalize(o_lightVector);
+ // intensity of diffuse lighting [-1, 1]
+ float diffuseLighting = dot(lightVector, normalVector);
+ // map intensity of lighting from range [-1; 1] to [0, 1]
+ float interpolationValue = (1.0 + diffuseLighting)/2;
+
+ //////////////////////////////////////////////////////////////////
+
+ // cool color mixed with color of the object
+ vec3 coolColorMod = u_coolColor + vec3(u_materialDiffuse) * u_alpha;
+ // warm color mixed with color of the object
+ vec3 warmColorMod = u_warmColor + vec3(u_materialDiffuse) * u_beta;
+ // interpolation of cool and warm colors according
+ // to lighting intensity. The lower the light intensity,
+ // the larger part of the cool color is used
+ vec3 colorOut = mix(coolColorMod, warmColorMod, interpolationValue);
+
+ //////////////////////////////////////////////////////////////////
+
+ // save color
+ resultingColor.rgb = colorOut;
+ resultingColor.a = 1;
+}
+"""
+
+SILHOUETTE_VERTEX_SHADER_120 = """
+#version 120
+
+attribute vec3 a_vertex; // xyz - position
+attribute vec3 a_normal; // xyz - normal
+
+uniform mat4 u_modelMatrix;
+uniform mat4 u_viewProjectionMatrix;
+uniform mat4 u_modelViewMatrix;
+uniform vec4 u_materialDiffuse;
+uniform float u_bordersize; // width of the border
+
+varying vec4 v_color;
+
+void main(void){
+ v_color = u_materialDiffuse;
+ float distToCamera = -(u_modelViewMatrix * vec4(a_vertex, 1.0)).z;
+ vec4 tPos = vec4(a_vertex + a_normal * u_bordersize * distToCamera, 1.0);
+ gl_Position = u_viewProjectionMatrix * u_modelMatrix * tPos;
+}
+"""
+
+SILHOUETTE_VERTEX_SHADER_130 = """
+#version 130
+
+in vec3 a_vertex; // xyz - position
+in vec3 a_normal; // xyz - normal
+
+uniform mat4 u_modelMatrix;
+uniform mat4 u_viewProjectionMatrix;
+uniform mat4 u_modelViewMatrix;
+uniform vec4 u_materialDiffuse;
+uniform float u_bordersize; // width of the border
+
+out vec4 v_color;
+
+void main(void){
+ v_color = u_materialDiffuse;
+ float distToCamera = -(u_modelViewMatrix * vec4(a_vertex, 1.0)).z;
+ vec4 tPos = vec4(a_vertex + a_normal * u_bordersize * distToCamera, 1.0);
+ gl_Position = u_viewProjectionMatrix * u_modelMatrix * tPos;
+}
+"""
+DEFAULT_CLIP_PLANE_NEAR = 0.001
+DEFAULT_CLIP_PLANE_FAR = 1000.0
+
+
+def get_world_transform(scene, node):
+ if node == scene.rootnode:
+ return numpy.identity(4, dtype=numpy.float32)
+
+ parents = reversed(_get_parent_chain(scene, node, []))
+ parent_transform = reduce(numpy.dot, [p.transformation for p in parents])
+ return numpy.dot(parent_transform, node.transformation)
+
+
+def _get_parent_chain(scene, node, parents):
+ parent = node.parent
+
+ parents.append(parent)
+
+ if parent == scene.rootnode:
+ return parents
+
+ return _get_parent_chain(scene, parent, parents)
+
+
+class DefaultCamera:
+ def __init__(self, w, h, fov):
+ self.name = "default camera"
+ self.type = CAMERA
+ self.clipplanenear = DEFAULT_CLIP_PLANE_NEAR
+ self.clipplanefar = DEFAULT_CLIP_PLANE_FAR
+ self.aspect = w / h
+ self.horizontalfov = fov * math.pi / 180
+ self.transformation = numpy.array([[0.68, -0.32, 0.65, 7.48],
+ [0.73, 0.31, -0.61, -6.51],
+ [-0.01, 0.89, 0.44, 5.34],
+ [0., 0., 0., 1.]], dtype=numpy.float32)
+
+ self.transformation = numpy.dot(self.transformation, ROTATION_180_X)
+
+ def __str__(self):
+ return self.name
+
+
+class PyAssimp3DViewer:
+ base_name = "PyASSIMP 3D viewer"
+
+ def __init__(self, model, w=1024, h=768):
+
+ self.w = w
+ self.h = h
+
+ pygame.init()
+ pygame.display.set_caption(self.base_name)
+ pygame.display.set_mode((w, h), pygame.OPENGL | pygame.DOUBLEBUF)
+
+ glClearColor(0.18, 0.18, 0.18, 1.0)
+
+ shader_compilation_succeeded = False
+ try:
+ self.set_shaders_v130()
+ self.prepare_shaders()
+ except RuntimeError, message:
+ sys.stderr.write("%s\n" % message)
+ sys.stdout.write("Could not compile shaders in version 1.30, trying version 1.20\n")
+
+ if not shader_compilation_succeeded:
+ self.set_shaders_v120()
+ self.prepare_shaders()
+
+ self.scene = None
+ self.meshes = {} # stores the OpenGL vertex/faces/normals buffers pointers
+
+ self.node2colorid = {} # stores a color ID for each node. Useful for mouse picking and visibility checking
+ self.colorid2node = {} # reverse dict of node2colorid
+
+ self.currently_selected = None
+ self.moving = False
+ self.moving_situation = None
+
+ self.default_camera = DefaultCamera(self.w, self.h, fov=70)
+ self.cameras = [self.default_camera]
+
+ self.current_cam_index = 0
+ self.current_cam = self.default_camera
+ self.set_camera_projection()
+
+ self.load_model(model)
+
+ # user interactions
+ self.focal_point = [0, 0, 0]
+ self.is_rotating = False
+ self.is_panning = False
+ self.is_zooming = False
+
+ def set_shaders_v120(self):
+ self.BASIC_VERTEX_SHADER = BASIC_VERTEX_SHADER_120
+ self.FLAT_VERTEX_SHADER = FLAT_VERTEX_SHADER_120
+ self.SILHOUETTE_VERTEX_SHADER = SILHOUETTE_VERTEX_SHADER_120
+ self.GOOCH_VERTEX_SHADER = GOOCH_VERTEX_SHADER_120
+
+ self.BASIC_FRAGMENT_SHADER = BASIC_FRAGMENT_SHADER_120
+ self.GOOCH_FRAGMENT_SHADER = GOOCH_FRAGMENT_SHADER_120
+
+ def set_shaders_v130(self):
+ self.BASIC_VERTEX_SHADER = BASIC_VERTEX_SHADER_130
+ self.FLAT_VERTEX_SHADER = FLAT_VERTEX_SHADER_130
+ self.SILHOUETTE_VERTEX_SHADER = SILHOUETTE_VERTEX_SHADER_130
+ self.GOOCH_VERTEX_SHADER = GOOCH_VERTEX_SHADER_130
+
+ self.BASIC_FRAGMENT_SHADER = BASIC_FRAGMENT_SHADER_130
+ self.GOOCH_FRAGMENT_SHADER = GOOCH_FRAGMENT_SHADER_130
+
+ def prepare_shaders(self):
+
+ ### Base shader
+ vertex = shaders.compileShader(self.BASIC_VERTEX_SHADER, GL_VERTEX_SHADER)
+ fragment = shaders.compileShader(self.BASIC_FRAGMENT_SHADER, GL_FRAGMENT_SHADER)
+
+ self.shader = shaders.compileProgram(vertex, fragment)
+
+ self.set_shader_accessors(('u_modelMatrix',
+ 'u_viewProjectionMatrix',
+ 'u_normalMatrix',
+ 'u_lightPos',
+ 'u_materialDiffuse'),
+ ('a_vertex',
+ 'a_normal'), self.shader)
+
+ ### Flat shader
+ flatvertex = shaders.compileShader(self.FLAT_VERTEX_SHADER, GL_VERTEX_SHADER)
+ self.flatshader = shaders.compileProgram(flatvertex, fragment)
+
+ self.set_shader_accessors(('u_modelMatrix',
+ 'u_viewProjectionMatrix',
+ 'u_materialDiffuse',),
+ ('a_vertex',), self.flatshader)
+
+ ### Silhouette shader
+ silh_vertex = shaders.compileShader(self.SILHOUETTE_VERTEX_SHADER, GL_VERTEX_SHADER)
+ self.silhouette_shader = shaders.compileProgram(silh_vertex, fragment)
+
+ self.set_shader_accessors(('u_modelMatrix',
+ 'u_viewProjectionMatrix',
+ 'u_modelViewMatrix',
+ 'u_materialDiffuse',
+ 'u_bordersize' # width of the silhouette
+ ),
+ ('a_vertex',
+ 'a_normal'), self.silhouette_shader)
+
+ ### Gooch shader
+ gooch_vertex = shaders.compileShader(self.GOOCH_VERTEX_SHADER, GL_VERTEX_SHADER)
+ gooch_fragment = shaders.compileShader(self.GOOCH_FRAGMENT_SHADER, GL_FRAGMENT_SHADER)
+ self.gooch_shader = shaders.compileProgram(gooch_vertex, gooch_fragment)
+
+ self.set_shader_accessors(('u_modelMatrix',
+ 'u_viewProjectionMatrix',
+ 'u_normalMatrix',
+ 'u_lightPos',
+ 'u_materialDiffuse',
+ 'u_coolColor',
+ 'u_warmColor',
+ 'u_alpha',
+ 'u_beta'
+ ),
+ ('a_vertex',
+ 'a_normal'), self.gooch_shader)
+
+ @staticmethod
+ def set_shader_accessors(uniforms, attributes, shader):
+ # add accessors to the shaders uniforms and attributes
+ for uniform in uniforms:
+ location = glGetUniformLocation(shader, uniform)
+ if location in (None, -1):
+ raise RuntimeError('No uniform: %s (maybe it is not used '
+ 'anymore and has been optimized out by'
+ ' the shader compiler)' % uniform)
+ setattr(shader, uniform, location)
+
+ for attribute in attributes:
+ location = glGetAttribLocation(shader, attribute)
+ if location in (None, -1):
+ raise RuntimeError('No attribute: %s' % attribute)
+ setattr(shader, attribute, location)
+
+ @staticmethod
+ def prepare_gl_buffers(mesh):
+
+ mesh.gl = {}
+
+ # Fill the buffer for vertex and normals positions
+ v = numpy.array(mesh.vertices, 'f')
+ n = numpy.array(mesh.normals, 'f')
+
+ mesh.gl["vbo"] = vbo.VBO(numpy.hstack((v, n)))
+
+ # Fill the buffer for vertex positions
+ mesh.gl["faces"] = glGenBuffers(1)
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.gl["faces"])
+ glBufferData(GL_ELEMENT_ARRAY_BUFFER,
+ numpy.array(mesh.faces, dtype=numpy.int32),
+ GL_STATIC_DRAW)
+
+ mesh.gl["nbfaces"] = len(mesh.faces)
+
+ # Unbind buffers
+ glBindBuffer(GL_ARRAY_BUFFER, 0)
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)
+
+ @staticmethod
+ def get_rgb_from_colorid(colorid):
+ r = (colorid >> 0) & 0xff
+ g = (colorid >> 8) & 0xff
+ b = (colorid >> 16) & 0xff
+
+ return r, g, b
+
+ def get_color_id(self):
+ id = random.randint(0, 256 * 256 * 256)
+ if id not in self.colorid2node:
+ return id
+ else:
+ return self.get_color_id()
+
+ def glize(self, scene, node):
+
+ logger.info("Loading node <%s>" % node)
+ node.selected = True if self.currently_selected and self.currently_selected == node else False
+
+ node.transformation = node.transformation.astype(numpy.float32)
+
+ if node.meshes:
+ node.type = MESH
+ colorid = self.get_color_id()
+ self.colorid2node[colorid] = node
+ self.node2colorid[node.name] = colorid
+
+ elif node.name in [c.name for c in scene.cameras]:
+
+ # retrieve the ASSIMP camera object
+ [cam] = [c for c in scene.cameras if c.name == node.name]
+ node.type = CAMERA
+ logger.info("Added camera <%s>" % node.name)
+ logger.info("Camera position: %.3f, %.3f, %.3f" % tuple(node.transformation[:, 3][:3].tolist()))
+ self.cameras.append(node)
+ node.clipplanenear = cam.clipplanenear
+ node.clipplanefar = cam.clipplanefar
+
+ if numpy.allclose(cam.lookat, [0, 0, -1]) and numpy.allclose(cam.up, [0, 1, 0]): # Cameras in .blend files
+
+ # Rotate by 180deg around X to have Z pointing forward
+ node.transformation = numpy.dot(node.transformation, ROTATION_180_X)
+ else:
+ raise RuntimeError(
+ "I do not know how to normalize this camera orientation: lookat=%s, up=%s" % (cam.lookat, cam.up))
+
+ if cam.aspect == 0.0:
+ logger.warning("Camera aspect not set. Setting to default 4:3")
+ node.aspect = 1.333
+ else:
+ node.aspect = cam.aspect
+
+ node.horizontalfov = cam.horizontalfov
+
+ else:
+ node.type = ENTITY
+
+ for child in node.children:
+ self.glize(scene, child)
+
+ def load_model(self, path, postprocess=aiProcessPreset_TargetRealtime_MaxQuality):
+ logger.info("Loading model:" + path + "...")
+
+ if postprocess:
+ self.scene = pyassimp.load(path, processing=postprocess)
+ else:
+ self.scene = pyassimp.load(path)
+ logger.info("Done.")
+
+ scene = self.scene
+ # log some statistics
+ logger.info(" meshes: %d" % len(scene.meshes))
+ logger.info(" total faces: %d" % sum([len(mesh.faces) for mesh in scene.meshes]))
+ logger.info(" materials: %d" % len(scene.materials))
+ self.bb_min, self.bb_max = get_bounding_box(self.scene)
+ logger.info(" bounding box:" + str(self.bb_min) + " - " + str(self.bb_max))
+
+ self.scene_center = [(a + b) / 2. for a, b in zip(self.bb_min, self.bb_max)]
+
+ for index, mesh in enumerate(scene.meshes):
+ self.prepare_gl_buffers(mesh)
+
+ self.glize(scene, scene.rootnode)
+
+ # Finally release the model
+ pyassimp.release(scene)
+ logger.info("Ready for 3D rendering!")
+
+ def cycle_cameras(self):
+
+ self.current_cam_index = (self.current_cam_index + 1) % len(self.cameras)
+ self.current_cam = self.cameras[self.current_cam_index]
+ self.set_camera_projection(self.current_cam)
+ logger.info("Switched to camera <%s>" % self.current_cam)
+
+ def set_overlay_projection(self):
+ glViewport(0, 0, self.w, self.h)
+ glMatrixMode(GL_PROJECTION)
+ glLoadIdentity()
+ glOrtho(0.0, self.w - 1.0, 0.0, self.h - 1.0, -1.0, 1.0)
+ glMatrixMode(GL_MODELVIEW)
+ glLoadIdentity()
+
+ def set_camera_projection(self, camera=None):
+
+ if not camera:
+ camera = self.current_cam
+
+ znear = camera.clipplanenear or DEFAULT_CLIP_PLANE_NEAR
+ zfar = camera.clipplanefar or DEFAULT_CLIP_PLANE_FAR
+ aspect = camera.aspect
+ fov = camera.horizontalfov
+
+ glMatrixMode(GL_PROJECTION)
+ glLoadIdentity()
+
+ # Compute gl frustrum
+ tangent = math.tan(fov / 2.)
+ h = znear * tangent
+ w = h * aspect
+
+ # params: left, right, bottom, top, near, far
+ glFrustum(-w, w, -h, h, znear, zfar)
+ # equivalent to:
+ # gluPerspective(fov * 180/math.pi, aspect, znear, zfar)
+
+ self.projection_matrix = glGetFloatv(GL_PROJECTION_MATRIX).transpose()
+
+ glMatrixMode(GL_MODELVIEW)
+ glLoadIdentity()
+
+ def render_colors(self):
+
+ glEnable(GL_DEPTH_TEST)
+ glDepthFunc(GL_LEQUAL)
+
+ glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)
+ glEnable(GL_CULL_FACE)
+
+ glUseProgram(self.flatshader)
+
+ glUniformMatrix4fv(self.flatshader.u_viewProjectionMatrix, 1, GL_TRUE,
+ numpy.dot(self.projection_matrix, self.view_matrix))
+
+ self.recursive_render(self.scene.rootnode, self.flatshader, mode=COLORS)
+
+ glUseProgram(0)
+
+ def get_hovered_node(self, mousex, mousey):
+ """
+ Attention: The performances of this method relies heavily on the size of the display!
+ """
+
+ # mouse out of the window?
+ if mousex < 0 or mousex >= self.w or mousey < 0 or mousey >= self.h:
+ return None
+
+ self.render_colors()
+ # Capture image from the OpenGL buffer
+ buf = (GLubyte * (3 * self.w * self.h))(0)
+ glReadPixels(0, 0, self.w, self.h, GL_RGB, GL_UNSIGNED_BYTE, buf)
+
+ # Reinterpret the RGB pixel buffer as a 1-D array of 24bits colors
+ a = numpy.ndarray(len(buf), numpy.dtype('>u1'), buf)
+ colors = numpy.zeros(len(buf) / 3, numpy.dtype('<u4'))
+ for i in range(3):
+ colors.view(dtype='>u1')[i::4] = a.view(dtype='>u1')[i::3]
+
+ colorid = colors[mousex + mousey * self.w]
+
+ glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
+
+ if colorid in self.colorid2node:
+ return self.colorid2node[colorid]
+
+ def render(self, wireframe=False, twosided=False):
+
+ glEnable(GL_DEPTH_TEST)
+ glDepthFunc(GL_LEQUAL)
+
+ glPolygonMode(GL_FRONT_AND_BACK, GL_LINE if wireframe else GL_FILL)
+ glDisable(GL_CULL_FACE) if twosided else glEnable(GL_CULL_FACE)
+
+ self.render_grid()
+
+ self.recursive_render(self.scene.rootnode, None, mode=HELPERS)
+
+ ### First, the silhouette
+
+ if False:
+ shader = self.silhouette_shader
+
+ # glDepthMask(GL_FALSE)
+ glCullFace(GL_FRONT) # cull front faces
+
+ glUseProgram(shader)
+ glUniform1f(shader.u_bordersize, 0.01)
+
+ glUniformMatrix4fv(shader.u_viewProjectionMatrix, 1, GL_TRUE,
+ numpy.dot(self.projection_matrix, self.view_matrix))
+
+ self.recursive_render(self.scene.rootnode, shader, mode=SILHOUETTE)
+
+ glUseProgram(0)
+
+ ### Then, inner shading
+ # glDepthMask(GL_TRUE)
+ glCullFace(GL_BACK)
+
+ use_gooch = False
+ if use_gooch:
+ shader = self.gooch_shader
+
+ glUseProgram(shader)
+ glUniform3f(shader.u_lightPos, -.5, -.5, .5)
+
+ ##### GOOCH specific
+ glUniform3f(shader.u_coolColor, 159.0 / 255, 148.0 / 255, 255.0 / 255)
+ glUniform3f(shader.u_warmColor, 255.0 / 255, 75.0 / 255, 75.0 / 255)
+ glUniform1f(shader.u_alpha, .25)
+ glUniform1f(shader.u_beta, .25)
+ #########
+ else:
+ shader = self.shader
+ glUseProgram(shader)
+ glUniform3f(shader.u_lightPos, -.5, -.5, .5)
+
+ glUniformMatrix4fv(shader.u_viewProjectionMatrix, 1, GL_TRUE,
+ numpy.dot(self.projection_matrix, self.view_matrix))
+
+ self.recursive_render(self.scene.rootnode, shader)
+
+ glUseProgram(0)
+
+ def render_axis(self,
+ transformation=numpy.identity(4, dtype=numpy.float32),
+ label=None,
+ size=0.2,
+ selected=False):
+ m = transformation.transpose() # OpenGL row major
+
+ glPushMatrix()
+ glMultMatrixf(m)
+
+ glLineWidth(3 if selected else 1)
+
+ size = 2 * size if selected else size
+
+ glBegin(GL_LINES)
+
+ # draw line for x axis
+ glColor3f(1.0, 0.0, 0.0)
+ glVertex3f(0.0, 0.0, 0.0)
+ glVertex3f(size, 0.0, 0.0)
+
+ # draw line for y axis
+ glColor3f(0.0, 1.0, 0.0)
+ glVertex3f(0.0, 0.0, 0.0)
+ glVertex3f(0.0, size, 0.0)
+
+ # draw line for Z axis
+ glColor3f(0.0, 0.0, 1.0)
+ glVertex3f(0.0, 0.0, 0.0)
+ glVertex3f(0.0, 0.0, size)
+
+ glEnd()
+
+ if label:
+ self.showtext(label)
+
+ glPopMatrix()
+
+ @staticmethod
+ def render_camera(camera, transformation):
+
+ m = transformation.transpose() # OpenGL row major
+
+ aspect = camera.aspect
+
+ u = 0.1 # unit size (in m)
+ l = 3 * u # length of the camera cone
+ f = 3 * u # aperture of the camera cone
+
+ glPushMatrix()
+ glMultMatrixf(m)
+
+ glLineWidth(2)
+ glBegin(GL_LINE_STRIP)
+
+ glColor3f(.2, .2, .2)
+
+ glVertex3f(u, u, -u)
+ glVertex3f(u, -u, -u)
+ glVertex3f(-u, -u, -u)
+ glVertex3f(-u, u, -u)
+ glVertex3f(u, u, -u)
+
+ glVertex3f(u, u, 0.0)
+ glVertex3f(u, -u, 0.0)
+ glVertex3f(-u, -u, 0.0)
+ glVertex3f(-u, u, 0.0)
+ glVertex3f(u, u, 0.0)
+
+ glVertex3f(f * aspect, f, l)
+ glVertex3f(f * aspect, -f, l)
+ glVertex3f(-f * aspect, -f, l)
+ glVertex3f(-f * aspect, f, l)
+ glVertex3f(f * aspect, f, l)
+
+ glEnd()
+
+ glBegin(GL_LINE_STRIP)
+ glVertex3f(u, -u, -u)
+ glVertex3f(u, -u, 0.0)
+ glVertex3f(f * aspect, -f, l)
+ glEnd()
+
+ glBegin(GL_LINE_STRIP)
+ glVertex3f(-u, -u, -u)
+ glVertex3f(-u, -u, 0.0)
+ glVertex3f(-f * aspect, -f, l)
+ glEnd()
+
+ glBegin(GL_LINE_STRIP)
+ glVertex3f(-u, u, -u)
+ glVertex3f(-u, u, 0.0)
+ glVertex3f(-f * aspect, f, l)
+ glEnd()
+
+ glPopMatrix()
+
+ @staticmethod
+ def render_grid():
+
+ glLineWidth(1)
+ glColor3f(0.5, 0.5, 0.5)
+ glBegin(GL_LINES)
+ for i in range(-10, 11):
+ glVertex3f(i, -10.0, 0.0)
+ glVertex3f(i, 10.0, 0.0)
+
+ for i in range(-10, 11):
+ glVertex3f(-10.0, i, 0.0)
+ glVertex3f(10.0, i, 0.0)
+ glEnd()
+
+ def recursive_render(self, node, shader, mode=BASE, with_normals=True):
+ """ Main recursive rendering method.
