summaryrefslogtreecommitdiff
path: root/libs/cglm/include/cglm/quat.h
diff options
context:
space:
mode:
Diffstat (limited to 'libs/cglm/include/cglm/quat.h')
-rw-r--r--libs/cglm/include/cglm/quat.h867
1 files changed, 867 insertions, 0 deletions
diff --git a/libs/cglm/include/cglm/quat.h b/libs/cglm/include/cglm/quat.h
new file mode 100644
index 0000000..c76fa03
--- /dev/null
+++ b/libs/cglm/include/cglm/quat.h
@@ -0,0 +1,867 @@
+/*
+ * Copyright (c), Recep Aslantas.
+ *
+ * MIT License (MIT), http://opensource.org/licenses/MIT
+ * Full license can be found in the LICENSE file
+ */
+
+/*
+ Macros:
+ GLM_QUAT_IDENTITY_INIT
+ GLM_QUAT_IDENTITY
+
+ Functions:
+ CGLM_INLINE void glm_quat_identity(versor q);
+ CGLM_INLINE void glm_quat_init(versor q, float x, float y, float z, float w);
+ CGLM_INLINE void glm_quat(versor q, float angle, float x, float y, float z);
+ CGLM_INLINE void glm_quatv(versor q, float angle, vec3 axis);
+ CGLM_INLINE void glm_quat_copy(versor q, versor dest);
+ CGLM_INLINE void glm_quat_from_vecs(vec3 a, vec3 b, versor dest);
+ CGLM_INLINE float glm_quat_norm(versor q);
+ CGLM_INLINE void glm_quat_normalize(versor q);
+ CGLM_INLINE void glm_quat_normalize_to(versor q, versor dest);
+ CGLM_INLINE float glm_quat_dot(versor p, versor q);
+ CGLM_INLINE void glm_quat_conjugate(versor q, versor dest);
+ CGLM_INLINE void glm_quat_inv(versor q, versor dest);
+ CGLM_INLINE void glm_quat_add(versor p, versor q, versor dest);
+ CGLM_INLINE void glm_quat_sub(versor p, versor q, versor dest);
+ CGLM_INLINE float glm_quat_real(versor q);
+ CGLM_INLINE void glm_quat_imag(versor q, vec3 dest);
+ CGLM_INLINE void glm_quat_imagn(versor q, vec3 dest);
+ CGLM_INLINE float glm_quat_imaglen(versor q);
+ CGLM_INLINE float glm_quat_angle(versor q);
+ CGLM_INLINE void glm_quat_axis(versor q, vec3 dest);
+ CGLM_INLINE void glm_quat_mul(versor p, versor q, versor dest);
+ CGLM_INLINE void glm_quat_mat4(versor q, mat4 dest);
+ CGLM_INLINE void glm_quat_mat4t(versor q, mat4 dest);
+ CGLM_INLINE void glm_quat_mat3(versor q, mat3 dest);
+ CGLM_INLINE void glm_quat_mat3t(versor q, mat3 dest);
+ CGLM_INLINE void glm_quat_lerp(versor from, versor to, float t, versor dest);
+ CGLM_INLINE void glm_quat_lerpc(versor from, versor to, float t, versor dest);
+ CGLM_INLINE void glm_quat_slerp(versor q, versor r, float t, versor dest);
+ CGLM_INLINE void glm_quat_nlerp(versor q, versor r, float t, versor dest);
+ CGLM_INLINE void glm_quat_look(vec3 eye, versor ori, mat4 dest);
+ CGLM_INLINE void glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest);
+ CGLM_INLINE void glm_quat_forp(vec3 from,
+ vec3 to,
+ vec3 fwd,
+ vec3 up,
+ versor dest);
+ CGLM_INLINE void glm_quat_rotatev(versor q, vec3 v, vec3 dest);
+ CGLM_INLINE void glm_quat_rotate(mat4 m, versor q, mat4 dest);
+ */
+
+#ifndef cglm_quat_h
+#define cglm_quat_h
+
+#include "common.h"
+#include "vec3.h"
+#include "vec4.h"
+#include "mat4.h"
+#include "mat3.h"
+#include "affine-mat.h"
+#include "affine.h"
+
+#ifdef CGLM_SSE_FP
+# include "simd/sse2/quat.h"
+#endif
+
+#ifdef CGLM_NEON_FP
+# include "simd/neon/quat.h"
+#endif
+
+CGLM_INLINE void glm_quat_normalize(versor q);
+
+/*
+ * IMPORTANT:
+ * ----------------------------------------------------------------------------
+ * cglm stores quat as [x, y, z, w] since v0.3.6
+ *
+ * it was [w, x, y, z] before v0.3.6 it has been changed to [x, y, z, w]
+ * with v0.3.6 version.