+ """
+
+ normals = with_normals
+
+ if mode == COLORS:
+ normals = False
+
+
+ if not hasattr(node, "selected"):
+ node.selected = False
+
+ m = get_world_transform(self.scene, node)
+
+ # HELPERS mode
+ ###
+ if mode == HELPERS:
+ # if node.type == ENTITY:
+ self.render_axis(m,
+ label=node.name if node != self.scene.rootnode else None,
+ selected=node.selected if hasattr(node, "selected") else False)
+
+ if node.type == CAMERA:
+ self.render_camera(node, m)
+
+ for child in node.children:
+ self.recursive_render(child, shader, mode)
+
+ return
+
+ # Mesh rendering modes
+ ###
+ if node.type == MESH:
+
+ for mesh in node.meshes:
+
+ stride = 24 # 6 * 4 bytes
+
+ if node.selected and mode == SILHOUETTE:
+ glUniform4f(shader.u_materialDiffuse, 1.0, 0.0, 0.0, 1.0)
+ glUniformMatrix4fv(shader.u_modelViewMatrix, 1, GL_TRUE,
+ numpy.dot(self.view_matrix, m))
+
+ else:
+ if mode == COLORS:
+ colorid = self.node2colorid[node.name]
+ r, g, b = self.get_rgb_from_colorid(colorid)
+ glUniform4f(shader.u_materialDiffuse, r / 255.0, g / 255.0, b / 255.0, 1.0)
+ elif mode == SILHOUETTE:
+ glUniform4f(shader.u_materialDiffuse, .0, .0, .0, 1.0)
+ else:
+ if node.selected:
+ diffuse = (1.0, 0.0, 0.0, 1.0) # selected nodes in red
+ else:
+ diffuse = mesh.material.properties["diffuse"]
+ if len(diffuse) == 3: # RGB instead of expected RGBA
+ diffuse.append(1.0)
+ glUniform4f(shader.u_materialDiffuse, *diffuse)
+ # if ambient:
+ # glUniform4f( shader.Material_ambient, *mat["ambient"] )
+
+ if mode == BASE: # not in COLORS or SILHOUETTE
+ normal_matrix = linalg.inv(numpy.dot(self.view_matrix, m)[0:3, 0:3]).transpose()
+ glUniformMatrix3fv(shader.u_normalMatrix, 1, GL_TRUE, normal_matrix)
+
+ glUniformMatrix4fv(shader.u_modelMatrix, 1, GL_TRUE, m)
+
+ vbo = mesh.gl["vbo"]
+ vbo.bind()
+
+ glEnableVertexAttribArray(shader.a_vertex)
+ if normals:
+ glEnableVertexAttribArray(shader.a_normal)
+
+ glVertexAttribPointer(
+ shader.a_vertex,
+ 3, GL_FLOAT, False, stride, vbo
+ )
+
+ if normals:
+ glVertexAttribPointer(
+ shader.a_normal,
+ 3, GL_FLOAT, False, stride, vbo + 12
+ )
+
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.gl["faces"])
+ glDrawElements(GL_TRIANGLES, mesh.gl["nbfaces"] * 3, GL_UNSIGNED_INT, None)
+
+ vbo.unbind()
+ glDisableVertexAttribArray(shader.a_vertex)
+
+ if normals:
+ glDisableVertexAttribArray(shader.a_normal)
+
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)
+
+ for child in node.children:
+ self.recursive_render(child, shader, mode)
+
+
+ def switch_to_overlay(self):
+ glPushMatrix()
+ self.set_overlay_projection()
+
+ def switch_from_overlay(self):
+ self.set_camera_projection()
+ glPopMatrix()
+
+ def select_node(self, node):
+ self.currently_selected = node
+ self.update_node_select(self.scene.rootnode)
+
+ def update_node_select(self, node):
+ if node is self.currently_selected:
+ node.selected = True
+ else:
+ node.selected = False
+
+ for child in node.children:
+ self.update_node_select(child)
+
+ def loop(self):
+
+ pygame.display.flip()
+
+ if not self.process_events():
+ return False # ESC has been pressed
+
+ glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
+
+ return True
+
+ def process_events(self):
+
+ LEFT_BUTTON = 1
+ MIDDLE_BUTTON = 2
+ RIGHT_BUTTON = 3
+ WHEEL_UP = 4
+ WHEEL_DOWN = 5
+
+ dx, dy = pygame.mouse.get_rel()
+ mousex, mousey = pygame.mouse.get_pos()
+
+ zooming_one_shot = False
+
+ ok = True
+
+ for evt in pygame.event.get():
+ if evt.type == pygame.MOUSEBUTTONDOWN and evt.button == LEFT_BUTTON:
+ hovered = self.get_hovered_node(mousex, self.h - mousey)
+ if hovered:
+ if self.currently_selected and self.currently_selected == hovered:
+ self.select_node(None)
+ else:
+ logger.info("Node %s selected" % hovered)
+ self.select_node(hovered)
+ else:
+ self.is_rotating = True
+ if evt.type == pygame.MOUSEBUTTONUP and evt.button == LEFT_BUTTON:
+ self.is_rotating = False
+
+ if evt.type == pygame.MOUSEBUTTONDOWN and evt.button == MIDDLE_BUTTON:
+ self.is_panning = True
+ if evt.type == pygame.MOUSEBUTTONUP and evt.button == MIDDLE_BUTTON:
+ self.is_panning = False
+
+ if evt.type == pygame.MOUSEBUTTONDOWN and evt.button == RIGHT_BUTTON:
+ self.is_zooming = True
+ if evt.type == pygame.MOUSEBUTTONUP and evt.button == RIGHT_BUTTON:
+ self.is_zooming = False
+
+ if evt.type == pygame.MOUSEBUTTONDOWN and evt.button in [WHEEL_UP, WHEEL_DOWN]:
+ zooming_one_shot = True
+ self.is_zooming = True
+ dy = -10 if evt.button == WHEEL_UP else 10
+
+ if evt.type == pygame.KEYDOWN:
+ ok = (ok and self.process_keystroke(evt.key, evt.mod))
+
+ self.controls_3d(dx, dy, zooming_one_shot)
+
+ return ok
+
+ def process_keystroke(self, key, mod):
+
+ # process arrow keys if an object is selected
+ if self.currently_selected:
+ up = 0
+ strafe = 0
+
+ if key == pygame.K_UP:
+ up = 1
+ if key == pygame.K_DOWN:
+ up = -1
+ if key == pygame.K_LEFT:
+ strafe = -1
+ if key == pygame.K_RIGHT:
+ strafe = 1
+
+ self.move_selected_node(up, strafe)
+
+ if key == pygame.K_f:
+ pygame.display.toggle_fullscreen()
+
+ if key == pygame.K_TAB:
+ self.cycle_cameras()
+
+ if key in [pygame.K_ESCAPE, pygame.K_q]:
+ return False
+
+ return True
+
+ def controls_3d(self, dx, dy, zooming_one_shot=False):
+
+ CAMERA_TRANSLATION_FACTOR = 0.01
+ CAMERA_ROTATION_FACTOR = 0.01
+
+ if not (self.is_rotating or self.is_panning or self.is_zooming):
+ return
+
+ current_pos = self.current_cam.transformation[:3, 3].copy()
+ distance = numpy.linalg.norm(self.focal_point - current_pos)
+
+ if self.is_rotating:
+ """ Orbiting the camera is implemented the following way:
+
+ - the rotation is split into a rotation around the *world* Z axis
+ (controlled by the horizontal mouse motion along X) and a
+ rotation around the *X* axis of the camera (pitch) *shifted to
+ the focal origin* (the world origin for now). This is controlled
+ by the vertical motion of the mouse (Y axis).
+
+ - as a result, the resulting transformation of the camera in the
+ world frame C' is:
+ C' = (T · Rx · T⁻¹ · (Rz · C)⁻¹)⁻¹
+
+ where:
+ - C is the original camera transformation in the world frame,
+ - Rz is the rotation along the Z axis (in the world frame)
+ - T is the translation camera -> world (ie, the inverse of the
+ translation part of C
+ - Rx is the rotation around X in the (translated) camera frame
+ """
+
+ rotation_camera_x = dy * CAMERA_ROTATION_FACTOR
+ rotation_world_z = dx * CAMERA_ROTATION_FACTOR
+ world_z_rotation = transformations.euler_matrix(0, 0, rotation_world_z)
+ cam_x_rotation = transformations.euler_matrix(rotation_camera_x, 0, 0)
+
+ after_world_z_rotation = numpy.dot(world_z_rotation, self.current_cam.transformation)
+
+ inverse_transformation = transformations.inverse_matrix(after_world_z_rotation)
+
+ translation = transformations.translation_matrix(
+ transformations.decompose_matrix(inverse_transformation)[3])
+ inverse_translation = transformations.inverse_matrix(translation)
+
+ new_inverse = numpy.dot(inverse_translation, inverse_transformation)
+ new_inverse = numpy.dot(cam_x_rotation, new_inverse)
+ new_inverse = numpy.dot(translation, new_inverse)
+
+ self.current_cam.transformation = transformations.inverse_matrix(new_inverse).astype(numpy.float32)
+
+ if self.is_panning:
+ tx = -dx * CAMERA_TRANSLATION_FACTOR * distance
+ ty = dy * CAMERA_TRANSLATION_FACTOR * distance
+ cam_transform = transformations.translation_matrix((tx, ty, 0)).astype(numpy.float32)
+ self.current_cam.transformation = numpy.dot(self.current_cam.transformation, cam_transform)
+
+ if self.is_zooming:
+ tz = dy * CAMERA_TRANSLATION_FACTOR * distance
+ cam_transform = transformations.translation_matrix((0, 0, tz)).astype(numpy.float32)
+ self.current_cam.transformation = numpy.dot(self.current_cam.transformation, cam_transform)
+
+ if zooming_one_shot:
+ self.is_zooming = False
+
+ self.update_view_camera()
+
+ def update_view_camera(self):
+
+ self.view_matrix = linalg.inv(self.current_cam.transformation)
+
+ # Rotate by 180deg around X to have Z pointing backward (OpenGL convention)
+ self.view_matrix = numpy.dot(ROTATION_180_X, self.view_matrix)
+
+ glMatrixMode(GL_MODELVIEW)
+ glLoadIdentity()
+ glMultMatrixf(self.view_matrix.transpose())
+
+ def move_selected_node(self, up, strafe):
+ self.currently_selected.transformation[0][3] += strafe
+ self.currently_selected.transformation[2][3] += up
+
+ @staticmethod
+ def showtext(text, x=0, y=0, z=0, size=20):
+
+ # TODO: alpha blending does not work...
+ # glEnable(GL_BLEND)
+ # glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
+
+ font = pygame.font.Font(None, size)
+ text_surface = font.render(text, True, (10, 10, 10, 255),
+ (255 * 0.18, 255 * 0.18, 255 * 0.18, 0))
+ text_data = pygame.image.tostring(text_surface, "RGBA", True)
+ glRasterPos3d(x, y, z)
+ glDrawPixels(text_surface.get_width(),
+ text_surface.get_height(),
+ GL_RGBA, GL_UNSIGNED_BYTE,
+ text_data)
+
+ # glDisable(GL_BLEND)
+
+
+def main(model, width, height):
+ app = PyAssimp3DViewer(model, w=width, h=height)
+
+ clock = pygame.time.Clock()
+
+ while app.loop():
+
+ app.update_view_camera()
+
+ ## Main rendering
+ app.render()
+
+ ## GUI text display
+ app.switch_to_overlay()
+ app.showtext("Active camera: %s" % str(app.current_cam), 10, app.h - 30)
+ if app.currently_selected:
+ app.showtext("Selected node: %s" % app.currently_selected, 10, app.h - 50)
+ pos = app.h - 70
+
+ app.showtext("(%sm, %sm, %sm)" % (app.currently_selected.transformation[0, 3],
+ app.currently_selected.transformation[1, 3],
+ app.currently_selected.transformation[2, 3]), 30, pos)
+
+ app.switch_from_overlay()
+
+ # Make sure we do not go over 30fps
+ clock.tick(30)
+
+ logger.info("Quitting! Bye bye!")
+
+
+#########################################################################
+#########################################################################
+
+if __name__ == '__main__':
+ if not len(sys.argv) > 1:
+ print("Usage: " + __file__ + " <model>")
+ sys.exit(2)
+
+ main(model=sys.argv[1], width=1024, height=768)
diff --git a/libs/assimp/port/PyAssimp/scripts/3d_viewer_py3.py b/libs/assimp/port/PyAssimp/scripts/3d_viewer_py3.py
new file mode 100755
index 0000000..fcee637
--- /dev/null
+++ b/libs/assimp/port/PyAssimp/scripts/3d_viewer_py3.py
@@ -0,0 +1,1316 @@
+#!/usr/bin/env python
+# -*- coding: UTF-8 -*-
+
+""" This program loads a model with PyASSIMP, and display it.
+
+Based on:
+- pygame code from http://3dengine.org/Spectator_%28PyOpenGL%29
+- http://www.lighthouse3d.com/tutorials
+- http://www.songho.ca/opengl/gl_transform.html
+- http://code.activestate.com/recipes/325391/
+- ASSIMP's C++ SimpleOpenGL viewer
+
+Authors: Séverin Lemaignan, 2012-2016
+"""
+import sys
+import logging
+
+from functools import reduce
+
+logger = logging.getLogger("pyassimp")
+gllogger = logging.getLogger("OpenGL")
+gllogger.setLevel(logging.WARNING)
+logging.basicConfig(level=logging.INFO)
+
+import OpenGL
+
+OpenGL.ERROR_CHECKING = False
+OpenGL.ERROR_LOGGING = False
+# OpenGL.ERROR_ON_COPY = True
+# OpenGL.FULL_LOGGING = True
+from OpenGL.GL import *
+from OpenGL.arrays import vbo
+from OpenGL.GL import shaders
+
+import pygame
+import pygame.font
+import pygame.image
+
+import math, random
+from numpy import linalg
+
+import pyassimp
+from pyassimp.postprocess import *
+from pyassimp.helper import *
+import transformations
+
+ROTATION_180_X = numpy.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]], dtype=numpy.float32)
+
+# rendering mode
+BASE = "BASE"
+COLORS = "COLORS"
+SILHOUETTE = "SILHOUETTE"
+HELPERS = "HELPERS"
+
+# Entities type
+ENTITY = "entity"
+CAMERA = "camera"
+MESH = "mesh"
+
+FLAT_VERTEX_SHADER_120 = """
+#version 120
+
+uniform mat4 u_viewProjectionMatrix;
+uniform mat4 u_modelMatrix;
+
+uniform vec4 u_materialDiffuse;
+
+attribute vec3 a_vertex;
+
+varying vec4 v_color;
+
+void main(void)
+{
+ v_color = u_materialDiffuse;
+ gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
+}
+"""
+
+FLAT_VERTEX_SHADER_130 = """
+#version 130
+
+uniform mat4 u_viewProjectionMatrix;
+uniform mat4 u_modelMatrix;
+
+uniform vec4 u_materialDiffuse;
+
+in vec3 a_vertex;
+
+out vec4 v_color;
+
+void main(void)
+{
+ v_color = u_materialDiffuse;
+ gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
+}
+"""
+
+BASIC_VERTEX_SHADER_120 = """
+#version 120
+
+uniform mat4 u_viewProjectionMatrix;
+uniform mat4 u_modelMatrix;
+uniform mat3 u_normalMatrix;
+uniform vec3 u_lightPos;
+
+uniform vec4 u_materialDiffuse;
+
+attribute vec3 a_vertex;
+attribute vec3 a_normal;
+
+varying vec4 v_color;
+
+void main(void)
+{
+ // Now the normal is in world space, as we pass the light in world space.
+ vec3 normal = u_normalMatrix * a_normal;
+
+ float dist = distance(a_vertex, u_lightPos);
+
+ // go to https://www.desmos.com/calculator/nmnaud1hrw to play with the parameters
+ // att is not used for now
+ float att=1.0/(1.0+0.8*dist*dist);
+
+ vec3 surf2light = normalize(u_lightPos - a_vertex);
+ vec3 norm = normalize(normal);
+ float dcont=max(0.0,dot(norm,surf2light));
+
+ float ambient = 0.3;
+ float intensity = dcont + 0.3 + ambient;
+
+ v_color = u_materialDiffuse * intensity;
+
+ gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
+}
+"""
+
+BASIC_VERTEX_SHADER_130 = """
+#version 130
+
+uniform mat4 u_viewProjectionMatrix;
+uniform mat4 u_modelMatrix;
+uniform mat3 u_normalMatrix;
+uniform vec3 u_lightPos;
+
+uniform vec4 u_materialDiffuse;
+
+in vec3 a_vertex;
+in vec3 a_normal;
+
+out vec4 v_color;
+
+void main(void)
+{
+ // Now the normal is in world space, as we pass the light in world space.