+ * ----------------------------------------------------------------------------
+ */
+
+#define GLM_QUAT_IDENTITY_INIT {0.0f, 0.0f, 0.0f, 1.0f}
+#define GLM_QUAT_IDENTITY ((versor)GLM_QUAT_IDENTITY_INIT)
+
+/*!
+ * @brief makes given quat to identity
+ *
+ * @param[in, out] q quaternion
+ */
+CGLM_INLINE
+void
+glm_quat_identity(versor q) {
+ CGLM_ALIGN(16) versor v = GLM_QUAT_IDENTITY_INIT;
+ glm_vec4_copy(v, q);
+}
+
+/*!
+ * @brief make given quaternion array's each element identity quaternion
+ *
+ * @param[in, out] q quat array (must be aligned (16)
+ * if alignment is not disabled)
+ *
+ * @param[in] count count of quaternions
+ */
+CGLM_INLINE
+void
+glm_quat_identity_array(versor * __restrict q, size_t count) {
+ CGLM_ALIGN(16) versor v = GLM_QUAT_IDENTITY_INIT;
+ size_t i;
+
+ for (i = 0; i < count; i++) {
+ glm_vec4_copy(v, q[i]);
+ }
+}
+
+/*!
+ * @brief inits quaterion with raw values
+ *
+ * @param[out] q quaternion
+ * @param[in] x x
+ * @param[in] y y
+ * @param[in] z z
+ * @param[in] w w (real part)
+ */
+CGLM_INLINE
+void
+glm_quat_init(versor q, float x, float y, float z, float w) {
+ q[0] = x;
+ q[1] = y;
+ q[2] = z;
+ q[3] = w;
+}
+
+/*!
+ * @brief creates NEW quaternion with axis vector
+ *
+ * @param[out] q quaternion
+ * @param[in] angle angle (radians)
+ * @param[in] axis axis
+ */
+CGLM_INLINE
+void
+glm_quatv(versor q, float angle, vec3 axis) {
+ CGLM_ALIGN(8) vec3 k;
+ float a, c, s;
+
+ a = angle * 0.5f;
+ c = cosf(a);
+ s = sinf(a);
+
+ glm_normalize_to(axis, k);
+
+ q[0] = s * k[0];
+ q[1] = s * k[1];
+ q[2] = s * k[2];
+ q[3] = c;
+}
+
+/*!
+ * @brief creates NEW quaternion with individual axis components
+ *
+ * @param[out] q quaternion
+ * @param[in] angle angle (radians)
+ * @param[in] x axis.x
+ * @param[in] y axis.y
+ * @param[in] z axis.z
+ */
+CGLM_INLINE
+void
+glm_quat(versor q, float angle, float x, float y, float z) {
+ CGLM_ALIGN(8) vec3 axis = {x, y, z};
+ glm_quatv(q, angle, axis);
+}
+
+/*!
+ * @brief copy quaternion to another one
+ *
+ * @param[in] q quaternion
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_quat_copy(versor q, versor dest) {
+ glm_vec4_copy(q, dest);
+}
+
+/*!
+ * @brief compute quaternion rotating vector A to vector B
+ *
+ * @param[in] a vec3 (must have unit length)
+ * @param[in] b vec3 (must have unit length)
+ * @param[out] dest quaternion (of unit length)
+ */
+CGLM_INLINE
+void
+glm_quat_from_vecs(vec3 a, vec3 b, versor dest) {
+ CGLM_ALIGN(8) vec3 axis;
+ float cos_theta;
+ float cos_half_theta;
+
+ cos_theta = glm_vec3_dot(a, b);
+ if (cos_theta >= 1.f - GLM_FLT_EPSILON) { /* a ∥ b */
+ glm_quat_identity(dest);
+ return;
+ }
+ if (cos_theta < -1.f + GLM_FLT_EPSILON) { /* angle(a, b) = π */
+ glm_vec3_ortho(a, axis);
+ cos_half_theta = 0.f; /* cos π/2 */
+ } else {
+ glm_vec3_cross(a, b, axis);
+ cos_half_theta = 1.0f + cos_theta; /* cos 0 + cos θ */
+ }
+
+ glm_quat_init(dest, axis[0], axis[1], axis[2], cos_half_theta);
+ glm_quat_normalize(dest);
+}
+
+/*!
+ * @brief returns norm (magnitude) of quaternion
+ *
+ * @param[in] q quaternion
+ */
+CGLM_INLINE
+float
+glm_quat_norm(versor q) {
+ return glm_vec4_norm(q);
+}
+
+/*!
+ * @brief normalize quaternion and store result in dest
+ *
+ * @param[in] q quaternion to normalze
+ * @param[out] dest destination quaternion
+ */
+CGLM_INLINE
+void
+glm_quat_normalize_to(versor q, versor dest) {
+#if defined( __SSE2__ ) || defined( __SSE2__ )
+ __m128 xdot, x0;
+ float dot;
+
+ x0 = glmm_load(q);
+ xdot = glmm_vdot(x0, x0);
+ dot = _mm_cvtss_f32(xdot);
+
+ if (dot <= 0.0f) {
+ glm_quat_identity(dest);
+ return;
+ }
+
+ glmm_store(dest, _mm_div_ps(x0, _mm_sqrt_ps(xdot)));
+#else
+ float dot;
+
+ dot = glm_vec4_norm2(q);
+
+ if (dot <= 0.0f) {
+ glm_quat_identity(dest);
+ return;
+ }
+
+ glm_vec4_scale(q, 1.0f / sqrtf(dot), dest);
+#endif
+}
+
+/*!
+ * @brief normalize quaternion
+ *
+ * @param[in, out] q quaternion
+ */
+CGLM_INLINE
+void
+glm_quat_normalize(versor q) {
+ glm_quat_normalize_to(q, q);
+}
+
+/*!
+ * @brief dot product of two quaternion
+ *
+ * @param[in] p quaternion 1
+ * @param[in] q quaternion 2
+ */
+CGLM_INLINE
+float
+glm_quat_dot(versor p, versor q) {
+ return glm_vec4_dot(p, q);
+}
+
+/*!
+ * @brief conjugate of quaternion
+ *
+ * @param[in] q quaternion
+ * @param[out] dest conjugate
+ */
+CGLM_INLINE
+void
+glm_quat_conjugate(versor q, versor dest) {
+ glm_vec4_negate_to(q, dest);
+ dest[3] = -dest[3];
+}
+
+/*!
+ * @brief inverse of non-zero quaternion
+ *
+ * @param[in] q quaternion
+ * @param[out] dest inverse quaternion
+ */
+CGLM_INLINE
+void
+glm_quat_inv(versor q, versor dest) {
+ CGLM_ALIGN(16) versor conj;
+ glm_quat_conjugate(q, conj);
+ glm_vec4_scale(conj, 1.0f / glm_vec4_norm2(q), dest);
+}
+
+/*!