+ vec3 normal = u_normalMatrix * a_normal;
+
+ float dist = distance(a_vertex, u_lightPos);
+
+ // go to https://www.desmos.com/calculator/nmnaud1hrw to play with the parameters
+ // att is not used for now
+ float att=1.0/(1.0+0.8*dist*dist);
+
+ vec3 surf2light = normalize(u_lightPos - a_vertex);
+ vec3 norm = normalize(normal);
+ float dcont=max(0.0,dot(norm,surf2light));
+
+ float ambient = 0.3;
+ float intensity = dcont + 0.3 + ambient;
+
+ v_color = u_materialDiffuse * intensity;
+
+ gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
+}
+"""
+
+BASIC_FRAGMENT_SHADER_120 = """
+#version 120
+
+varying vec4 v_color;
+
+void main() {
+ gl_FragColor = v_color;
+}
+"""
+
+BASIC_FRAGMENT_SHADER_130 = """
+#version 130
+
+in vec4 v_color;
+
+void main() {
+ gl_FragColor = v_color;
+}
+"""
+
+GOOCH_VERTEX_SHADER_120 = """
+#version 120
+
+// attributes
+attribute vec3 a_vertex; // xyz - position
+attribute vec3 a_normal; // xyz - normal
+
+// uniforms
+uniform mat4 u_modelMatrix;
+uniform mat4 u_viewProjectionMatrix;
+uniform mat3 u_normalMatrix;
+uniform vec3 u_lightPos;
+uniform vec3 u_camPos;
+
+// output data from vertex to fragment shader
+varying vec3 o_normal;
+varying vec3 o_lightVector;
+
+///////////////////////////////////////////////////////////////////
+
+void main(void)
+{
+ // transform position and normal to world space
+ vec4 positionWorld = u_modelMatrix * vec4(a_vertex, 1.0);
+ vec3 normalWorld = u_normalMatrix * a_normal;
+
+ // calculate and pass vectors required for lighting
+ o_lightVector = u_lightPos - positionWorld.xyz;
+ o_normal = normalWorld;
+
+ // project world space position to the screen and output it
+ gl_Position = u_viewProjectionMatrix * positionWorld;
+}
+"""
+
+GOOCH_VERTEX_SHADER_130 = """
+#version 130
+
+// attributes
+in vec3 a_vertex; // xyz - position
+in vec3 a_normal; // xyz - normal
+
+// uniforms
+uniform mat4 u_modelMatrix;
+uniform mat4 u_viewProjectionMatrix;
+uniform mat3 u_normalMatrix;
+uniform vec3 u_lightPos;
+uniform vec3 u_camPos;
+
+// output data from vertex to fragment shader
+out vec3 o_normal;
+out vec3 o_lightVector;
+
+///////////////////////////////////////////////////////////////////
+
+void main(void)
+{
+ // transform position and normal to world space
+ vec4 positionWorld = u_modelMatrix * vec4(a_vertex, 1.0);
+ vec3 normalWorld = u_normalMatrix * a_normal;
+
+ // calculate and pass vectors required for lighting
+ o_lightVector = u_lightPos - positionWorld.xyz;
+ o_normal = normalWorld;
+
+ // project world space position to the screen and output it
+ gl_Position = u_viewProjectionMatrix * positionWorld;
+}
+"""
+
+GOOCH_FRAGMENT_SHADER_120 = """
+#version 120
+
+// data from vertex shader
+varying vec3 o_normal;
+varying vec3 o_lightVector;
+
+// diffuse color of the object
+uniform vec4 u_materialDiffuse;
+// cool color of gooch shading
+uniform vec3 u_coolColor;
+// warm color of gooch shading
+uniform vec3 u_warmColor;
+// how much to take from object color in final cool color
+uniform float u_alpha;
+// how much to take from object color in final warm color
+uniform float u_beta;
+
+///////////////////////////////////////////////////////////
+
+void main(void)
+{
+ // normlize vectors for lighting
+ vec3 normalVector = normalize(o_normal);
+ vec3 lightVector = normalize(o_lightVector);
+ // intensity of diffuse lighting [-1, 1]
+ float diffuseLighting = dot(lightVector, normalVector);
+ // map intensity of lighting from range [-1; 1] to [0, 1]
+ float interpolationValue = (1.0 + diffuseLighting)/2;
+
+ //////////////////////////////////////////////////////////////////
+
+ // cool color mixed with color of the object
+ vec3 coolColorMod = u_coolColor + vec3(u_materialDiffuse) * u_alpha;
+ // warm color mixed with color of the object
+ vec3 warmColorMod = u_warmColor + vec3(u_materialDiffuse) * u_beta;
+ // interpolation of cool and warm colors according
+ // to lighting intensity. The lower the light intensity,
+ // the larger part of the cool color is used
+ vec3 colorOut = mix(coolColorMod, warmColorMod, interpolationValue);
+
+ //////////////////////////////////////////////////////////////////
+
+ // save color
+ gl_FragColor.rgb = colorOut;
+ gl_FragColor.a = 1;
+}
+"""
+
+GOOCH_FRAGMENT_SHADER_130 = """
+#version 130
+
+// data from vertex shader
+in vec3 o_normal;
+in vec3 o_lightVector;
+
+// diffuse color of the object
+uniform vec4 u_materialDiffuse;
+// cool color of gooch shading
+uniform vec3 u_coolColor;
+// warm color of gooch shading
+uniform vec3 u_warmColor;
+// how much to take from object color in final cool color
+uniform float u_alpha;
+// how much to take from object color in final warm color
+uniform float u_beta;
+
+// output to framebuffer
+out vec4 resultingColor;
+
+///////////////////////////////////////////////////////////
+
+void main(void)
+{
+ // normlize vectors for lighting
+ vec3 normalVector = normalize(o_normal);
+ vec3 lightVector = normalize(o_lightVector);
+ // intensity of diffuse lighting [-1, 1]
+ float diffuseLighting = dot(lightVector, normalVector);
+ // map intensity of lighting from range [-1; 1] to [0, 1]
+ float interpolationValue = (1.0 + diffuseLighting)/2;
+
+ //////////////////////////////////////////////////////////////////
+
+ // cool color mixed with color of the object
+ vec3 coolColorMod = u_coolColor + vec3(u_materialDiffuse) * u_alpha;
+ // warm color mixed with color of the object
+ vec3 warmColorMod = u_warmColor + vec3(u_materialDiffuse) * u_beta;
+ // interpolation of cool and warm colors according
+ // to lighting intensity. The lower the light intensity,
+ // the larger part of the cool color is used
+ vec3 colorOut = mix(coolColorMod, warmColorMod, interpolationValue);
+
+ //////////////////////////////////////////////////////////////////
+
+ // save color
+ resultingColor.rgb = colorOut;
+ resultingColor.a = 1;
+}
+"""
+
+SILHOUETTE_VERTEX_SHADER_120 = """
+#version 120
+
+attribute vec3 a_vertex; // xyz - position
+attribute vec3 a_normal; // xyz - normal
+
+uniform mat4 u_modelMatrix;
+uniform mat4 u_viewProjectionMatrix;
+uniform mat4 u_modelViewMatrix;
+uniform vec4 u_materialDiffuse;
+uniform float u_bordersize; // width of the border
+
+varying vec4 v_color;
+
+void main(void){
+ v_color = u_materialDiffuse;
+ float distToCamera = -(u_modelViewMatrix * vec4(a_vertex, 1.0)).z;
+ vec4 tPos = vec4(a_vertex + a_normal * u_bordersize * distToCamera, 1.0);
+ gl_Position = u_viewProjectionMatrix * u_modelMatrix * tPos;
+}
+"""
+
+SILHOUETTE_VERTEX_SHADER_130 = """
+#version 130
+
+in vec3 a_vertex; // xyz - position
+in vec3 a_normal; // xyz - normal
+
+uniform mat4 u_modelMatrix;
+uniform mat4 u_viewProjectionMatrix;
+uniform mat4 u_modelViewMatrix;
+uniform vec4 u_materialDiffuse;
+uniform float u_bordersize; // width of the border
+
+out vec4 v_color;
+
+void main(void){
+ v_color = u_materialDiffuse;
+ float distToCamera = -(u_modelViewMatrix * vec4(a_vertex, 1.0)).z;
+ vec4 tPos = vec4(a_vertex + a_normal * u_bordersize * distToCamera, 1.0);
+ gl_Position = u_viewProjectionMatrix * u_modelMatrix * tPos;
+}
+"""
+DEFAULT_CLIP_PLANE_NEAR = 0.001
+DEFAULT_CLIP_PLANE_FAR = 1000.0
+
+
+def get_world_transform(scene, node):
+ if node == scene.rootnode:
+ return numpy.identity(4, dtype=numpy.float32)
+
+ parents = reversed(_get_parent_chain(scene, node, []))
+ parent_transform = reduce(numpy.dot, [p.transformation for p in parents])
+ return numpy.dot(parent_transform, node.transformation)
+
+
+def _get_parent_chain(scene, node, parents):
+ parent = node.parent
+
+ parents.append(parent)
+
+ if parent == scene.rootnode:
+ return parents
+
+ return _get_parent_chain(scene, parent, parents)
+
+
+class DefaultCamera:
+ def __init__(self, w, h, fov):
+ self.name = "default camera"
+ self.type = CAMERA
+ self.clipplanenear = DEFAULT_CLIP_PLANE_NEAR
+ self.clipplanefar = DEFAULT_CLIP_PLANE_FAR
+ self.aspect = w / h
+ self.horizontalfov = fov * math.pi / 180
+ self.transformation = numpy.array([[0.68, -0.32, 0.65, 7.48],
+ [0.73, 0.31, -0.61, -6.51],
+ [-0.01, 0.89, 0.44, 5.34],
+ [0., 0., 0., 1.]], dtype=numpy.float32)
+
+ self.transformation = numpy.dot(self.transformation, ROTATION_180_X)
+
+ def __str__(self):
+ return self.name
+
+
+class PyAssimp3DViewer:
+ base_name = "PyASSIMP 3D viewer"
+
+ def __init__(self, model, w=1024, h=768):
+
+ self.w = w
+ self.h = h
+
+ pygame.init()
+ pygame.display.set_caption(self.base_name)
+ pygame.display.set_mode((w, h), pygame.OPENGL | pygame.DOUBLEBUF)
+
+ glClearColor(0.18, 0.18, 0.18, 1.0)
+
+ shader_compilation_succeeded = False
+ try:
+ self.set_shaders_v130()
+ self.prepare_shaders()
+ except RuntimeError as message:
+ sys.stderr.write("%s\n" % message)
+ sys.stdout.write("Could not compile shaders in version 1.30, trying version 1.20\n")
+
+ if not shader_compilation_succeeded:
+ self.set_shaders_v120()
+ self.prepare_shaders()
+
+ self.scene = None
+ self.meshes = {} # stores the OpenGL vertex/faces/normals buffers pointers
+
+ self.node2colorid = {} # stores a color ID for each node. Useful for mouse picking and visibility checking
+ self.colorid2node = {} # reverse dict of node2colorid
+
+ self.currently_selected = None
+ self.moving = False
+ self.moving_situation = None
+
+ self.default_camera = DefaultCamera(self.w, self.h, fov=70)
+ self.cameras = [self.default_camera]
+
+ self.current_cam_index = 0
+ self.current_cam = self.default_camera
+ self.set_camera_projection()
+
+ self.load_model(model)
+
+ # user interactions
+ self.focal_point = [0, 0, 0]
+ self.is_rotating = False
+ self.is_panning = False
+ self.is_zooming = False
+
+ def set_shaders_v120(self):
+ self.BASIC_VERTEX_SHADER = BASIC_VERTEX_SHADER_120
+ self.FLAT_VERTEX_SHADER = FLAT_VERTEX_SHADER_120
+ self.SILHOUETTE_VERTEX_SHADER = SILHOUETTE_VERTEX_SHADER_120
+ self.GOOCH_VERTEX_SHADER = GOOCH_VERTEX_SHADER_120
+
+ self.BASIC_FRAGMENT_SHADER = BASIC_FRAGMENT_SHADER_120
+ self.GOOCH_FRAGMENT_SHADER = GOOCH_FRAGMENT_SHADER_120
+
+ def set_shaders_v130(self):
+ self.BASIC_VERTEX_SHADER = BASIC_VERTEX_SHADER_130
+ self.FLAT_VERTEX_SHADER = FLAT_VERTEX_SHADER_130
+ self.SILHOUETTE_VERTEX_SHADER = SILHOUETTE_VERTEX_SHADER_130
+ self.GOOCH_VERTEX_SHADER = GOOCH_VERTEX_SHADER_130
+
+ self.BASIC_FRAGMENT_SHADER = BASIC_FRAGMENT_SHADER_130
+ self.GOOCH_FRAGMENT_SHADER = GOOCH_FRAGMENT_SHADER_130
+
+ def prepare_shaders(self):
+
+ ### Base shader
+ vertex = shaders.compileShader(self.BASIC_VERTEX_SHADER, GL_VERTEX_SHADER)
+ fragment = shaders.compileShader(self.BASIC_FRAGMENT_SHADER, GL_FRAGMENT_SHADER)
+
+ self.shader = shaders.compileProgram(vertex, fragment)
+
+ self.set_shader_accessors(('u_modelMatrix',
+ 'u_viewProjectionMatrix',
+ 'u_normalMatrix',
+ 'u_lightPos',
+ 'u_materialDiffuse'),
+ ('a_vertex',
+ 'a_normal'), self.shader)
+
+ ### Flat shader
+ flatvertex = shaders.compileShader(self.FLAT_VERTEX_SHADER, GL_VERTEX_SHADER)
+ self.flatshader = shaders.compileProgram(flatvertex, fragment)
+
+ self.set_shader_accessors(('u_modelMatrix',
+ 'u_viewProjectionMatrix',
+ 'u_materialDiffuse',),
+ ('a_vertex',), self.flatshader)
+
+ ### Silhouette shader
+ silh_vertex = shaders.compileShader(self.SILHOUETTE_VERTEX_SHADER, GL_VERTEX_SHADER)
+ self.silhouette_shader = shaders.compileProgram(silh_vertex, fragment)
+
+ self.set_shader_accessors(('u_modelMatrix',
+ 'u_viewProjectionMatrix',
+ 'u_modelViewMatrix',
+ 'u_materialDiffuse',
+ 'u_bordersize' # width of the silhouette
+ ),
+ ('a_vertex',
+ 'a_normal'), self.silhouette_shader)
+
+ ### Gooch shader
+ gooch_vertex = shaders.compileShader(self.GOOCH_VERTEX_SHADER, GL_VERTEX_SHADER)
+ gooch_fragment = shaders.compileShader(self.GOOCH_FRAGMENT_SHADER, GL_FRAGMENT_SHADER)
+ self.gooch_shader = shaders.compileProgram(gooch_vertex, gooch_fragment)
+
+ self.set_shader_accessors(('u_modelMatrix',
+ 'u_viewProjectionMatrix',
+ 'u_normalMatrix',
+ 'u_lightPos',
+ 'u_materialDiffuse',
+ 'u_coolColor',
+ 'u_warmColor',
+ 'u_alpha',
+ 'u_beta'
+ ),
+ ('a_vertex',
+ 'a_normal'), self.gooch_shader)
+
+ @staticmethod
+ def set_shader_accessors(uniforms, attributes, shader):
+ # add accessors to the shaders uniforms and attributes
+ for uniform in uniforms:
+ location = glGetUniformLocation(shader, uniform)
+ if location in (None, -1):
+ raise RuntimeError('No uniform: %s (maybe it is not used '
+ 'anymore and has been optimized out by'
+ ' the shader compiler)' % uniform)
+ setattr(shader, uniform, location)
+
+ for attribute in attributes:
+ location = glGetAttribLocation(shader, attribute)
+ if location in (None, -1):
+ raise RuntimeError('No attribute: %s' % attribute)
+ setattr(shader, attribute, location)
+
+ @staticmethod
+ def prepare_gl_buffers(mesh):
+
+ mesh.gl = {}
+
+ # Fill the buffer for vertex and normals positions
+ v = numpy.array(mesh.vertices, 'f')
+ n = numpy.array(mesh.normals, 'f')
+
+ mesh.gl["vbo"] = vbo.VBO(numpy.hstack((v, n)))
+
+ # Fill the buffer for vertex positions
+ mesh.gl["faces"] = glGenBuffers(1)
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.gl["faces"])
+ glBufferData(GL_ELEMENT_ARRAY_BUFFER,
+ numpy.array(mesh.faces, dtype=numpy.int32),
+ GL_STATIC_DRAW)
+
+ mesh.gl["nbfaces"] = len(mesh.faces)
+
+ # Unbind buffers
+ glBindBuffer(GL_ARRAY_BUFFER, 0)
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)
+
+ @staticmethod
+ def get_rgb_from_colorid(colorid):
+ r = (colorid >> 0) & 0xff
+ g = (colorid >> 8) & 0xff
+ b = (colorid >> 16) & 0xff
+
+ return r, g, b
+
+ def get_color_id(self):
+ id = random.randint(0, 256 * 256 * 256)
+ if id not in self.colorid2node:
+ return id
+ else:
+ return self.get_color_id()
+
+ def glize(self, scene, node):
+
+ logger.info("Loading node <%s>" % node)
+ node.selected = True if self.currently_selected and self.currently_selected == node else False
+
+ node.transformation = node.transformation.astype(numpy.float32)
+
+ if node.meshes:
+ node.type = MESH
+ colorid = self.get_color_id()
+ self.colorid2node[colorid] = node
+ self.node2colorid[node.name] = colorid
+
+ elif node.name in [c.name for c in scene.cameras]:
+
+ # retrieve the ASSIMP camera object
+ [cam] = [c for c in scene.cameras if c.name == node.name]
+ node.type = CAMERA
+ logger.info("Added camera <%s>" % node.name)
+ logger.info("Camera position: %.3f, %.3f, %.3f" % tuple(node.transformation[:, 3][:3].tolist()))
+ self.cameras.append(node)
+ node.clipplanenear = cam.clipplanenear
+ node.clipplanefar = cam.clipplanefar
+
+ if numpy.allclose(cam.lookat, [0, 0, -1]) and numpy.allclose(cam.up, [0, 1, 0]): # Cameras in .blend files
+
+ # Rotate by 180deg around X to have Z pointing forward
+ node.transformation = numpy.dot(node.transformation, ROTATION_180_X)
+ else:
+ raise RuntimeError(
+ "I do not know how to normalize this camera orientation: lookat=%s, up=%s" % (cam.lookat, cam.up))
+
+ if cam.aspect == 0.0:
+ logger.warning("Camera aspect not set. Setting to default 4:3")
+ node.aspect = 1.333
+ else:
+ node.aspect = cam.aspect
+
+ node.horizontalfov = cam.horizontalfov
+
+ else:
+ node.type = ENTITY
+
+ for child in node.children:
+ self.glize(scene, child)
+
+ def load_model(self, path, postprocess=aiProcessPreset_TargetRealtime_MaxQuality):
+ logger.info("Loading model:" + path + "...")
+
+ if postprocess:
+ self.scene = pyassimp.load(path, processing=postprocess)
+ else:
+ self.scene = pyassimp.load(path)
+ logger.info("Done.")
+
+ scene = self.scene
+ # log some statistics
+ logger.info(" meshes: %d" % len(scene.meshes))
+ logger.info(" total faces: %d" % sum([len(mesh.faces) for mesh in scene.meshes]))
+ logger.info(" materials: %d" % len(scene.materials))
+ self.bb_min, self.bb_max = get_bounding_box(self.scene)
+ logger.info(" bounding box:" + str(self.bb_min) + " - " + str(self.bb_max))
+
+ self.scene_center = [(a + b) / 2. for a, b in zip(self.bb_min, self.bb_max)]
+
+ for index, mesh in enumerate(scene.meshes):
+ self.prepare_gl_buffers(mesh)
+
+ self.glize(scene, scene.rootnode)
+
+ # Finally release the model
+ pyassimp.release(scene)
+ logger.info("Ready for 3D rendering!")
+
+ def cycle_cameras(self):
+
+ self.current_cam_index = (self.current_cam_index + 1) % len(self.cameras)
+ self.current_cam = self.cameras[self.current_cam_index]
+ self.set_camera_projection(self.current_cam)
+ logger.info("Switched to camera <%s>" % self.current_cam)
+
+ def set_overlay_projection(self):
+ glViewport(0, 0, self.w, self.h)
+ glMatrixMode(GL_PROJECTION)
+ glLoadIdentity()
+ glOrtho(0.0, self.w - 1.0, 0.0, self.h - 1.0, -1.0, 1.0)
+ glMatrixMode(GL_MODELVIEW)
+ glLoadIdentity()
+
+ def set_camera_projection(self, camera=None):
+
+ if not camera:
+ camera = self.current_cam
+
+ znear = camera.clipplanenear or DEFAULT_CLIP_PLANE_NEAR
+ zfar = camera.clipplanefar or DEFAULT_CLIP_PLANE_FAR
+ aspect = camera.aspect
+ fov = camera.horizontalfov
+
+ glMatrixMode(GL_PROJECTION)
+ glLoadIdentity()
+
+ # Compute gl frustrum
+ tangent = math.tan(fov / 2.)