+ * @brief add (componentwise) two quaternions and store result in dest
+ *
+ * @param[in] p quaternion 1
+ * @param[in] q quaternion 2
+ * @param[out] dest result quaternion
+ */
+CGLM_INLINE
+void
+glm_quat_add(versor p, versor q, versor dest) {
+ glm_vec4_add(p, q, dest);
+}
+
+/*!
+ * @brief subtract (componentwise) two quaternions and store result in dest
+ *
+ * @param[in] p quaternion 1
+ * @param[in] q quaternion 2
+ * @param[out] dest result quaternion
+ */
+CGLM_INLINE
+void
+glm_quat_sub(versor p, versor q, versor dest) {
+ glm_vec4_sub(p, q, dest);
+}
+
+/*!
+ * @brief returns real part of quaternion
+ *
+ * @param[in] q quaternion
+ */
+CGLM_INLINE
+float
+glm_quat_real(versor q) {
+ return q[3];
+}
+
+/*!
+ * @brief returns imaginary part of quaternion
+ *
+ * @param[in] q quaternion
+ * @param[out] dest imag
+ */
+CGLM_INLINE
+void
+glm_quat_imag(versor q, vec3 dest) {
+ dest[0] = q[0];
+ dest[1] = q[1];
+ dest[2] = q[2];
+}
+
+/*!
+ * @brief returns normalized imaginary part of quaternion
+ *
+ * @param[in] q quaternion
+ */
+CGLM_INLINE
+void
+glm_quat_imagn(versor q, vec3 dest) {
+ glm_normalize_to(q, dest);
+}
+
+/*!
+ * @brief returns length of imaginary part of quaternion
+ *
+ * @param[in] q quaternion
+ */
+CGLM_INLINE
+float
+glm_quat_imaglen(versor q) {
+ return glm_vec3_norm(q);
+}
+
+/*!
+ * @brief returns angle of quaternion
+ *
+ * @param[in] q quaternion
+ */
+CGLM_INLINE
+float
+glm_quat_angle(versor q) {
+ /*
+ sin(theta / 2) = length(x*x + y*y + z*z)
+ cos(theta / 2) = w
+ theta = 2 * atan(sin(theta / 2) / cos(theta / 2))
+ */
+ return 2.0f * atan2f(glm_quat_imaglen(q), glm_quat_real(q));
+}
+
+/*!
+ * @brief axis of quaternion
+ *
+ * @param[in] q quaternion
+ * @param[out] dest axis of quaternion
+ */
+CGLM_INLINE
+void
+glm_quat_axis(versor q, vec3 dest) {
+ glm_quat_imagn(q, dest);
+}
+
+/*!
+ * @brief multiplies two quaternion and stores result in dest
+ * this is also called Hamilton Product
+ *
+ * According to WikiPedia:
+ * The product of two rotation quaternions [clarification needed] will be
+ * equivalent to the rotation q followed by the rotation p
+ *
+ * @param[in] p quaternion 1
+ * @param[in] q quaternion 2
+ * @param[out] dest result quaternion
+ */
+CGLM_INLINE
+void
+glm_quat_mul(versor p, versor q, versor dest) {
+ /*
+ + (a1 b2 + b1 a2 + c1 d2 − d1 c2)i
+ + (a1 c2 − b1 d2 + c1 a2 + d1 b2)j
+ + (a1 d2 + b1 c2 − c1 b2 + d1 a2)k
+ a1 a2 − b1 b2 − c1 c2 − d1 d2
+ */
+#if defined( __SSE__ ) || defined( __SSE2__ )
+ glm_quat_mul_sse2(p, q, dest);
+#elif defined(CGLM_NEON_FP)
+ glm_quat_mul_neon(p, q, dest);
+#else
+ dest[0] = p[3] * q[0] + p[0] * q[3] + p[1] * q[2] - p[2] * q[1];
+ dest[1] = p[3] * q[1] - p[0] * q[2] + p[1] * q[3] + p[2] * q[0];
+ dest[2] = p[3] * q[2] + p[0] * q[1] - p[1] * q[0] + p[2] * q[3];
+ dest[3] = p[3] * q[3] - p[0] * q[0] - p[1] * q[1] - p[2] * q[2];
+#endif
+}
+
+/*!