+ h = znear * tangent
+ w = h * aspect
+
+ # params: left, right, bottom, top, near, far
+ glFrustum(-w, w, -h, h, znear, zfar)
+ # equivalent to:
+ # gluPerspective(fov * 180/math.pi, aspect, znear, zfar)
+
+ self.projection_matrix = glGetFloatv(GL_PROJECTION_MATRIX).transpose()
+
+ glMatrixMode(GL_MODELVIEW)
+ glLoadIdentity()
+
+ def render_colors(self):
+
+ glEnable(GL_DEPTH_TEST)
+ glDepthFunc(GL_LEQUAL)
+
+ glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)
+ glEnable(GL_CULL_FACE)
+
+ glUseProgram(self.flatshader)
+
+ glUniformMatrix4fv(self.flatshader.u_viewProjectionMatrix, 1, GL_TRUE,
+ numpy.dot(self.projection_matrix, self.view_matrix))
+
+ self.recursive_render(self.scene.rootnode, self.flatshader, mode=COLORS)
+
+ glUseProgram(0)
+
+ def get_hovered_node(self, mousex, mousey):
+ """
+ Attention: The performances of this method relies heavily on the size of the display!
+ """
+
+ # mouse out of the window?
+ if mousex < 0 or mousex >= self.w or mousey < 0 or mousey >= self.h:
+ return None
+
+ self.render_colors()
+ # Capture image from the OpenGL buffer
+ buf = (GLubyte * (3 * self.w * self.h))(0)
+ glReadPixels(0, 0, self.w, self.h, GL_RGB, GL_UNSIGNED_BYTE, buf)
+
+ # Reinterpret the RGB pixel buffer as a 1-D array of 24bits colors
+ a = numpy.ndarray(len(buf), numpy.dtype('>u1'), buf)
+ colors = numpy.zeros(len(buf) // 3, numpy.dtype('<u4'))
+ for i in range(3):
+ colors.view(dtype='>u1')[i::4] = a.view(dtype='>u1')[i::3]
+
+ colorid = colors[mousex + mousey * self.w]
+
+ glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
+
+ if colorid in self.colorid2node:
+ return self.colorid2node[colorid]
+
+ def render(self, wireframe=False, twosided=False):
+
+ glEnable(GL_DEPTH_TEST)
+ glDepthFunc(GL_LEQUAL)
+
+ glPolygonMode(GL_FRONT_AND_BACK, GL_LINE if wireframe else GL_FILL)
+ glDisable(GL_CULL_FACE) if twosided else glEnable(GL_CULL_FACE)
+
+ self.render_grid()
+
+ self.recursive_render(self.scene.rootnode, None, mode=HELPERS)
+
+ ### First, the silhouette
+
+ if False:
+ shader = self.silhouette_shader
+
+ # glDepthMask(GL_FALSE)
+ glCullFace(GL_FRONT) # cull front faces
+
+ glUseProgram(shader)
+ glUniform1f(shader.u_bordersize, 0.01)
+
+ glUniformMatrix4fv(shader.u_viewProjectionMatrix, 1, GL_TRUE,
+ numpy.dot(self.projection_matrix, self.view_matrix))
+
+ self.recursive_render(self.scene.rootnode, shader, mode=SILHOUETTE)
+
+ glUseProgram(0)
+
+ ### Then, inner shading
+ # glDepthMask(GL_TRUE)
+ glCullFace(GL_BACK)
+
+ use_gooch = False
+ if use_gooch:
+ shader = self.gooch_shader
+
+ glUseProgram(shader)
+ glUniform3f(shader.u_lightPos, -.5, -.5, .5)
+
+ ##### GOOCH specific
+ glUniform3f(shader.u_coolColor, 159.0 / 255, 148.0 / 255, 255.0 / 255)
+ glUniform3f(shader.u_warmColor, 255.0 / 255, 75.0 / 255, 75.0 / 255)
+ glUniform1f(shader.u_alpha, .25)
+ glUniform1f(shader.u_beta, .25)
+ #########
+ else:
+ shader = self.shader
+ glUseProgram(shader)
+ glUniform3f(shader.u_lightPos, -.5, -.5, .5)
+
+ glUniformMatrix4fv(shader.u_viewProjectionMatrix, 1, GL_TRUE,
+ numpy.dot(self.projection_matrix, self.view_matrix))
+
+ self.recursive_render(self.scene.rootnode, shader)
+
+ glUseProgram(0)
+
+ def render_axis(self,
+ transformation=numpy.identity(4, dtype=numpy.float32),
+ label=None,
+ size=0.2,
+ selected=False):
+ m = transformation.transpose() # OpenGL row major
+
+ glPushMatrix()
+ glMultMatrixf(m)
+
+ glLineWidth(3 if selected else 1)
+
+ size = 2 * size if selected else size
+
+ glBegin(GL_LINES)
+
+ # draw line for x axis
+ glColor3f(1.0, 0.0, 0.0)
+ glVertex3f(0.0, 0.0, 0.0)
+ glVertex3f(size, 0.0, 0.0)
+
+ # draw line for y axis
+ glColor3f(0.0, 1.0, 0.0)
+ glVertex3f(0.0, 0.0, 0.0)
+ glVertex3f(0.0, size, 0.0)
+
+ # draw line for Z axis
+ glColor3f(0.0, 0.0, 1.0)
+ glVertex3f(0.0, 0.0, 0.0)
+ glVertex3f(0.0, 0.0, size)
+
+ glEnd()
+
+ if label:
+ self.showtext(label)
+
+ glPopMatrix()
+
+ @staticmethod
+ def render_camera(camera, transformation):
+
+ m = transformation.transpose() # OpenGL row major
+
+ aspect = camera.aspect
+
+ u = 0.1 # unit size (in m)
+ l = 3 * u # length of the camera cone
+ f = 3 * u # aperture of the camera cone
+
+ glPushMatrix()
+ glMultMatrixf(m)
+
+ glLineWidth(2)
+ glBegin(GL_LINE_STRIP)
+
+ glColor3f(.2, .2, .2)
+
+ glVertex3f(u, u, -u)
+ glVertex3f(u, -u, -u)
+ glVertex3f(-u, -u, -u)
+ glVertex3f(-u, u, -u)
+ glVertex3f(u, u, -u)
+
+ glVertex3f(u, u, 0.0)
+ glVertex3f(u, -u, 0.0)
+ glVertex3f(-u, -u, 0.0)
+ glVertex3f(-u, u, 0.0)
+ glVertex3f(u, u, 0.0)
+
+ glVertex3f(f * aspect, f, l)
+ glVertex3f(f * aspect, -f, l)
+ glVertex3f(-f * aspect, -f, l)
+ glVertex3f(-f * aspect, f, l)
+ glVertex3f(f * aspect, f, l)
+
+ glEnd()
+
+ glBegin(GL_LINE_STRIP)
+ glVertex3f(u, -u, -u)
+ glVertex3f(u, -u, 0.0)
+ glVertex3f(f * aspect, -f, l)
+ glEnd()
+
+ glBegin(GL_LINE_STRIP)
+ glVertex3f(-u, -u, -u)
+ glVertex3f(-u, -u, 0.0)
+ glVertex3f(-f * aspect, -f, l)
+ glEnd()
+
+ glBegin(GL_LINE_STRIP)
+ glVertex3f(-u, u, -u)
+ glVertex3f(-u, u, 0.0)
+ glVertex3f(-f * aspect, f, l)
+ glEnd()
+
+ glPopMatrix()
+
+ @staticmethod
+ def render_grid():
+
+ glLineWidth(1)
+ glColor3f(0.5, 0.5, 0.5)
+ glBegin(GL_LINES)
+ for i in range(-10, 11):
+ glVertex3f(i, -10.0, 0.0)
+ glVertex3f(i, 10.0, 0.0)
+
+ for i in range(-10, 11):
+ glVertex3f(-10.0, i, 0.0)
+ glVertex3f(10.0, i, 0.0)
+ glEnd()
+
+ def recursive_render(self, node, shader, mode=BASE, with_normals=True):
+ """ Main recursive rendering method.
+ """
+
+ normals = with_normals
+
+ if mode == COLORS:
+ normals = False
+
+
+ if not hasattr(node, "selected"):
+ node.selected = False
+
+ m = get_world_transform(self.scene, node)
+
+ # HELPERS mode
+ ###
+ if mode == HELPERS:
+ # if node.type == ENTITY:
+ self.render_axis(m,
+ label=node.name if node != self.scene.rootnode else None,
+ selected=node.selected if hasattr(node, "selected") else False)
+
+ if node.type == CAMERA:
+ self.render_camera(node, m)
+
+ for child in node.children:
+ self.recursive_render(child, shader, mode)
+
+ return
+
+ # Mesh rendering modes
+ ###
+ if node.type == MESH:
+
+ for mesh in node.meshes:
+
+ stride = 24 # 6 * 4 bytes
+
+ if node.selected and mode == SILHOUETTE:
+ glUniform4f(shader.u_materialDiffuse, 1.0, 0.0, 0.0, 1.0)
+ glUniformMatrix4fv(shader.u_modelViewMatrix, 1, GL_TRUE,
+ numpy.dot(self.view_matrix, m))
+
+ else:
+ if mode == COLORS:
+ colorid = self.node2colorid[node.name]
+ r, g, b = self.get_rgb_from_colorid(colorid)
+ glUniform4f(shader.u_materialDiffuse, r / 255.0, g / 255.0, b / 255.0, 1.0)
+ elif mode == SILHOUETTE:
+ glUniform4f(shader.u_materialDiffuse, .0, .0, .0, 1.0)
+ else:
+ if node.selected:
+ diffuse = (1.0, 0.0, 0.0, 1.0) # selected nodes in red
+ else:
+ diffuse = mesh.material.properties["diffuse"]
+ if len(diffuse) == 3: # RGB instead of expected RGBA
+ diffuse.append(1.0)
+ glUniform4f(shader.u_materialDiffuse, *diffuse)
+ # if ambient:
+ # glUniform4f( shader.Material_ambient, *mat["ambient"] )
+
+ if mode == BASE: # not in COLORS or SILHOUETTE
+ normal_matrix = linalg.inv(numpy.dot(self.view_matrix, m)[0:3, 0:3]).transpose()
+ glUniformMatrix3fv(shader.u_normalMatrix, 1, GL_TRUE, normal_matrix)
+
+ glUniformMatrix4fv(shader.u_modelMatrix, 1, GL_TRUE, m)
+
+ vbo = mesh.gl["vbo"]
+ vbo.bind()
+
+ glEnableVertexAttribArray(shader.a_vertex)
+ if normals:
+ glEnableVertexAttribArray(shader.a_normal)
+
+ glVertexAttribPointer(
+ shader.a_vertex,
+ 3, GL_FLOAT, False, stride, vbo
+ )
+
+ if normals:
+ glVertexAttribPointer(
+ shader.a_normal,
+ 3, GL_FLOAT, False, stride, vbo + 12
+ )
+
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.gl["faces"])
+ glDrawElements(GL_TRIANGLES, mesh.gl["nbfaces"] * 3, GL_UNSIGNED_INT, None)
+
+ vbo.unbind()
+ glDisableVertexAttribArray(shader.a_vertex)
+
+ if normals:
+ glDisableVertexAttribArray(shader.a_normal)
+
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)
+
+ for child in node.children:
+ self.recursive_render(child, shader, mode)
+
+
+ def switch_to_overlay(self):
+ glPushMatrix()
+ self.set_overlay_projection()
+
+ def switch_from_overlay(self):
+ self.set_camera_projection()
+ glPopMatrix()
+
+ def select_node(self, node):
+ self.currently_selected = node
+ self.update_node_select(self.scene.rootnode)
+
+ def update_node_select(self, node):
+ if node is self.currently_selected:
+ node.selected = True
+ else:
+ node.selected = False
+
+ for child in node.children:
+ self.update_node_select(child)
+
+ def loop(self):
+
+ pygame.display.flip()
+
+ if not self.process_events():
+ return False # ESC has been pressed
+
+ glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
+
+ return True
+
+ def process_events(self):
+
+ LEFT_BUTTON = 1
+ MIDDLE_BUTTON = 2
+ RIGHT_BUTTON = 3
+ WHEEL_UP = 4
+ WHEEL_DOWN = 5
+
+ dx, dy = pygame.mouse.get_rel()
+ mousex, mousey = pygame.mouse.get_pos()
+
+ zooming_one_shot = False
+
+ ok = True
+
+ for evt in pygame.event.get():
+ if evt.type == pygame.MOUSEBUTTONDOWN and evt.button == LEFT_BUTTON:
+ hovered = self.get_hovered_node(mousex, self.h - mousey)
+ if hovered:
+ if self.currently_selected and self.currently_selected == hovered:
+ self.select_node(None)
+ else:
+ logger.info("Node %s selected" % hovered)
+ self.select_node(hovered)
+ else:
+ self.is_rotating = True
+ if evt.type == pygame.MOUSEBUTTONUP and evt.button == LEFT_BUTTON:
+ self.is_rotating = False
+
+ if evt.type == pygame.MOUSEBUTTONDOWN and evt.button == MIDDLE_BUTTON:
+ self.is_panning = True
+ if evt.type == pygame.MOUSEBUTTONUP and evt.button == MIDDLE_BUTTON:
+ self.is_panning = False
+
+ if evt.type == pygame.MOUSEBUTTONDOWN and evt.button == RIGHT_BUTTON:
+ self.is_zooming = True
+ if evt.type == pygame.MOUSEBUTTONUP and evt.button == RIGHT_BUTTON:
+ self.is_zooming = False
+
+ if evt.type == pygame.MOUSEBUTTONDOWN and evt.button in [WHEEL_UP, WHEEL_DOWN]:
+ zooming_one_shot = True
+ self.is_zooming = True
+ dy = -10 if evt.button == WHEEL_UP else 10
+
+ if evt.type == pygame.KEYDOWN:
+ ok = (ok and self.process_keystroke(evt.key, evt.mod))
+
+ self.controls_3d(dx, dy, zooming_one_shot)
+
+ return ok
+
+ def process_keystroke(self, key, mod):
+
+ # process arrow keys if an object is selected
+ if self.currently_selected:
+ up = 0
+ strafe = 0
+
+ if key == pygame.K_UP:
+ up = 1
+ if key == pygame.K_DOWN:
+ up = -1
+ if key == pygame.K_LEFT:
+ strafe = -1
+ if key == pygame.K_RIGHT:
+ strafe = 1
+
+ self.move_selected_node(up, strafe)
+
+ if key == pygame.K_f:
+ pygame.display.toggle_fullscreen()
+
+ if key == pygame.K_TAB:
+ self.cycle_cameras()
+
+ if key in [pygame.K_ESCAPE, pygame.K_q]:
+ return False
+
+ return True
+
+ def controls_3d(self, dx, dy, zooming_one_shot=False):
+ """ Orbiting the camera is implemented the following way:
+
+ - the rotation is split into a rotation around the *world* Z axis
+ (controlled by the horizontal mouse motion along X) and a
+ rotation around the *X* axis of the camera (pitch) *shifted to
+ the focal origin* (the world origin for now). This is controlled
+ by the vertical motion of the mouse (Y axis).
+ - as a result, the resulting transformation of the camera in the
+ world frame C' is:
+ C' = (T · Rx · T⁻¹ · (Rz · C)⁻¹)⁻¹
+ where:
+ - C is the original camera transformation in the world frame,
+ - Rz is the rotation along the Z axis (in the world frame)
+ - T is the translation camera -> world (ie, the inverse of the
+ translation part of C
+ - Rx is the rotation around X in the (translated) camera frame """
+
+ CAMERA_TRANSLATION_FACTOR = 0.01
+ CAMERA_ROTATION_FACTOR = 0.01
+
+ if not (self.is_rotating or self.is_panning or self.is_zooming):
+ return
+
+ current_pos = self.current_cam.transformation[:3, 3].copy()
+ distance = numpy.linalg.norm(self.focal_point - current_pos)
+
+ if self.is_rotating:
+ rotation_camera_x = dy * CAMERA_ROTATION_FACTOR
+ rotation_world_z = dx * CAMERA_ROTATION_FACTOR
+ world_z_rotation = transformations.euler_matrix(0, 0, rotation_world_z)
+ cam_x_rotation = transformations.euler_matrix(rotation_camera_x, 0, 0)
+
+ after_world_z_rotation = numpy.dot(world_z_rotation, self.current_cam.transformation)
+
+ inverse_transformation = transformations.inverse_matrix(after_world_z_rotation)
+
+ translation = transformations.translation_matrix(
+ transformations.decompose_matrix(inverse_transformation)[3])
+ inverse_translation = transformations.inverse_matrix(translation)
+
+ new_inverse = numpy.dot(inverse_translation, inverse_transformation)
+ new_inverse = numpy.dot(cam_x_rotation, new_inverse)
+ new_inverse = numpy.dot(translation, new_inverse)
+
+ self.current_cam.transformation = transformations.inverse_matrix(new_inverse).astype(numpy.float32)
+
+ if self.is_panning:
+ tx = -dx * CAMERA_TRANSLATION_FACTOR * distance
+ ty = dy * CAMERA_TRANSLATION_FACTOR * distance
+ cam_transform = transformations.translation_matrix((tx, ty, 0)).astype(numpy.float32)
+ self.current_cam.transformation = numpy.dot(self.current_cam.transformation, cam_transform)
+
+ if self.is_zooming:
+ tz = dy * CAMERA_TRANSLATION_FACTOR * distance
+ cam_transform = transformations.translation_matrix((0, 0, tz)).astype(numpy.float32)
+ self.current_cam.transformation = numpy.dot(self.current_cam.transformation, cam_transform)
+
+ if zooming_one_shot:
+ self.is_zooming = False
+
+ self.update_view_camera()
+
+ def update_view_camera(self):
+
+ self.view_matrix = linalg.inv(self.current_cam.transformation)
+
+ # Rotate by 180deg around X to have Z pointing backward (OpenGL convention)
+ self.view_matrix = numpy.dot(ROTATION_180_X, self.view_matrix)
+
+ glMatrixMode(GL_MODELVIEW)
+ glLoadIdentity()
+ glMultMatrixf(self.view_matrix.transpose())
+
+ def move_selected_node(self, up, strafe):
+ self.currently_selected.transformation[0][3] += strafe
+ self.currently_selected.transformation[2][3] += up
+
+ @staticmethod
+ def showtext(text, x=0, y=0, z=0, size=20):
+
+ # TODO: alpha blending does not work...
+ # glEnable(GL_BLEND)
+ # glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
+
+ font = pygame.font.Font(None, size)
+ text_surface = font.render(text, True, (10, 10, 10, 255),
+ (255 * 0.18, 255 * 0.18, 255 * 0.18, 0))
+ text_data = pygame.image.tostring(text_surface, "RGBA", True)
+ glRasterPos3d(x, y, z)
+ glDrawPixels(text_surface.get_width(),
+ text_surface.get_height(),
+ GL_RGBA, GL_UNSIGNED_BYTE,
+ text_data)
+
+ # glDisable(GL_BLEND)
+
+
+def main(model, width, height):
+ app = PyAssimp3DViewer(model, w=width, h=height)
+
+ clock = pygame.time.Clock()
+
+ while app.loop():
+
+ app.update_view_camera()
+
+ ## Main rendering
+ app.render()
+
+ ## GUI text display
+ app.switch_to_overlay()
+ app.showtext("Active camera: %s" % str(app.current_cam), 10, app.h - 30)
+ if app.currently_selected:
+ app.showtext("Selected node: %s" % app.currently_selected, 10, app.h - 50)
+ pos = app.h - 70
+
+ app.showtext("(%sm, %sm, %sm)" % (app.currently_selected.transformation[0, 3],
+ app.currently_selected.transformation[1, 3],
+ app.currently_selected.transformation[2, 3]), 30, pos)
+
+ app.switch_from_overlay()
+
+ # Make sure we do not go over 30fps
+ clock.tick(30)
+
+ logger.info("Quitting! Bye bye!")
+
+
+#########################################################################
+#########################################################################
+
+if __name__ == '__main__':
+ if not len(sys.argv) > 1:
+ print("Usage: " + __file__ + " <model>")
+ sys.exit(2)
+
+ main(model=sys.argv[1], width=1024, height=768)
diff --git a/libs/assimp/port/PyAssimp/scripts/README.md b/libs/assimp/port/PyAssimp/scripts/README.md
new file mode 100644
index 0000000..42caa27
--- /dev/null
+++ b/libs/assimp/port/PyAssimp/scripts/README.md
@@ -0,0 +1,13 @@
+pyassimp examples
+=================
+
+- `sample.py`: shows how to load a model with pyassimp, and display some statistics.
+- `3d_viewer.py`: an OpenGL 3D viewer that requires shaders
+- `fixed_pipeline_3d_viewer`: an OpenGL 3D viewer using the old fixed-pipeline.
+ Only for illustration example. Base new projects on `3d_viewer.py`.
+
+
+Requirements for the 3D viewers:
+
+- `pyopengl` (on Ubuntu/Debian, `sudo apt-get install python-opengl`)
+- `pygame` (on Ubuntu/Debian, `sudo apt-get install python-pygame`)
diff --git a/libs/assimp/port/PyAssimp/scripts/fixed_pipeline_3d_viewer.py b/libs/assimp/port/PyAssimp/scripts/fixed_pipeline_3d_viewer.py
new file mode 100755
index 0000000..c2f6ceb
--- /dev/null
+++ b/libs/assimp/port/PyAssimp/scripts/fixed_pipeline_3d_viewer.py
@@ -0,0 +1,372 @@
+#!/usr/bin/env python
+#-*- coding: UTF-8 -*-
+
+""" This program demonstrates the use of pyassimp to load and
+render objects with OpenGL.
+
+'c' cycles between cameras (if any available)
+'q' to quit
+
+This example mixes 'old' OpenGL fixed-function pipeline with
+Vertex Buffer Objects.
+
+Materials are supported but textures are currently ignored.
+
+For a more advanced example (with shaders + keyboard/mouse
+controls), check scripts/sdl_viewer.py
+
+Author: Séverin Lemaignan, 2012
+
+This sample is based on several sources, including:
+ - http://www.lighthouse3d.com/tutorials
+ - http://www.songho.ca/opengl/gl_transform.html
+ - http://code.activestate.com/recipes/325391/
+ - ASSIMP's C++ SimpleOpenGL viewer
+"""
+
+import sys
+from OpenGL.GLUT import *
+from OpenGL.GLU import *
+from OpenGL.GL import *
+
+import logging
+logger = logging.getLogger("pyassimp_opengl")
+logging.basicConfig(level=logging.INFO)
+
+import math
+import numpy
+
+import pyassimp
+from pyassimp.postprocess import *
+from pyassimp.helper import *
+
+
+name = 'pyassimp OpenGL viewer'
+height = 600
+width = 900
+
+class GLRenderer():
+ def __init__(self):
+
+ self.scene = None
+
+ self.using_fixed_cam = False
+ self.current_cam_index = 0
+
+ # store the global scene rotation
+ self.angle = 0.
+
+ # for FPS calculation
+ self.prev_time = 0
+ self.prev_fps_time = 0
+ self.frames = 0
+
+ def prepare_gl_buffers(self, mesh):
+ """ Creates 3 buffer objets for each mesh,
+ to store the vertices, the normals, and the faces
+ indices.
+ """
+
+ mesh.gl = {}
+
+ # Fill the buffer for vertex positions
+ mesh.gl["vertices"] = glGenBuffers(1)
+ glBindBuffer(GL_ARRAY_BUFFER, mesh.gl["vertices"])
+ glBufferData(GL_ARRAY_BUFFER,
+ mesh.vertices,
+ GL_STATIC_DRAW)
+
+ # Fill the buffer for normals
+ mesh.gl["normals"] = glGenBuffers(1)
+ glBindBuffer(GL_ARRAY_BUFFER, mesh.gl["normals"])
+ glBufferData(GL_ARRAY_BUFFER,
+ mesh.normals,
+ GL_STATIC_DRAW)
+
+
+ # Fill the buffer for vertex positions
+ mesh.gl["triangles"] = glGenBuffers(1)
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.gl["triangles"])
+ glBufferData(GL_ELEMENT_ARRAY_BUFFER,
+ mesh.faces,
+ GL_STATIC_DRAW)
+
+ # Unbind buffers
+ glBindBuffer(GL_ARRAY_BUFFER,0)
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0)
+
+ def load_model(self, path, postprocess = None):
+ logger.info("Loading model:" + path + "...")
+
+ if postprocess:
+ self.scene = pyassimp.load(path, processing=postprocess)
+ else:
+ self.scene = pyassimp.load(path)
+ logger.info("Done.")
+
+ scene = self.scene
+ #log some statistics
+ logger.info(" meshes: %d" % len(scene.meshes))
+ logger.info(" total faces: %d" % sum([len(mesh.faces) for mesh in scene.meshes]))
+ logger.info(" materials: %d" % len(scene.materials))
+ self.bb_min, self.bb_max = get_bounding_box(self.scene)
+ logger.info(" bounding box:" + str(self.bb_min) + " - " + str(self.bb_max))
+
+ self.scene_center = [(a + b) / 2. for a, b in zip(self.bb_min, self.bb_max)]
+
+ for index, mesh in enumerate(scene.meshes):
+ self.prepare_gl_buffers(mesh)
+
+ # Finally release the model
+ pyassimp.release(scene)
+
+ def cycle_cameras(self):
+ self.current_cam_index
+ if not self.scene.cameras:
+ return None
+ self.current_cam_index = (self.current_cam_index + 1) % len(self.scene.cameras)
+ cam = self.scene.cameras[self.current_cam_index]
+ logger.info("Switched to camera " + str(cam))
+ return cam
+
+ def set_default_camera(self):
+
+ if not self.using_fixed_cam:
+ glLoadIdentity()
+
+ gluLookAt(0.,0.,3.,
+ 0.,0.,-5.,
+ 0.,1.,0.)
+
+
+
+ def set_camera(self, camera):
+
+ if not camera:
+ return
+
+ self.using_fixed_cam = True
+
+ znear = camera.clipplanenear
+ zfar = camera.clipplanefar
+ aspect = camera.aspect
+ fov = camera.horizontalfov
+
+ glMatrixMode(GL_PROJECTION)
+ glLoadIdentity()
+
+ # Compute gl frustrum
+ tangent = math.tan(fov/2.)
+ h = znear * tangent
+ w = h * aspect
+
+ # params: left, right, bottom, top, near, far
+ glFrustum(-w, w, -h, h, znear, zfar)
+ # equivalent to:
+ #gluPerspective(fov * 180/math.pi, aspect, znear, zfar)
+
+ glMatrixMode(GL_MODELVIEW)
+ glLoadIdentity()
+
+ cam = transform(camera.position, camera.transformation)
+ at = transform(camera.lookat, camera.transformation)
+ gluLookAt(cam[0], cam[2], -cam[1],
+ at[0], at[2], -at[1],
+ 0, 1, 0)
+
+ def fit_scene(self, restore = False):
+ """ Compute a scale factor and a translation to fit and center
+ the whole geometry on the screen.
+ """
+
+ x_max = self.bb_max[0] - self.bb_min[0]
+ y_max = self.bb_max[1] - self.bb_min[1]
+ tmp = max(x_max, y_max)
+ z_max = self.bb_max[2] - self.bb_min[2]
+ tmp = max(z_max, tmp)
+
+ if not restore:
+ tmp = 1. / tmp
+
+ logger.info("Scaling the scene by %.03f" % tmp)
+ glScalef(tmp, tmp, tmp)
+
+ # center the model
+ direction = -1 if not restore else 1
+ glTranslatef( direction * self.scene_center[0],
+ direction * self.scene_center[1],
+ direction * self.scene_center[2] )
+
+ return x_max, y_max, z_max
+
+ def apply_material(self, mat):
+ """ Apply an OpenGL, using one OpenGL display list per material to cache
+ the operation.
+ """
+
+ if not hasattr(mat, "gl_mat"): # evaluate once the mat properties, and cache the values in a glDisplayList.
+ diffuse = numpy.array(mat.properties.get("diffuse", [0.8, 0.8, 0.8, 1.0]))
+ specular = numpy.array(mat.properties.get("specular", [0., 0., 0., 1.0]))
+ ambient = numpy.array(mat.properties.get("ambient", [0.2, 0.2, 0.2, 1.0]))
+ emissive = numpy.array(mat.properties.get("emissive", [0., 0., 0., 1.0]))
+ shininess = min(mat.properties.get("shininess", 1.0), 128)
+ wireframe = mat.properties.get("wireframe", 0)
+ twosided = mat.properties.get("twosided", 1)
+
+ setattr(mat, "gl_mat", glGenLists(1))
+ glNewList(mat.gl_mat, GL_COMPILE)
+
+ glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, diffuse)
+ glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, specular)
+ glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient)
+ glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, emissive)
+ glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, shininess)
+ glPolygonMode(GL_FRONT_AND_BACK, GL_LINE if wireframe else GL_FILL)
+ glDisable(GL_CULL_FACE) if twosided else glEnable(GL_CULL_FACE)
+
+ glEndList()
+
+ glCallList(mat.gl_mat)
+
+
+
+ def do_motion(self):
+
+ gl_time = glutGet(GLUT_ELAPSED_TIME)
+
+ self.angle = (gl_time - self.prev_time) * 0.1
+
+ self.prev_time = gl_time
+
+ # Compute FPS
+ self.frames += 1
+ if gl_time - self.prev_fps_time >= 1000:
+ current_fps = self.frames * 1000 / (gl_time - self.prev_fps_time)
+ logger.info('%.0f fps' % current_fps)
+ self.frames = 0
+ self.prev_fps_time = gl_time
+
+ glutPostRedisplay()
+
+ def recursive_render(self, node):
+ """ Main recursive rendering method.
+ """
+
+ # save model matrix and apply node transformation
+ glPushMatrix()
+ m = node.transformation.transpose() # OpenGL row major
+ glMultMatrixf(m)
+
+ for mesh in node.meshes:
+ self.apply_material(mesh.material)
+
+ glBindBuffer(GL_ARRAY_BUFFER, mesh.gl["vertices"])
+ glEnableClientState(GL_VERTEX_ARRAY)
+ glVertexPointer(3, GL_FLOAT, 0, None)
+
+ glBindBuffer(GL_ARRAY_BUFFER, mesh.gl["normals"])
+ glEnableClientState(GL_NORMAL_ARRAY)
+ glNormalPointer(GL_FLOAT, 0, None)
+
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.gl["triangles"])
+ glDrawElements(GL_TRIANGLES,len(mesh.faces) * 3, GL_UNSIGNED_INT, None)
+
+ glDisableClientState(GL_VERTEX_ARRAY)
+ glDisableClientState(GL_NORMAL_ARRAY)
+
+ glBindBuffer(GL_ARRAY_BUFFER, 0)
+ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)
+
+ for child in node.children:
+ self.recursive_render(child)
+
+ glPopMatrix()
+
+
+ def display(self):
+ """ GLUT callback to redraw OpenGL surface
+ """
+ glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)
+
+ glRotatef(self.angle,0.,1.,0.)
+ self.recursive_render(self.scene.rootnode)
+
+ glutSwapBuffers()
+ self.do_motion()
+ return
+
+ ####################################################################
+ ## GLUT keyboard and mouse callbacks ##
+ ####################################################################
+ def onkeypress(self, key, x, y):
+ if key == 'c':
+ self.fit_scene(restore = True)
+ self.set_camera(self.cycle_cameras())
+ if key == 'q':
+ sys.exit(0)
+
+ def render(self, filename=None, fullscreen = False, autofit = True, postprocess = None):
+ """
+
+ :param autofit: if true, scale the scene to fit the whole geometry
+ in the viewport.
+ """
+
+ # First initialize the openGL context
+ glutInit(sys.argv)
+ glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH)
+ if not fullscreen:
+ glutInitWindowSize(width, height)
+ glutCreateWindow(name)
+ else:
+ glutGameModeString("1024x768")
+ if glutGameModeGet(GLUT_GAME_MODE_POSSIBLE):
+ glutEnterGameMode()
+ else:
+ print("Fullscreen mode not available!")
+ sys.exit(1)
+
+ self.load_model(filename, postprocess = postprocess)
+
+
+ glClearColor(0.1,0.1,0.1,1.)
+ #glShadeModel(GL_SMOOTH)
+
+ glEnable(GL_LIGHTING)
+
+ glEnable(GL_CULL_FACE)
+ glEnable(GL_DEPTH_TEST)
+
+ glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE)
+ glEnable(GL_NORMALIZE)
+ glEnable(GL_LIGHT0)
+
+ glutDisplayFunc(self.display)
+
+
+ glMatrixMode(GL_PROJECTION)
+ glLoadIdentity()
+ gluPerspective(35.0, width/float(height) , 0.10, 100.0)
+ glMatrixMode(GL_MODELVIEW)
+ self.set_default_camera()
+
+ if autofit:
+ # scale the whole asset to fit into our view frustum·
+ self.fit_scene()
+
+ glPushMatrix()
+
+ glutKeyboardFunc(self.onkeypress)
+ glutIgnoreKeyRepeat(1)
+
+ glutMainLoop()
+
+
+if __name__ == '__main__':
+ if not len(sys.argv) > 1:
+ print("Usage: " + __file__ + " <model>")
+ sys.exit(0)
+
+ glrender = GLRenderer()
+ glrender.render(sys.argv[1], fullscreen = False, postprocess = aiProcessPreset_TargetRealtime_MaxQuality)
+
diff --git a/libs/assimp/port/PyAssimp/scripts/quicktest.py b/libs/assimp/port/PyAssimp/scripts/quicktest.py
new file mode 100755
index 0000000..cbeccb4
--- /dev/null
+++ b/libs/assimp/port/PyAssimp/scripts/quicktest.py
@@ -0,0 +1,53 @@
+#!/usr/bin/env python
+#-*- coding: UTF-8 -*-
+
+"""
+This module uses the sample.py script to load all test models it finds.
+
+Note: this is not an exhaustive test suite, it does not check the
+data structures in detail. It just verifies whether basic
+loading and querying of 3d models using pyassimp works.
+"""
+
+import os
+import sys
+
+# Make the development (ie. GIT repo) version of PyAssimp available for import.
+sys.path.insert(0, '..')
+
+import sample
+from pyassimp import errors
+
+# Paths to model files.
+basepaths = [os.path.join('..', '..', '..', 'test', 'models'),
+ os.path.join('..', '..', '..', 'test', 'models-nonbsd')]
+
+# Valid extensions for 3D model files.
+extensions = ['.3ds', '.x', '.lwo', '.obj', '.md5mesh', '.dxf', '.ply', '.stl',
+ '.dae', '.md5anim', '.lws', '.irrmesh', '.nff', '.off', '.blend']
+
+
+def run_tests():
+ ok, err = 0, 0
+ for path in basepaths:
+ print("Looking for models in %s..." % path)
+ for root, dirs, files in os.walk(path):
+ for afile in files:
+ base, ext = os.path.splitext(afile)
+ if ext in extensions:
+ try:
+ sample.main(os.path.join(root, afile))
+ ok += 1
+ except errors.AssimpError as error:
+ # Assimp error is fine; this is a controlled case.
+ print(error)
+ err += 1
+ except Exception:
+ print("Error encountered while loading <%s>"
+ % os.path.join(root, afile))
+ print('** Loaded %s models, got controlled errors for %s files'
+ % (ok, err))
+
+
+if __name__ == '__main__':
+ run_tests()
diff --git a/libs/assimp/port/PyAssimp/scripts/sample.py b/libs/assimp/port/PyAssimp/scripts/sample.py
new file mode 100755
index 0000000..3cd4b3e
--- /dev/null
+++ b/libs/assimp/port/PyAssimp/scripts/sample.py
@@ -0,0 +1,89 @@
+#!/usr/bin/env python
+#-*- coding: UTF-8 -*-
+
+"""
+This module demonstrates the functionality of PyAssimp.
+"""
+
+import sys
+import logging
+logging.basicConfig(level=logging.INFO)
+
+import pyassimp
+import pyassimp.postprocess
+
+def recur_node(node,level = 0):
+ print(" " + "\t" * level + "- " + str(node))
+ for child in node.children:
+ recur_node(child, level + 1)
+
+
+def main(filename=None):
+
+ scene = pyassimp.load(filename, processing=pyassimp.postprocess.aiProcess_Triangulate)
+
+ #the model we load
+ print("MODEL:" + filename)
+ print
+
+ #write some statistics
+ print("SCENE:")
+ print(" meshes:" + str(len(scene.meshes)))
+ print(" materials:" + str(len(scene.materials)))
+ print(" textures:" + str(len(scene.textures)))
+ print
+
+ print("NODES:")
+ recur_node(scene.rootnode)
+
+ print
+ print("MESHES:")
+ for index, mesh in enumerate(scene.meshes):
+ print(" MESH" + str(index+1))
+ print(" material id:" + str(mesh.materialindex+1))
+ print(" vertices:" + str(len(mesh.vertices)))
+ print(" first 3 verts:\n" + str(mesh.vertices[:3]))
+ if mesh.normals.any():
+ print(" first 3 normals:\n" + str(mesh.normals[:3]))
+ else:
+ print(" no normals")
+ print(" colors:" + str(len(mesh.colors)))
+ tcs = mesh.texturecoords
+ if tcs.any():
+ for tc_index, tc in enumerate(tcs):
+ print(" texture-coords "+ str(tc_index) + ":" + str(len(tcs[tc_index])) + "first3:" + str(tcs[tc_index][:3]))
+
+ else:
+ print(" no texture coordinates")
+ print(" uv-component-count:" + str(len(mesh.numuvcomponents)))
+ print(" faces:" + str(len(mesh.faces)) + " -> first:\n" + str(mesh.faces[:3]))
+ print(" bones:" + str(len(mesh.bones)) + " -> first:" + str([str(b) for b in mesh.bones[:3]]))
+ print
+
+ print("MATERIALS:")
+ for index, material in enumerate(scene.materials):
+ print(" MATERIAL (id:" + str(index+1) + ")")
+ for key, value in material.properties.items():
+ print(" %s: %s" % (key, value))
+ print
+
+ print("TEXTURES:")
+ for index, texture in enumerate(scene.textures):
+ print(" TEXTURE" + str(index+1))
+ print(" width:" + str(texture.width))
+ print(" height:" + str(texture.height))
+ print(" hint:" + str(texture.achformathint))
+ print(" data (size):" + str(len(texture.data)))
+
+ # Finally release the model
+ pyassimp.release(scene)
+
+def usage():
+ print("Usage: sample.py <3d model>")
+
+if __name__ == "__main__":
+
+ if len(sys.argv) != 2:
+ usage()
+ else:
+ main(sys.argv[1])
diff --git a/libs/assimp/port/PyAssimp/scripts/transformations.py b/libs/assimp/port/PyAssimp/scripts/transformations.py
new file mode 100644
index 0000000..bf0cac9
--- /dev/null
+++ b/libs/assimp/port/PyAssimp/scripts/transformations.py
@@ -0,0 +1,1705 @@
+# -*- coding: utf-8 -*-
+# transformations.py
+
+# Copyright (c) 2006, Christoph Gohlke
+# Copyright (c) 2006-2009, The Regents of the University of California
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are met:
+#
+# * Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# * Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in the
+# documentation and/or other materials provided with the distribution.
+# * Neither the name of the copyright holders nor the names of any
+# contributors may be used to endorse or promote products derived
+# from this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+# POSSIBILITY OF SUCH DAMAGE.
+
+"""Homogeneous Transformation Matrices and Quaternions.
+
+A library for calculating 4x4 matrices for translating, rotating, reflecting,
+scaling, shearing, projecting, orthogonalizing, and superimposing arrays of
+3D homogeneous coordinates as well as for converting between rotation matrices,
+Euler angles, and quaternions. Also includes an Arcball control object and
+functions to decompose transformation matrices.
+
+:Authors:
+ `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`__,
+ Laboratory for Fluorescence Dynamics, University of California, Irvine
+
+:Version: 20090418
+
+Requirements
+------------
+
+* `Python 2.6 <http://www.python.org>`__
+* `Numpy 1.3 <http://numpy.scipy.org>`__
+* `transformations.c 20090418 <http://www.lfd.uci.edu/~gohlke/>`__
+ (optional implementation of some functions in C)
+
+Notes
+-----
+
+Matrices (M) can be inverted using numpy.linalg.inv(M), concatenated using
+numpy.dot(M0, M1), or used to transform homogeneous coordinates (v) using
+numpy.dot(M, v) for shape (4, \*) "point of arrays", respectively
+numpy.dot(v, M.T) for shape (\*, 4) "array of points".