+ * @brief convert quaternion to mat4
+ *
+ * @param[in] q quaternion
+ * @param[out] dest result matrix
+ */
+CGLM_INLINE
+void
+glm_quat_mat4(versor q, mat4 dest) {
+ float w, x, y, z,
+ xx, yy, zz,
+ xy, yz, xz,
+ wx, wy, wz, norm, s;
+
+ norm = glm_quat_norm(q);
+ s = norm > 0.0f ? 2.0f / norm : 0.0f;
+
+ x = q[0];
+ y = q[1];
+ z = q[2];
+ w = q[3];
+
+ xx = s * x * x; xy = s * x * y; wx = s * w * x;
+ yy = s * y * y; yz = s * y * z; wy = s * w * y;
+ zz = s * z * z; xz = s * x * z; wz = s * w * z;
+
+ dest[0][0] = 1.0f - yy - zz;
+ dest[1][1] = 1.0f - xx - zz;
+ dest[2][2] = 1.0f - xx - yy;
+
+ dest[0][1] = xy + wz;
+ dest[1][2] = yz + wx;
+ dest[2][0] = xz + wy;
+
+ dest[1][0] = xy - wz;
+ dest[2][1] = yz - wx;
+ dest[0][2] = xz - wy;
+
+ dest[0][3] = 0.0f;
+ dest[1][3] = 0.0f;
+ dest[2][3] = 0.0f;
+ dest[3][0] = 0.0f;
+ dest[3][1] = 0.0f;
+ dest[3][2] = 0.0f;
+ dest[3][3] = 1.0f;
+}
+
+/*!
+ * @brief convert quaternion to mat4 (transposed)
+ *
+ * @param[in] q quaternion
+ * @param[out] dest result matrix as transposed
+ */
+CGLM_INLINE
+void
+glm_quat_mat4t(versor q, mat4 dest) {
+ float w, x, y, z,
+ xx, yy, zz,
+ xy, yz, xz,
+ wx, wy, wz, norm, s;
+
+ norm = glm_quat_norm(q);
+ s = norm > 0.0f ? 2.0f / norm : 0.0f;
+
+ x = q[0];
+ y = q[1];
+ z = q[2];
+ w = q[3];
+
+ xx = s * x * x; xy = s * x * y; wx = s * w * x;
+ yy = s * y * y; yz = s * y * z; wy = s * w * y;
+ zz = s * z * z; xz = s * x * z; wz = s * w * z;
+
+ dest[0][0] = 1.0f - yy - zz;
+ dest[1][1] = 1.0f - xx - zz;
+ dest[2][2] = 1.0f - xx - yy;
+
+ dest[1][0] = xy + wz;
+ dest[2][1] = yz + wx;
+ dest[0][2] = xz + wy;
+
+ dest[0][1] = xy - wz;
+ dest[1][2] = yz - wx;
+ dest[2][0] = xz - wy;
+
+ dest[0][3] = 0.0f;
+ dest[1][3] = 0.0f;
+ dest[2][3] = 0.0f;
+ dest[3][0] = 0.0f;
+ dest[3][1] = 0.0f;
+ dest[3][2] = 0.0f;
+ dest[3][3] = 1.0f;
+}
+
+/*!