+
+Calculations are carried out with numpy.float64 precision.
+
+This Python implementation is not optimized for speed.
+
+Vector, point, quaternion, and matrix function arguments are expected to be
+"array like", i.e. tuple, list, or numpy arrays.
+
+Return types are numpy arrays unless specified otherwise.
+
+Angles are in radians unless specified otherwise.
+
+Quaternions ix+jy+kz+w are represented as [x, y, z, w].
+
+Use the transpose of transformation matrices for OpenGL glMultMatrixd().
+
+A triple of Euler angles can be applied/interpreted in 24 ways, which can
+be specified using a 4 character string or encoded 4-tuple:
+
+ *Axes 4-string*: e.g. 'sxyz' or 'ryxy'
+
+ - first character : rotations are applied to 's'tatic or 'r'otating frame
+ - remaining characters : successive rotation axis 'x', 'y', or 'z'
+
+ *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1)
+
+ - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix.
+ - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed
+ by 'z', or 'z' is followed by 'x'. Otherwise odd (1).
+ - repetition : first and last axis are same (1) or different (0).
+ - frame : rotations are applied to static (0) or rotating (1) frame.
+
+References
+----------
+
+(1) Matrices and transformations. Ronald Goldman.
+ In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990.
+(2) More matrices and transformations: shear and pseudo-perspective.
+ Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
+(3) Decomposing a matrix into simple transformations. Spencer Thomas.
+ In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
+(4) Recovering the data from the transformation matrix. Ronald Goldman.
+ In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991.
+(5) Euler angle conversion. Ken Shoemake.
+ In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994.
+(6) Arcball rotation control. Ken Shoemake.
+ In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994.
+(7) Representing attitude: Euler angles, unit quaternions, and rotation
+ vectors. James Diebel. 2006.
+(8) A discussion of the solution for the best rotation to relate two sets
+ of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828.
+(9) Closed-form solution of absolute orientation using unit quaternions.
+ BKP Horn. J Opt Soc Am A. 1987. 4(4), 629-642.
+(10) Quaternions. Ken Shoemake.
+ http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf
+(11) From quaternion to matrix and back. JMP van Waveren. 2005.
+ http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm
+(12) Uniform random rotations. Ken Shoemake.
+ In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992.
+
+
+Examples
+--------
+
+>>> alpha, beta, gamma = 0.123, -1.234, 2.345
+>>> origin, xaxis, yaxis, zaxis = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)
+>>> I = identity_matrix()
+>>> Rx = rotation_matrix(alpha, xaxis)
+>>> Ry = rotation_matrix(beta, yaxis)
+>>> Rz = rotation_matrix(gamma, zaxis)
+>>> R = concatenate_matrices(Rx, Ry, Rz)
+>>> euler = euler_from_matrix(R, 'rxyz')
+>>> numpy.allclose([alpha, beta, gamma], euler)
+True
+>>> Re = euler_matrix(alpha, beta, gamma, 'rxyz')
+>>> is_same_transform(R, Re)
+True
+>>> al, be, ga = euler_from_matrix(Re, 'rxyz')
+>>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz'))
+True
+>>> qx = quaternion_about_axis(alpha, xaxis)
+>>> qy = quaternion_about_axis(beta, yaxis)
+>>> qz = quaternion_about_axis(gamma, zaxis)
+>>> q = quaternion_multiply(qx, qy)
+>>> q = quaternion_multiply(q, qz)
+>>> Rq = quaternion_matrix(q)
+>>> is_same_transform(R, Rq)
+True
+>>> S = scale_matrix(1.23, origin)
+>>> T = translation_matrix((1, 2, 3))
+>>> Z = shear_matrix(beta, xaxis, origin, zaxis)
+>>> R = random_rotation_matrix(numpy.random.rand(3))
+>>> M = concatenate_matrices(T, R, Z, S)
+>>> scale, shear, angles, trans, persp = decompose_matrix(M)
+>>> numpy.allclose(scale, 1.23)
+True
+>>> numpy.allclose(trans, (1, 2, 3))
+True
+>>> numpy.allclose(shear, (0, math.tan(beta), 0))
+True
+>>> is_same_transform(R, euler_matrix(axes='sxyz', *angles))
+True
+>>> M1 = compose_matrix(scale, shear, angles, trans, persp)
+>>> is_same_transform(M, M1)
+True
+
+"""
+
+from __future__ import division
+
+import warnings
+import math
+
+import numpy
+
+# Documentation in HTML format can be generated with Epydoc
+__docformat__ = "restructuredtext en"
+
+
+def identity_matrix():
+ """Return 4x4 identity/unit matrix.
+
+ >>> I = identity_matrix()
+ >>> numpy.allclose(I, numpy.dot(I, I))
+ True
+ >>> numpy.sum(I), numpy.trace(I)
+ (4.0, 4.0)
+ >>> numpy.allclose(I, numpy.identity(4, dtype=numpy.float64))
+ True
+
+ """
+ return numpy.identity(4, dtype=numpy.float64)
+
+
+def translation_matrix(direction):
+ """Return matrix to translate by direction vector.
+
+ >>> v = numpy.random.random(3) - 0.5
+ >>> numpy.allclose(v, translation_matrix(v)[:3, 3])
+ True
+
+ """
+ M = numpy.identity(4)
+ M[:3, 3] = direction[:3]
+ return M
+
+
+def translation_from_matrix(matrix):
+ """Return translation vector from translation matrix.
+
+ >>> v0 = numpy.random.random(3) - 0.5
+ >>> v1 = translation_from_matrix(translation_matrix(v0))
+ >>> numpy.allclose(v0, v1)
+ True
+
+ """
+ return numpy.array(matrix, copy=False)[:3, 3].copy()
+
+
+def reflection_matrix(point, normal):
+ """Return matrix to mirror at plane defined by point and normal vector.
+
+ >>> v0 = numpy.random.random(4) - 0.5
+ >>> v0[3] = 1.0
+ >>> v1 = numpy.random.random(3) - 0.5
+ >>> R = reflection_matrix(v0, v1)
+ >>> numpy.allclose(2., numpy.trace(R))
+ True
+ >>> numpy.allclose(v0, numpy.dot(R, v0))
+ True
+ >>> v2 = v0.copy()
+ >>> v2[:3] += v1
+ >>> v3 = v0.copy()
+ >>> v2[:3] -= v1
+ >>> numpy.allclose(v2, numpy.dot(R, v3))
+ True
+
+ """
+ normal = unit_vector(normal[:3])
+ M = numpy.identity(4)
+ M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
+ M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
+ return M
+
+
+def reflection_from_matrix(matrix):
+ """Return mirror plane point and normal vector from reflection matrix.
+
+ >>> v0 = numpy.random.random(3) - 0.5
+ >>> v1 = numpy.random.random(3) - 0.5
+ >>> M0 = reflection_matrix(v0, v1)
+ >>> point, normal = reflection_from_matrix(M0)
+ >>> M1 = reflection_matrix(point, normal)
+ >>> is_same_transform(M0, M1)
+ True
+
+ """
+ M = numpy.array(matrix, dtype=numpy.float64, copy=False)
+ # normal: unit eigenvector corresponding to eigenvalue -1
+ l, V = numpy.linalg.eig(M[:3, :3])
+ i = numpy.where(abs(numpy.real(l) + 1.0) < 1e-8)[0]
+ if not len(i):
+ raise ValueError("no unit eigenvector corresponding to eigenvalue -1")
+ normal = numpy.real(V[:, i[0]]).squeeze()
+ # point: any unit eigenvector corresponding to eigenvalue 1
+ l, V = numpy.linalg.eig(M)
+ i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
+ if not len(i):
+ raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
+ point = numpy.real(V[:, i[-1]]).squeeze()
+ point /= point[3]
+ return point, normal
+
+
+def rotation_matrix(angle, direction, point=None):
+ """Return matrix to rotate about axis defined by point and direction.
+
+ >>> angle = (random.random() - 0.5) * (2*math.pi)
+ >>> direc = numpy.random.random(3) - 0.5
+ >>> point = numpy.random.random(3) - 0.5
+ >>> R0 = rotation_matrix(angle, direc, point)
+ >>> R1 = rotation_matrix(angle-2*math.pi, direc, point)
+ >>> is_same_transform(R0, R1)
+ True
+ >>> R0 = rotation_matrix(angle, direc, point)
+ >>> R1 = rotation_matrix(-angle, -direc, point)
+ >>> is_same_transform(R0, R1)
+ True
+ >>> I = numpy.identity(4, numpy.float64)
+ >>> numpy.allclose(I, rotation_matrix(math.pi*2, direc))
+ True
+ >>> numpy.allclose(2., numpy.trace(rotation_matrix(math.pi/2,
+ ... direc, point)))
+ True
+
+ """
+ sina = math.sin(angle)
+ cosa = math.cos(angle)
+ direction = unit_vector(direction[:3])
+ # rotation matrix around unit vector
+ R = numpy.array(((cosa, 0.0, 0.0),
+ (0.0, cosa, 0.0),
+ (0.0, 0.0, cosa)), dtype=numpy.float64)
+ R += numpy.outer(direction, direction) * (1.0 - cosa)
+ direction *= sina
+ R += numpy.array((( 0.0, -direction[2], direction[1]),
+ ( direction[2], 0.0, -direction[0]),
+ (-direction[1], direction[0], 0.0)),
+ dtype=numpy.float64)
+ M = numpy.identity(4)
+ M[:3, :3] = R
+ if point is not None:
+ # rotation not around origin
+ point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
+ M[:3, 3] = point - numpy.dot(R, point)
+ return M
+
+
+def rotation_from_matrix(matrix):
+ """Return rotation angle and axis from rotation matrix.
+
+ >>> angle = (random.random() - 0.5) * (2*math.pi)
+ >>> direc = numpy.random.random(3) - 0.5
+ >>> point = numpy.random.random(3) - 0.5
+ >>> R0 = rotation_matrix(angle, direc, point)
+ >>> angle, direc, point = rotation_from_matrix(R0)
+ >>> R1 = rotation_matrix(angle, direc, point)
+ >>> is_same_transform(R0, R1)
+ True
+
+ """
+ R = numpy.array(matrix, dtype=numpy.float64, copy=False)
+ R33 = R[:3, :3]
+ # direction: unit eigenvector of R33 corresponding to eigenvalue of 1
+ l, W = numpy.linalg.eig(R33.T)
+ i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
+ if not len(i):
+ raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
+ direction = numpy.real(W[:, i[-1]]).squeeze()
+ # point: unit eigenvector of R33 corresponding to eigenvalue of 1
+ l, Q = numpy.linalg.eig(R)
+ i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
+ if not len(i):
+ raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
+ point = numpy.real(Q[:, i[-1]]).squeeze()
+ point /= point[3]
+ # rotation angle depending on direction
+ cosa = (numpy.trace(R33) - 1.0) / 2.0
+ if abs(direction[2]) > 1e-8:
+ sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2]
+ elif abs(direction[1]) > 1e-8:
+ sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1]
+ else:
+ sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0]
+ angle = math.atan2(sina, cosa)
+ return angle, direction, point
+
+
+def scale_matrix(factor, origin=None, direction=None):
+ """Return matrix to scale by factor around origin in direction.
+
+ Use factor -1 for point symmetry.
+
+ >>> v = (numpy.random.rand(4, 5) - 0.5) * 20.0
+ >>> v[3] = 1.0
+ >>> S = scale_matrix(-1.234)
+ >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3])
+ True
+ >>> factor = random.random() * 10 - 5
+ >>> origin = numpy.random.random(3) - 0.5
+ >>> direct = numpy.random.random(3) - 0.5
+ >>> S = scale_matrix(factor, origin)
+ >>> S = scale_matrix(factor, origin, direct)
+
+ """
+ if direction is None:
+ # uniform scaling
+ M = numpy.array(((factor, 0.0, 0.0, 0.0),
+ (0.0, factor, 0.0, 0.0),
+ (0.0, 0.0, factor, 0.0),
+ (0.0, 0.0, 0.0, 1.0)), dtype=numpy.float64)
+ if origin is not None:
+ M[:3, 3] = origin[:3]
+ M[:3, 3] *= 1.0 - factor
+ else:
+ # nonuniform scaling
+ direction = unit_vector(direction[:3])
+ factor = 1.0 - factor
+ M = numpy.identity(4)
+ M[:3, :3] -= factor * numpy.outer(direction, direction)
+ if origin is not None:
+ M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction
+ return M
+
+
+def scale_from_matrix(matrix):
+ """Return scaling factor, origin and direction from scaling matrix.
+
+ >>> factor = random.random() * 10 - 5
+ >>> origin = numpy.random.random(3) - 0.5
+ >>> direct = numpy.random.random(3) - 0.5
+ >>> S0 = scale_matrix(factor, origin)
+ >>> factor, origin, direction = scale_from_matrix(S0)
+ >>> S1 = scale_matrix(factor, origin, direction)
+ >>> is_same_transform(S0, S1)
+ True
+ >>> S0 = scale_matrix(factor, origin, direct)
+ >>> factor, origin, direction = scale_from_matrix(S0)
+ >>> S1 = scale_matrix(factor, origin, direction)
+ >>> is_same_transform(S0, S1)
+ True
+
+ """
+ M = numpy.array(matrix, dtype=numpy.float64, copy=False)
+ M33 = M[:3, :3]
+ factor = numpy.trace(M33) - 2.0
+ try:
+ # direction: unit eigenvector corresponding to eigenvalue factor
+ l, V = numpy.linalg.eig(M33)
+ i = numpy.where(abs(numpy.real(l) - factor) < 1e-8)[0][0]
+ direction = numpy.real(V[:, i]).squeeze()
+ direction /= vector_norm(direction)
+ except IndexError:
+ # uniform scaling
+ factor = (factor + 2.0) / 3.0
+ direction = None
+ # origin: any eigenvector corresponding to eigenvalue 1
+ l, V = numpy.linalg.eig(M)
+ i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
+ if not len(i):
+ raise ValueError("no eigenvector corresponding to eigenvalue 1")
+ origin = numpy.real(V[:, i[-1]]).squeeze()
+ origin /= origin[3]
+ return factor, origin, direction
+
+
+def projection_matrix(point, normal, direction=None,
+ perspective=None, pseudo=False):
+ """Return matrix to project onto plane defined by point and normal.
+
+ Using either perspective point, projection direction, or none of both.
+
+ If pseudo is True, perspective projections will preserve relative depth
+ such that Perspective = dot(Orthogonal, PseudoPerspective).
+
+ >>> P = projection_matrix((0, 0, 0), (1, 0, 0))
+ >>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:])
+ True
+ >>> point = numpy.random.random(3) - 0.5
+ >>> normal = numpy.random.random(3) - 0.5
+ >>> direct = numpy.random.random(3) - 0.5
+ >>> persp = numpy.random.random(3) - 0.5
+ >>> P0 = projection_matrix(point, normal)
+ >>> P1 = projection_matrix(point, normal, direction=direct)
+ >>> P2 = projection_matrix(point, normal, perspective=persp)
+ >>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True)
+ >>> is_same_transform(P2, numpy.dot(P0, P3))
+ True
+ >>> P = projection_matrix((3, 0, 0), (1, 1, 0), (1, 0, 0))
+ >>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20.0
+ >>> v0[3] = 1.0
+ >>> v1 = numpy.dot(P, v0)
+ >>> numpy.allclose(v1[1], v0[1])
+ True
+ >>> numpy.allclose(v1[0], 3.0-v1[1])
+ True
+
+ """
+ M = numpy.identity(4)
+ point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
+ normal = unit_vector(normal[:3])
+ if perspective is not None:
+ # perspective projection
+ perspective = numpy.array(perspective[:3], dtype=numpy.float64,
+ copy=False)
+ M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective-point, normal)
+ M[:3, :3] -= numpy.outer(perspective, normal)
+ if pseudo:
+ # preserve relative depth
+ M[:3, :3] -= numpy.outer(normal, normal)
+ M[:3, 3] = numpy.dot(point, normal) * (perspective+normal)
+ else:
+ M[:3, 3] = numpy.dot(point, normal) * perspective
+ M[3, :3] = -normal
+ M[3, 3] = numpy.dot(perspective, normal)
+ elif direction is not None:
+ # parallel projection
+ direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False)
+ scale = numpy.dot(direction, normal)
+ M[:3, :3] -= numpy.outer(direction, normal) / scale
+ M[:3, 3] = direction * (numpy.dot(point, normal) / scale)
+ else:
+ # orthogonal projection
+ M[:3, :3] -= numpy.outer(normal, normal)
+ M[:3, 3] = numpy.dot(point, normal) * normal
+ return M
+
+
+def projection_from_matrix(matrix, pseudo=False):
+ """Return projection plane and perspective point from projection matrix.
+
+ Return values are same as arguments for projection_matrix function:
+ point, normal, direction, perspective, and pseudo.
+
+ >>> point = numpy.random.random(3) - 0.5
+ >>> normal = numpy.random.random(3) - 0.5
+ >>> direct = numpy.random.random(3) - 0.5
+ >>> persp = numpy.random.random(3) - 0.5
+ >>> P0 = projection_matrix(point, normal)
+ >>> result = projection_from_matrix(P0)
+ >>> P1 = projection_matrix(*result)
+ >>> is_same_transform(P0, P1)
+ True
+ >>> P0 = projection_matrix(point, normal, direct)
+ >>> result = projection_from_matrix(P0)
+ >>> P1 = projection_matrix(*result)
+ >>> is_same_transform(P0, P1)
+ True
+ >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False)
+ >>> result = projection_from_matrix(P0, pseudo=False)
+ >>> P1 = projection_matrix(*result)
+ >>> is_same_transform(P0, P1)
+ True
+ >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True)
+ >>> result = projection_from_matrix(P0, pseudo=True)
+ >>> P1 = projection_matrix(*result)
+ >>> is_same_transform(P0, P1)
+ True
+
+ """
+ M = numpy.array(matrix, dtype=numpy.float64, copy=False)
+ M33 = M[:3, :3]
+ l, V = numpy.linalg.eig(M)
+ i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
+ if not pseudo and len(i):
+ # point: any eigenvector corresponding to eigenvalue 1
+ point = numpy.real(V[:, i[-1]]).squeeze()
+ point /= point[3]
+ # direction: unit eigenvector corresponding to eigenvalue 0
+ l, V = numpy.linalg.eig(M33)
+ i = numpy.where(abs(numpy.real(l)) < 1e-8)[0]
+ if not len(i):
+ raise ValueError("no eigenvector corresponding to eigenvalue 0")
+ direction = numpy.real(V[:, i[0]]).squeeze()
+ direction /= vector_norm(direction)
+ # normal: unit eigenvector of M33.T corresponding to eigenvalue 0
+ l, V = numpy.linalg.eig(M33.T)
+ i = numpy.where(abs(numpy.real(l)) < 1e-8)[0]
+ if len(i):
+ # parallel projection
+ normal = numpy.real(V[:, i[0]]).squeeze()
+ normal /= vector_norm(normal)
+ return point, normal, direction, None, False
+ else:
+ # orthogonal projection, where normal equals direction vector
+ return point, direction, None, None, False
+ else:
+ # perspective projection
+ i = numpy.where(abs(numpy.real(l)) > 1e-8)[0]
+ if not len(i):
+ raise ValueError(
+ "no eigenvector not corresponding to eigenvalue 0")
+ point = numpy.real(V[:, i[-1]]).squeeze()
+ point /= point[3]
+ normal = - M[3, :3]
+ perspective = M[:3, 3] / numpy.dot(point[:3], normal)
+ if pseudo:
+ perspective -= normal
+ return point, normal, None, perspective, pseudo
+
+
+def clip_matrix(left, right, bottom, top, near, far, perspective=False):
+ """Return matrix to obtain normalized device coordinates from frustrum.
+
+ The frustrum bounds are axis-aligned along x (left, right),
+ y (bottom, top) and z (near, far).
+
+ Normalized device coordinates are in range [-1, 1] if coordinates are
+ inside the frustrum.
+
+ If perspective is True the frustrum is a truncated pyramid with the
+ perspective point at origin and direction along z axis, otherwise an
+ orthographic canonical view volume (a box).
+
+ Homogeneous coordinates transformed by the perspective clip matrix
+ need to be dehomogenized (divided by w coordinate).
+
+ >>> frustrum = numpy.random.rand(6)
+ >>> frustrum[1] += frustrum[0]
+ >>> frustrum[3] += frustrum[2]
+ >>> frustrum[5] += frustrum[4]
+ >>> M = clip_matrix(*frustrum, perspective=False)
+ >>> numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0])
+ array([-1., -1., -1., 1.])
+ >>> numpy.dot(M, [frustrum[1], frustrum[3], frustrum[5], 1.0])
+ array([ 1., 1., 1., 1.])
+ >>> M = clip_matrix(*frustrum, perspective=True)
+ >>> v = numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0])
+ >>> v / v[3]
+ array([-1., -1., -1., 1.])
+ >>> v = numpy.dot(M, [frustrum[1], frustrum[3], frustrum[4], 1.0])
+ >>> v / v[3]
+ array([ 1., 1., -1., 1.])
+
+ """
+ if left >= right or bottom >= top or near >= far:
+ raise ValueError("invalid frustrum")
+ if perspective:
+ if near <= _EPS:
+ raise ValueError("invalid frustrum: near <= 0")
+ t = 2.0 * near
+ M = ((-t/(right-left), 0.0, (right+left)/(right-left), 0.0),
+ (0.0, -t/(top-bottom), (top+bottom)/(top-bottom), 0.0),
+ (0.0, 0.0, -(far+near)/(far-near), t*far/(far-near)),
+ (0.0, 0.0, -1.0, 0.0))
+ else:
+ M = ((2.0/(right-left), 0.0, 0.0, (right+left)/(left-right)),
+ (0.0, 2.0/(top-bottom), 0.0, (top+bottom)/(bottom-top)),
+ (0.0, 0.0, 2.0/(far-near), (far+near)/(near-far)),
+ (0.0, 0.0, 0.0, 1.0))
+ return numpy.array(M, dtype=numpy.float64)
+
+
+def shear_matrix(angle, direction, point, normal):
+ """Return matrix to shear by angle along direction vector on shear plane.
+
+ The shear plane is defined by a point and normal vector. The direction
+ vector must be orthogonal to the plane's normal vector.
+
+ A point P is transformed by the shear matrix into P" such that
+ the vector P-P" is parallel to the direction vector and its extent is
+ given by the angle of P-P'-P", where P' is the orthogonal projection
+ of P onto the shear plane.
+
+ >>> angle = (random.random() - 0.5) * 4*math.pi
+ >>> direct = numpy.random.random(3) - 0.5
+ >>> point = numpy.random.random(3) - 0.5
+ >>> normal = numpy.cross(direct, numpy.random.random(3))
+ >>> S = shear_matrix(angle, direct, point, normal)
+ >>> numpy.allclose(1.0, numpy.linalg.det(S))
+ True
+
+ """
+ normal = unit_vector(normal[:3])
+ direction = unit_vector(direction[:3])
+ if abs(numpy.dot(normal, direction)) > 1e-6:
+ raise ValueError("direction and normal vectors are not orthogonal")
+ angle = math.tan(angle)
+ M = numpy.identity(4)
+ M[:3, :3] += angle * numpy.outer(direction, normal)
+ M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction
+ return M
+
+
+def shear_from_matrix(matrix):
+ """Return shear angle, direction and plane from shear matrix.
+
+ >>> angle = (random.random() - 0.5) * 4*math.pi
+ >>> direct = numpy.random.random(3) - 0.5
+ >>> point = numpy.random.random(3) - 0.5
+ >>> normal = numpy.cross(direct, numpy.random.random(3))
+ >>> S0 = shear_matrix(angle, direct, point, normal)
+ >>> angle, direct, point, normal = shear_from_matrix(S0)
+ >>> S1 = shear_matrix(angle, direct, point, normal)
+ >>> is_same_transform(S0, S1)
+ True
+
+ """
+ M = numpy.array(matrix, dtype=numpy.float64, copy=False)
+ M33 = M[:3, :3]
+ # normal: cross independent eigenvectors corresponding to the eigenvalue 1
+ l, V = numpy.linalg.eig(M33)
+ i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-4)[0]
+ if len(i) < 2:
+ raise ValueError("No two linear independent eigenvectors found %s" % l)
+ V = numpy.real(V[:, i]).squeeze().T
+ lenorm = -1.0
+ for i0, i1 in ((0, 1), (0, 2), (1, 2)):
+ n = numpy.cross(V[i0], V[i1])
+ l = vector_norm(n)
+ if l > lenorm:
+ lenorm = l
+ normal = n
+ normal /= lenorm
+ # direction and angle
+ direction = numpy.dot(M33 - numpy.identity(3), normal)
+ angle = vector_norm(direction)
+ direction /= angle
+ angle = math.atan(angle)
+ # point: eigenvector corresponding to eigenvalue 1
+ l, V = numpy.linalg.eig(M)
+ i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
+ if not len(i):
+ raise ValueError("no eigenvector corresponding to eigenvalue 1")
+ point = numpy.real(V[:, i[-1]]).squeeze()
+ point /= point[3]
+ return angle, direction, point, normal
+
+
+def decompose_matrix(matrix):
+ """Return sequence of transformations from transformation matrix.
+
+ matrix : array_like
+ Non-degenerative homogeneous transformation matrix
+
+ Return tuple of:
+ scale : vector of 3 scaling factors
+ shear : list of shear factors for x-y, x-z, y-z axes
+ angles : list of Euler angles about static x, y, z axes
+ translate : translation vector along x, y, z axes
+ perspective : perspective partition of matrix
+
+ Raise ValueError if matrix is of wrong type or degenerative.
+
+ >>> T0 = translation_matrix((1, 2, 3))
+ >>> scale, shear, angles, trans, persp = decompose_matrix(T0)
+ >>> T1 = translation_matrix(trans)
+ >>> numpy.allclose(T0, T1)
+ True
+ >>> S = scale_matrix(0.123)
+ >>> scale, shear, angles, trans, persp = decompose_matrix(S)
+ >>> scale[0]
+ 0.123
+ >>> R0 = euler_matrix(1, 2, 3)
+ >>> scale, shear, angles, trans, persp = decompose_matrix(R0)
+ >>> R1 = euler_matrix(*angles)
+ >>> numpy.allclose(R0, R1)
+ True
+
+ """
+ M = numpy.array(matrix, dtype=numpy.float64, copy=True).T
+ if abs(M[3, 3]) < _EPS:
+ raise ValueError("M[3, 3] is zero")
+ M /= M[3, 3]
+ P = M.copy()
+ P[:, 3] = 0, 0, 0, 1
+ if not numpy.linalg.det(P):
+ raise ValueError("Matrix is singular")
+
+ scale = numpy.zeros((3, ), dtype=numpy.float64)
+ shear = [0, 0, 0]
+ angles = [0, 0, 0]
+
+ if any(abs(M[:3, 3]) > _EPS):
+ perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T))
+ M[:, 3] = 0, 0, 0, 1
+ else:
+ perspective = numpy.array((0, 0, 0, 1), dtype=numpy.float64)
+
+ translate = M[3, :3].copy()
+ M[3, :3] = 0
+
+ row = M[:3, :3].copy()
+ scale[0] = vector_norm(row[0])
+ row[0] /= scale[0]
+ shear[0] = numpy.dot(row[0], row[1])
+ row[1] -= row[0] * shear[0]
+ scale[1] = vector_norm(row[1])
+ row[1] /= scale[1]
+ shear[0] /= scale[1]
+ shear[1] = numpy.dot(row[0], row[2])
+ row[2] -= row[0] * shear[1]
+ shear[2] = numpy.dot(row[1], row[2])
+ row[2] -= row[1] * shear[2]
+ scale[2] = vector_norm(row[2])
+ row[2] /= scale[2]
+ shear[1:] /= scale[2]
+
+ if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0:
+ scale *= -1
+ row *= -1
+
+ angles[1] = math.asin(-row[0, 2])
+ if math.cos(angles[1]):
+ angles[0] = math.atan2(row[1, 2], row[2, 2])
+ angles[2] = math.atan2(row[0, 1], row[0, 0])
+ else:
+ #angles[0] = math.atan2(row[1, 0], row[1, 1])
+ angles[0] = math.atan2(-row[2, 1], row[1, 1])
+ angles[2] = 0.0
+
+ return scale, shear, angles, translate, perspective
+
+
+def compose_matrix(scale=None, shear=None, angles=None, translate=None,
+ perspective=None):
+ """Return transformation matrix from sequence of transformations.
+
+ This is the inverse of the decompose_matrix function.
+
+ Sequence of transformations:
+ scale : vector of 3 scaling factors
+ shear : list of shear factors for x-y, x-z, y-z axes
+ angles : list of Euler angles about static x, y, z axes
+ translate : translation vector along x, y, z axes
+ perspective : perspective partition of matrix
+
+ >>> scale = numpy.random.random(3) - 0.5
+ >>> shear = numpy.random.random(3) - 0.5
+ >>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi)
+ >>> trans = numpy.random.random(3) - 0.5
+ >>> persp = numpy.random.random(4) - 0.5
+ >>> M0 = compose_matrix(scale, shear, angles, trans, persp)
+ >>> result = decompose_matrix(M0)
+ >>> M1 = compose_matrix(*result)
+ >>> is_same_transform(M0, M1)
+ True
+
+ """
+ M = numpy.identity(4)
+ if perspective is not None:
+ P = numpy.identity(4)
+ P[3, :] = perspective[:4]
+ M = numpy.dot(M, P)
+ if translate is not None:
+ T = numpy.identity(4)
+ T[:3, 3] = translate[:3]
+ M = numpy.dot(M, T)
+ if angles is not None:
+ R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz')
+ M = numpy.dot(M, R)
+ if shear is not None:
+ Z = numpy.identity(4)
+ Z[1, 2] = shear[2]
+ Z[0, 2] = shear[1]
+ Z[0, 1] = shear[0]
+ M = numpy.dot(M, Z)
+ if scale is not None:
+ S = numpy.identity(4)
+ S[0, 0] = scale[0]
+ S[1, 1] = scale[1]
+ S[2, 2] = scale[2]
+ M = numpy.dot(M, S)
+ M /= M[3, 3]
+ return M
+
+
+def orthogonalization_matrix(lengths, angles):
+ """Return orthogonalization matrix for crystallographic cell coordinates.
+
+ Angles are expected in degrees.
+
+ The de-orthogonalization matrix is the inverse.
+
+ >>> O = orthogonalization_matrix((10., 10., 10.), (90., 90., 90.))
+ >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
+ True
+ >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
+ >>> numpy.allclose(numpy.sum(O), 43.063229)
+ True
+
+ """
+ a, b, c = lengths
+ angles = numpy.radians(angles)
+ sina, sinb, _ = numpy.sin(angles)
+ cosa, cosb, cosg = numpy.cos(angles)
+ co = (cosa * cosb - cosg) / (sina * sinb)
+ return numpy.array((
+ ( a*sinb*math.sqrt(1.0-co*co), 0.0, 0.0, 0.0),
+ (-a*sinb*co, b*sina, 0.0, 0.0),
+ ( a*cosb, b*cosa, c, 0.0),
+ ( 0.0, 0.0, 0.0, 1.0)),
+ dtype=numpy.float64)
+
+
+def superimposition_matrix(v0, v1, scaling=False, usesvd=True):
+ """Return matrix to transform given vector set into second vector set.
+
+ v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 vectors.
+
+ If usesvd is True, the weighted sum of squared deviations (RMSD) is
+ minimized according to the algorithm by W. Kabsch [8]. Otherwise the
+ quaternion based algorithm by B. Horn [9] is used (slower when using
+ this Python implementation).
+
+ The returned matrix performs rotation, translation and uniform scaling
+ (if specified).
+
+ >>> v0 = numpy.random.rand(3, 10)
+ >>> M = superimposition_matrix(v0, v0)
+ >>> numpy.allclose(M, numpy.identity(4))
+ True
+ >>> R = random_rotation_matrix(numpy.random.random(3))
+ >>> v0 = ((1,0,0), (0,1,0), (0,0,1), (1,1,1))
+ >>> v1 = numpy.dot(R, v0)
+ >>> M = superimposition_matrix(v0, v1)
+ >>> numpy.allclose(v1, numpy.dot(M, v0))
+ True
+ >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20.0
+ >>> v0[3] = 1.0
+ >>> v1 = numpy.dot(R, v0)
+ >>> M = superimposition_matrix(v0, v1)
+ >>> numpy.allclose(v1, numpy.dot(M, v0))
+ True
+ >>> S = scale_matrix(random.random())
+ >>> T = translation_matrix(numpy.random.random(3)-0.5)
+ >>> M = concatenate_matrices(T, R, S)
+ >>> v1 = numpy.dot(M, v0)
+ >>> v0[:3] += numpy.random.normal(0.0, 1e-9, 300).reshape(3, -1)
+ >>> M = superimposition_matrix(v0, v1, scaling=True)
+ >>> numpy.allclose(v1, numpy.dot(M, v0))
+ True
+ >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False)
+ >>> numpy.allclose(v1, numpy.dot(M, v0))
+ True
+ >>> v = numpy.empty((4, 100, 3), dtype=numpy.float64)
+ >>> v[:, :, 0] = v0
+ >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False)
+ >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0]))
+ True
+
+ """
+ v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3]
+ v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3]
+
+ if v0.shape != v1.shape or v0.shape[1] < 3:
+ raise ValueError("Vector sets are of wrong shape or type.")
+
+ # move centroids to origin
+ t0 = numpy.mean(v0, axis=1)
+ t1 = numpy.mean(v1, axis=1)
+ v0 = v0 - t0.reshape(3, 1)
+ v1 = v1 - t1.reshape(3, 1)
+
+ if usesvd:
+ # Singular Value Decomposition of covariance matrix
+ u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T))
+ # rotation matrix from SVD orthonormal bases
+ R = numpy.dot(u, vh)
+ if numpy.linalg.det(R) < 0.0:
+ # R does not constitute right handed system
+ R -= numpy.outer(u[:, 2], vh[2, :]*2.0)
+ s[-1] *= -1.0
+ # homogeneous transformation matrix
+ M = numpy.identity(4)
+ M[:3, :3] = R
+ else:
+ # compute symmetric matrix N
+ xx, yy, zz = numpy.sum(v0 * v1, axis=1)
+ xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1)
+ xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1)
+ N = ((xx+yy+zz, yz-zy, zx-xz, xy-yx),
+ (yz-zy, xx-yy-zz, xy+yx, zx+xz),
+ (zx-xz, xy+yx, -xx+yy-zz, yz+zy),
+ (xy-yx, zx+xz, yz+zy, -xx-yy+zz))
+ # quaternion: eigenvector corresponding to most positive eigenvalue
+ l, V = numpy.linalg.eig(N)
+ q = V[:, numpy.argmax(l)]
+ q /= vector_norm(q) # unit quaternion
+ q = numpy.roll(q, -1) # move w component to end
+ # homogeneous transformation matrix
+ M = quaternion_matrix(q)
+
+ # scale: ratio of rms deviations from centroid
+ if scaling:
+ v0 *= v0
+ v1 *= v1
+ M[:3, :3] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0))
+
+ # translation
+ M[:3, 3] = t1
+ T = numpy.identity(4)
+ T[:3, 3] = -t0
+ M = numpy.dot(M, T)
+ return M
+
+
+def euler_matrix(ai, aj, ak, axes='sxyz'):
+ """Return homogeneous rotation matrix from Euler angles and axis sequence.
+
+ ai, aj, ak : Euler's roll, pitch and yaw angles
+ axes : One of 24 axis sequences as string or encoded tuple
+
+ >>> R = euler_matrix(1, 2, 3, 'syxz')
+ >>> numpy.allclose(numpy.sum(R[0]), -1.34786452)
+ True
+ >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1))
+ >>> numpy.allclose(numpy.sum(R[0]), -0.383436184)
+ True
+ >>> ai, aj, ak = (4.0*math.pi) * (numpy.random.random(3) - 0.5)
+ >>> for axes in _AXES2TUPLE.keys():
+ ... R = euler_matrix(ai, aj, ak, axes)
+ >>> for axes in _TUPLE2AXES.keys():
+ ... R = euler_matrix(ai, aj, ak, axes)
+
+ """
+ try:
+ firstaxis, parity, repetition, frame = _AXES2TUPLE[axes]
+ except (AttributeError, KeyError):
+ _ = _TUPLE2AXES[axes]
+ firstaxis, parity, repetition, frame = axes
+
+ i = firstaxis
+ j = _NEXT_AXIS[i+parity]
+ k = _NEXT_AXIS[i-parity+1]
+
+ if frame:
+ ai, ak = ak, ai
+ if parity:
+ ai, aj, ak = -ai, -aj, -ak
+
+ si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak)
+ ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak)
+ cc, cs = ci*ck, ci*sk
+ sc, ss = si*ck, si*sk
+
+ M = numpy.identity(4)
+ if repetition:
+ M[i, i] = cj
+ M[i, j] = sj*si
+ M[i, k] = sj*ci
+ M[j, i] = sj*sk
+ M[j, j] = -cj*ss+cc
+ M[j, k] = -cj*cs-sc
+ M[k, i] = -sj*ck
+ M[k, j] = cj*sc+cs
+ M[k, k] = cj*cc-ss
+ else:
+ M[i, i] = cj*ck
+ M[i, j] = sj*sc-cs
+ M[i, k] = sj*cc+ss
+ M[j, i] = cj*sk
+ M[j, j] = sj*ss+cc
+ M[j, k] = sj*cs-sc
+ M[k, i] = -sj
+ M[k, j] = cj*si
+ M[k, k] = cj*ci
+ return M
+
+
+def euler_from_matrix(matrix, axes='sxyz'):
+ """Return Euler angles from rotation matrix for specified axis sequence.
+
+ axes : One of 24 axis sequences as string or encoded tuple
+
+ Note that many Euler angle triplets can describe one matrix.
+
+ >>> R0 = euler_matrix(1, 2, 3, 'syxz')
+ >>> al, be, ga = euler_from_matrix(R0, 'syxz')
+ >>> R1 = euler_matrix(al, be, ga, 'syxz')
+ >>> numpy.allclose(R0, R1)
+ True
+ >>> angles = (4.0*math.pi) * (numpy.random.random(3) - 0.5)
+ >>> for axes in _AXES2TUPLE.keys():
+ ... R0 = euler_matrix(axes=axes, *angles)
+ ... R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes))
+ ... if not numpy.allclose(R0, R1): print axes, "failed"
+
+ """
+ try:
+ firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
+ except (AttributeError, KeyError):
+ _ = _TUPLE2AXES[axes]
+ firstaxis, parity, repetition, frame = axes
+
+ i = firstaxis
+ j = _NEXT_AXIS[i+parity]
+ k = _NEXT_AXIS[i-parity+1]
+
+ M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3]
+ if repetition:
+ sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k])
+ if sy > _EPS:
+ ax = math.atan2( M[i, j], M[i, k])
+ ay = math.atan2( sy, M[i, i])
+ az = math.atan2( M[j, i], -M[k, i])
+ else:
+ ax = math.atan2(-M[j, k], M[j, j])
+ ay = math.atan2( sy, M[i, i])
+ az = 0.0
+ else:
+ cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i])
+ if cy > _EPS:
+ ax = math.atan2( M[k, j], M[k, k])
+ ay = math.atan2(-M[k, i], cy)
+ az = math.atan2( M[j, i], M[i, i])
+ else:
+ ax = math.atan2(-M[j, k], M[j, j])
+ ay = math.atan2(-M[k, i], cy)
+ az = 0.0
+
+ if parity:
+ ax, ay, az = -ax, -ay, -az
+ if frame:
+ ax, az = az, ax
+ return ax, ay, az
+
+
+def euler_from_quaternion(quaternion, axes='sxyz'):
+ """Return Euler angles from quaternion for specified axis sequence.
+
+ >>> angles = euler_from_quaternion([0.06146124, 0, 0, 0.99810947])
+ >>> numpy.allclose(angles, [0.123, 0, 0])
+ True
+
+ """
+ return euler_from_matrix(quaternion_matrix(quaternion), axes)
+
+
+def quaternion_from_euler(ai, aj, ak, axes='sxyz'):
+ """Return quaternion from Euler angles and axis sequence.
+
+ ai, aj, ak : Euler's roll, pitch and yaw angles
+ axes : One of 24 axis sequences as string or encoded tuple
+
+ >>> q = quaternion_from_euler(1, 2, 3, 'ryxz')
+ >>> numpy.allclose(q, [0.310622, -0.718287, 0.444435, 0.435953])
+ True
+
+ """
+ try:
+ firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
+ except (AttributeError, KeyError):
+ _ = _TUPLE2AXES[axes]
+ firstaxis, parity, repetition, frame = axes
+
+ i = firstaxis
+ j = _NEXT_AXIS[i+parity]
+ k = _NEXT_AXIS[i-parity+1]
+
+ if frame:
+ ai, ak = ak, ai
+ if parity:
+ aj = -aj
+
+ ai /= 2.0
+ aj /= 2.0
+ ak /= 2.0
+ ci = math.cos(ai)
+ si = math.sin(ai)
+ cj = math.cos(aj)
+ sj = math.sin(aj)
+ ck = math.cos(ak)
+ sk = math.sin(ak)
+ cc = ci*ck
+ cs = ci*sk
+ sc = si*ck
+ ss = si*sk
+
+ quaternion = numpy.empty((4, ), dtype=numpy.float64)
+ if repetition:
+ quaternion[i] = cj*(cs + sc)
+ quaternion[j] = sj*(cc + ss)
+ quaternion[k] = sj*(cs - sc)
+ quaternion[3] = cj*(cc - ss)
+ else:
+ quaternion[i] = cj*sc - sj*cs
+ quaternion[j] = cj*ss + sj*cc
+ quaternion[k] = cj*cs - sj*sc
+ quaternion[3] = cj*cc + sj*ss
+ if parity:
+ quaternion[j] *= -1
+
+ return quaternion
+
+
+def quaternion_about_axis(angle, axis):
+ """Return quaternion for rotation about axis.
+
+ >>> q = quaternion_about_axis(0.123, (1, 0, 0))
+ >>> numpy.allclose(q, [0.06146124, 0, 0, 0.99810947])
+ True
+
+ """
+ quaternion = numpy.zeros((4, ), dtype=numpy.float64)
+ quaternion[:3] = axis[:3]
+ qlen = vector_norm(quaternion)
+ if qlen > _EPS:
+ quaternion *= math.sin(angle/2.0) / qlen
+ quaternion[3] = math.cos(angle/2.0)
+ return quaternion
+
+
+def quaternion_matrix(quaternion):
+ """Return homogeneous rotation matrix from quaternion.
+
+ >>> R = quaternion_matrix([0.06146124, 0, 0, 0.99810947])
+ >>> numpy.allclose(R, rotation_matrix(0.123, (1, 0, 0)))
+ True
+
+ """
+ q = numpy.array(quaternion[:4], dtype=numpy.float64, copy=True)
+ nq = numpy.dot(q, q)
+ if nq < _EPS:
+ return numpy.identity(4)
+ q *= math.sqrt(2.0 / nq)
+ q = numpy.outer(q, q)
+ return numpy.array((
+ (1.0-q[1, 1]-q[2, 2], q[0, 1]-q[2, 3], q[0, 2]+q[1, 3], 0.0),
+ ( q[0, 1]+q[2, 3], 1.0-q[0, 0]-q[2, 2], q[1, 2]-q[0, 3], 0.0),
+ ( q[0, 2]-q[1, 3], q[1, 2]+q[0, 3], 1.0-q[0, 0]-q[1, 1], 0.0),
+ ( 0.0, 0.0, 0.0, 1.0)
+ ), dtype=numpy.float64)
+
+
+def quaternion_from_matrix(matrix):
+ """Return quaternion from rotation matrix.
+
+ >>> R = rotation_matrix(0.123, (1, 2, 3))
+ >>> q = quaternion_from_matrix(R)
+ >>> numpy.allclose(q, [0.0164262, 0.0328524, 0.0492786, 0.9981095])
+ True
+
+ """
+ q = numpy.empty((4, ), dtype=numpy.float64)
+ M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4]
+ t = numpy.trace(M)
+ if t > M[3, 3]:
+ q[3] = t
+ q[2] = M[1, 0] - M[0, 1]
+ q[1] = M[0, 2] - M[2, 0]
+ q[0] = M[2, 1] - M[1, 2]
+ else:
+ i, j, k = 0, 1, 2
+ if M[1, 1] > M[0, 0]:
+ i, j, k = 1, 2, 0
+ if M[2, 2] > M[i, i]:
+ i, j, k = 2, 0, 1
+ t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
+ q[i] = t
+ q[j] = M[i, j] + M[j, i]
+ q[k] = M[k, i] + M[i, k]
+ q[3] = M[k, j] - M[j, k]
+ q *= 0.5 / math.sqrt(t * M[3, 3])
+ return q
+
+
+def quaternion_multiply(quaternion1, quaternion0):
+ """Return multiplication of two quaternions.
+
+ >>> q = quaternion_multiply([1, -2, 3, 4], [-5, 6, 7, 8])
+ >>> numpy.allclose(q, [-44, -14, 48, 28])
+ True
+
+ """
+ x0, y0, z0, w0 = quaternion0
+ x1, y1, z1, w1 = quaternion1
+ return numpy.array((
+ x1*w0 + y1*z0 - z1*y0 + w1*x0,
+ -x1*z0 + y1*w0 + z1*x0 + w1*y0,
+ x1*y0 - y1*x0 + z1*w0 + w1*z0,
+ -x1*x0 - y1*y0 - z1*z0 + w1*w0), dtype=numpy.float64)
+
+
+def quaternion_conjugate(quaternion):
+ """Return conjugate of quaternion.
+
+ >>> q0 = random_quaternion()
+ >>> q1 = quaternion_conjugate(q0)
+ >>> q1[3] == q0[3] and all(q1[:3] == -q0[:3])
+ True
+
+ """
+ return numpy.array((-quaternion[0], -quaternion[1],
+ -quaternion[2], quaternion[3]), dtype=numpy.float64)
+
+
+def quaternion_inverse(quaternion):
+ """Return inverse of quaternion.
+
+ >>> q0 = random_quaternion()
+ >>> q1 = quaternion_inverse(q0)
+ >>> numpy.allclose(quaternion_multiply(q0, q1), [0, 0, 0, 1])
+ True
+
+ """
+ return quaternion_conjugate(quaternion) / numpy.dot(quaternion, quaternion)
+
+
+def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True):
+ """Return spherical linear interpolation between two quaternions.
+
+ >>> q0 = random_quaternion()
+ >>> q1 = random_quaternion()
+ >>> q = quaternion_slerp(q0, q1, 0.0)
+ >>> numpy.allclose(q, q0)
+ True
+ >>> q = quaternion_slerp(q0, q1, 1.0, 1)
+ >>> numpy.allclose(q, q1)
+ True
+ >>> q = quaternion_slerp(q0, q1, 0.5)
+ >>> angle = math.acos(numpy.dot(q0, q))
+ >>> numpy.allclose(2.0, math.acos(numpy.dot(q0, q1)) / angle) or \
+ numpy.allclose(2.0, math.acos(-numpy.dot(q0, q1)) / angle)
+ True
+
+ """
+ q0 = unit_vector(quat0[:4])
+ q1 = unit_vector(quat1[:4])
+ if fraction == 0.0:
+ return q0
+ elif fraction == 1.0:
+ return q1
+ d = numpy.dot(q0, q1)
+ if abs(abs(d) - 1.0) < _EPS:
+ return q0
+ if shortestpath and d < 0.0:
+ # invert rotation
+ d = -d
+ q1 *= -1.0
+ angle = math.acos(d) + spin * math.pi
+ if abs(angle) < _EPS:
+ return q0
+ isin = 1.0 / math.sin(angle)
+ q0 *= math.sin((1.0 - fraction) * angle) * isin
+ q1 *= math.sin(fraction * angle) * isin
+ q0 += q1
+ return q0
+
+
+def random_quaternion(rand=None):
+ """Return uniform random unit quaternion.
+
+ rand: array like or None
+ Three independent random variables that are uniformly distributed
+ between 0 and 1.
+
+ >>> q = random_quaternion()
+ >>> numpy.allclose(1.0, vector_norm(q))
+ True
+ >>> q = random_quaternion(numpy.random.random(3))
+ >>> q.shape
+ (4,)
+
+ """
+ if rand is None:
+ rand = numpy.random.rand(3)
+ else:
+ assert len(rand) == 3
+ r1 = numpy.sqrt(1.0 - rand[0])
+ r2 = numpy.sqrt(rand[0])
+ pi2 = math.pi * 2.0
+ t1 = pi2 * rand[1]
+ t2 = pi2 * rand[2]
+ return numpy.array((numpy.sin(t1)*r1,
+ numpy.cos(t1)*r1,
+ numpy.sin(t2)*r2,
+ numpy.cos(t2)*r2), dtype=numpy.float64)
+
+
+def random_rotation_matrix(rand=None):
+ """Return uniform random rotation matrix.
+
+ rnd: array like
+ Three independent random variables that are uniformly distributed
+ between 0 and 1 for each returned quaternion.
+
+ >>> R = random_rotation_matrix()
+ >>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4))
+ True
+
+ """
+ return quaternion_matrix(random_quaternion(rand))
+
+
+class Arcball(object):
+ """Virtual Trackball Control.
+
+ >>> ball = Arcball()
+ >>> ball = Arcball(initial=numpy.identity(4))
+ >>> ball.place([320, 320], 320)
+ >>> ball.down([500, 250])
+ >>> ball.drag([475, 275])
+ >>> R = ball.matrix()
+ >>> numpy.allclose(numpy.sum(R), 3.90583455)
+ True
+ >>> ball = Arcball(initial=[0, 0, 0, 1])
+ >>> ball.place([320, 320], 320)
+ >>> ball.setaxes([1,1,0], [-1, 1, 0])
+ >>> ball.setconstrain(True)
+ >>> ball.down([400, 200])
+ >>> ball.drag([200, 400])
+ >>> R = ball.matrix()
+ >>> numpy.allclose(numpy.sum(R), 0.2055924)
+ True
+ >>> ball.next()
+
+ """
+
+ def __init__(self, initial=None):
+ """Initialize virtual trackball control.
+
+ initial : quaternion or rotation matrix
+
+ """
+ self._axis = None
+ self._axes = None
+ self._radius = 1.0
+ self._center = [0.0, 0.0]
+ self._vdown = numpy.array([0, 0, 1], dtype=numpy.float64)
+ self._constrain = False
+
+ if initial is None:
+ self._qdown = numpy.array([0, 0, 0, 1], dtype=numpy.float64)
+ else:
+ initial = numpy.array(initial, dtype=numpy.float64)
+ if initial.shape == (4, 4):
+ self._qdown = quaternion_from_matrix(initial)
+ elif initial.shape == (4, ):
+ initial /= vector_norm(initial)
+ self._qdown = initial
+ else:
+ raise ValueError("initial not a quaternion or matrix.")
+
+ self._qnow = self._qpre = self._qdown
+
+ def place(self, center, radius):
+ """Place Arcball, e.g. when window size changes.
+
+ center : sequence[2]
+ Window coordinates of trackball center.
+ radius : float
+ Radius of trackball in window coordinates.
+
+ """
+ self._radius = float(radius)
+ self._center[0] = center[0]
+ self._center[1] = center[1]
+
+ def setaxes(self, *axes):
+ """Set axes to constrain rotations."""
+ if axes is None:
+ self._axes = None
+ else:
+ self._axes = [unit_vector(axis) for axis in axes]
+
+ def setconstrain(self, constrain):
+ """Set state of constrain to axis mode."""
+ self._constrain = constrain == True
+
+ def getconstrain(self):
+ """Return state of constrain to axis mode."""
+ return self._constrain
+
+ def down(self, point):
+ """Set initial cursor window coordinates and pick constrain-axis."""
+ self._vdown = arcball_map_to_sphere(point, self._center, self._radius)
+ self._qdown = self._qpre = self._qnow
+
+ if self._constrain and self._axes is not None:
+ self._axis = arcball_nearest_axis(self._vdown, self._axes)
+ self._vdown = arcball_constrain_to_axis(self._vdown, self._axis)
+ else:
+ self._axis = None
+
+ def drag(self, point):
+ """Update current cursor window coordinates."""
+ vnow = arcball_map_to_sphere(point, self._center, self._radius)
+
+ if self._axis is not None:
+ vnow = arcball_constrain_to_axis(vnow, self._axis)
+
+ self._qpre = self._qnow
+
+ t = numpy.cross(self._vdown, vnow)
+ if numpy.dot(t, t) < _EPS:
+ self._qnow = self._qdown
+ else:
+ q = [t[0], t[1], t[2], numpy.dot(self._vdown, vnow)]
+ self._qnow = quaternion_multiply(q, self._qdown)
+
+ def next(self, acceleration=0.0):
+ """Continue rotation in direction of last drag."""
+ q = quaternion_slerp(self._qpre, self._qnow, 2.0+acceleration, False)
+ self._qpre, self._qnow = self._qnow, q
+
+ def matrix(self):
+ """Return homogeneous rotation matrix."""
+ return quaternion_matrix(self._qnow)
+
+
+def arcball_map_to_sphere(point, center, radius):
+ """Return unit sphere coordinates from window coordinates."""
+ v = numpy.array(((point[0] - center[0]) / radius,
+ (center[1] - point[1]) / radius,
+ 0.0), dtype=numpy.float64)
+ n = v[0]*v[0] + v[1]*v[1]
+ if n > 1.0:
+ v /= math.sqrt(n) # position outside of sphere
+ else:
+ v[2] = math.sqrt(1.0 - n)
+ return v
+
+
+def arcball_constrain_to_axis(point, axis):
+ """Return sphere point perpendicular to axis."""
+ v = numpy.array(point, dtype=numpy.float64, copy=True)
+ a = numpy.array(axis, dtype=numpy.float64, copy=True)
+ v -= a * numpy.dot(a, v) # on plane
+ n = vector_norm(v)
+ if n > _EPS:
+ if v[2] < 0.0:
+ v *= -1.0
+ v /= n
+ return v
+ if a[2] == 1.0:
+ return numpy.array([1, 0, 0], dtype=numpy.float64)
+ return unit_vector([-a[1], a[0], 0])
+
+
+def arcball_nearest_axis(point, axes):
+ """Return axis, which arc is nearest to point."""
+ point = numpy.array(point, dtype=numpy.float64, copy=False)
+ nearest = None
+ mx = -1.0
+ for axis in axes:
+ t = numpy.dot(arcball_constrain_to_axis(point, axis), point)
+ if t > mx:
+ nearest = axis
+ mx = t
+ return nearest
+
+
+# epsilon for testing whether a number is close to zero
+_EPS = numpy.finfo(float).eps * 4.0
+
+# axis sequences for Euler angles
+_NEXT_AXIS = [1, 2, 0, 1]
+
+# map axes strings to/from tuples of inner axis, parity, repetition, frame
+_AXES2TUPLE = {
+ 'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0),
+ 'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0),
+ 'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0),
+ 'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0),
+ 'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1),
+ 'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1),
+ 'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1),
+ 'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)}
+
+_TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items())
+
+# helper functions
+
+def vector_norm(data, axis=None, out=None):
+ """Return length, i.e. eucledian norm, of ndarray along axis.
+
+ >>> v = numpy.random.random(3)
+ >>> n = vector_norm(v)
+ >>> numpy.allclose(n, numpy.linalg.norm(v))
+ True
+ >>> v = numpy.random.rand(6, 5, 3)
+ >>> n = vector_norm(v, axis=-1)
+ >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2)))
+ True
+ >>> n = vector_norm(v, axis=1)
+ >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
+ True
+ >>> v = numpy.random.rand(5, 4, 3)
+ >>> n = numpy.empty((5, 3), dtype=numpy.float64)
+ >>> vector_norm(v, axis=1, out=n)
+ >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
+ True
+ >>> vector_norm([])
+ 0.0
+ >>> vector_norm([1.0])
+ 1.0
+
+ """
+ data = numpy.array(data, dtype=numpy.float64, copy=True)
+ if out is None:
+ if data.ndim == 1:
+ return math.sqrt(numpy.dot(data, data))
+ data *= data
+ out = numpy.atleast_1d(numpy.sum(data, axis=axis))
+ numpy.sqrt(out, out)
+ return out
+ else:
+ data *= data
+ numpy.sum(data, axis=axis, out=out)
+ numpy.sqrt(out, out)
+
+
+def unit_vector(data, axis=None, out=None):
+ """Return ndarray normalized by length, i.e. eucledian norm, along axis.
+
+ >>> v0 = numpy.random.random(3)
+ >>> v1 = unit_vector(v0)
+ >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
+ True
+ >>> v0 = numpy.random.rand(5, 4, 3)
+ >>> v1 = unit_vector(v0, axis=-1)
+ >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2)
+ >>> numpy.allclose(v1, v2)
+ True
+ >>> v1 = unit_vector(v0, axis=1)
+ >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1)
+ >>> numpy.allclose(v1, v2)
+ True
+ >>> v1 = numpy.empty((5, 4, 3), dtype=numpy.float64)
+ >>> unit_vector(v0, axis=1, out=v1)
+ >>> numpy.allclose(v1, v2)
+ True
+ >>> list(unit_vector([]))
+ []
+ >>> list(unit_vector([1.0]))
+ [1.0]
+
+ """
+ if out is None:
+ data = numpy.array(data, dtype=numpy.float64, copy=True)
+ if data.ndim == 1:
+ data /= math.sqrt(numpy.dot(data, data))
+ return data
+ else:
+ if out is not data:
+ out[:] = numpy.array(data, copy=False)
+ data = out
+ length = numpy.atleast_1d(numpy.sum(data*data, axis))
+ numpy.sqrt(length, length)
+ if axis is not None:
+ length = numpy.expand_dims(length, axis)
+ data /= length
+ if out is None:
+ return data
+
+
+def random_vector(size):
+ """Return array of random doubles in the half-open interval [0.0, 1.0).
+
+ >>> v = random_vector(10000)
+ >>> numpy.all(v >= 0.0) and numpy.all(v < 1.0)
+ True
+ >>> v0 = random_vector(10)
+ >>> v1 = random_vector(10)
+ >>> numpy.any(v0 == v1)
+ False
+
+ """
+ return numpy.random.random(size)
+
+
+def inverse_matrix(matrix):
+ """Return inverse of square transformation matrix.
+
+ >>> M0 = random_rotation_matrix()
+ >>> M1 = inverse_matrix(M0.T)
+ >>> numpy.allclose(M1, numpy.linalg.inv(M0.T))
+ True
+ >>> for size in range(1, 7):
+ ... M0 = numpy.random.rand(size, size)
+ ... M1 = inverse_matrix(M0)
+ ... if not numpy.allclose(M1, numpy.linalg.inv(M0)): print size
+
+ """
+ return numpy.linalg.inv(matrix)
+
+
+def concatenate_matrices(*matrices):
+ """Return concatenation of series of transformation matrices.
+
+ >>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5
+ >>> numpy.allclose(M, concatenate_matrices(M))
+ True
+ >>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T))
+ True
+
+ """
+ M = numpy.identity(4)
+ for i in matrices:
+ M = numpy.dot(M, i)
+ return M
+
+
+def is_same_transform(matrix0, matrix1):
+ """Return True if two matrices perform same transformation.
+
+ >>> is_same_transform(numpy.identity(4), numpy.identity(4))
+ True
+ >>> is_same_transform(numpy.identity(4), random_rotation_matrix())
+ False
+
+ """
+ matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True)
+ matrix0 /= matrix0[3, 3]
+ matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True)
+ matrix1 /= matrix1[3, 3]
+ return numpy.allclose(matrix0, matrix1)
+
+
+def _import_module(module_name, warn=True, prefix='_py_', ignore='_'):
+ """Try import all public attributes from module into global namespace.
+
+ Existing attributes with name clashes are renamed with prefix.
+ Attributes starting with underscore are ignored by default.
+
+ Return True on successful import.
+
+ """
+ try:
+ module = __import__(module_name)
+ except ImportError:
+ if warn:
+ warnings.warn("Failed to import module " + module_name)
+ else:
+ for attr in dir(module):
+ if ignore and attr.startswith(ignore):
+ continue
+ if prefix:
+ if attr in globals():
+ globals()[prefix + attr] = globals()[attr]
+ elif warn:
+ warnings.warn("No Python implementation of " + attr)
+ globals()[attr] = getattr(module, attr)
+ return True