+ * @brief convert quaternion to mat3
+ *
+ * @param[in] q quaternion
+ * @param[out] dest result matrix
+ */
+CGLM_INLINE
+void
+glm_quat_mat3(versor q, mat3 dest) {
+ float w, x, y, z,
+ xx, yy, zz,
+ xy, yz, xz,
+ wx, wy, wz, norm, s;
+
+ norm = glm_quat_norm(q);
+ s = norm > 0.0f ? 2.0f / norm : 0.0f;
+
+ x = q[0];
+ y = q[1];
+ z = q[2];
+ w = q[3];
+
+ xx = s * x * x; xy = s * x * y; wx = s * w * x;
+ yy = s * y * y; yz = s * y * z; wy = s * w * y;
+ zz = s * z * z; xz = s * x * z; wz = s * w * z;
+
+ dest[0][0] = 1.0f - yy - zz;
+ dest[1][1] = 1.0f - xx - zz;
+ dest[2][2] = 1.0f - xx - yy;
+
+ dest[0][1] = xy + wz;
+ dest[1][2] = yz + wx;
+ dest[2][0] = xz + wy;
+
+ dest[1][0] = xy - wz;
+ dest[2][1] = yz - wx;
+ dest[0][2] = xz - wy;
+}
+
+/*!
+ * @brief convert quaternion to mat3 (transposed)
+ *
+ * @param[in] q quaternion
+ * @param[out] dest result matrix
+ */
+CGLM_INLINE
+void
+glm_quat_mat3t(versor q, mat3 dest) {
+ float w, x, y, z,
+ xx, yy, zz,
+ xy, yz, xz,
+ wx, wy, wz, norm, s;
+
+ norm = glm_quat_norm(q);
+ s = norm > 0.0f ? 2.0f / norm : 0.0f;
+
+ x = q[0];
+ y = q[1];
+ z = q[2];
+ w = q[3];
+
+ xx = s * x * x; xy = s * x * y; wx = s * w * x;
+ yy = s * y * y; yz = s * y * z; wy = s * w * y;
+ zz = s * z * z; xz = s * x * z; wz = s * w * z;
+
+ dest[0][0] = 1.0f - yy - zz;
+ dest[1][1] = 1.0f - xx - zz;
+ dest[2][2] = 1.0f - xx - yy;
+
+ dest[1][0] = xy + wz;
+ dest[2][1] = yz + wx;
+ dest[0][2] = xz + wy;
+
+ dest[0][1] = xy - wz;
+ dest[1][2] = yz - wx;
+ dest[2][0] = xz - wy;
+}
+
+/*!
+ * @brief interpolates between two quaternions
+ * using linear interpolation (LERP)
+ *
+ * @param[in] from from
+ * @param[in] to to
+ * @param[in] t interpolant (amount)
+ * @param[out] dest result quaternion
+ */
+CGLM_INLINE
+void
+glm_quat_lerp(versor from, versor to, float t, versor dest) {
+ glm_vec4_lerp(from, to, t, dest);
+}
+
+/*!
+ * @brief interpolates between two quaternions
+ * using linear interpolation (LERP)
+ *
+ * @param[in] from from
+ * @param[in] to to
+ * @param[in] t interpolant (amount) clamped between 0 and 1
+ * @param[out] dest result quaternion
+ */
+CGLM_INLINE
+void
+glm_quat_lerpc(versor from, versor to, float t, versor dest) {
+ glm_vec4_lerpc(from, to, t, dest);
+}
+
+/*!
+ * @brief interpolates between two quaternions
+ * taking the shortest rotation path using
+ * normalized linear interpolation (NLERP)
+ *
+ * @param[in] from from
+ * @param[in] to to
+ * @param[in] t interpolant (amount)
+ * @param[out] dest result quaternion
+ */
+CGLM_INLINE
+void
+glm_quat_nlerp(versor from, versor to, float t, versor dest) {
+ versor target;
+ float dot;
+
+ dot = glm_vec4_dot(from, to);
+
+ glm_vec4_scale(to, (dot >= 0) ? 1.0f : -1.0f, target);
+ glm_quat_lerp(from, target, t, dest);
+ glm_quat_normalize(dest);
+}
+
+/*!
+ * @brief interpolates between two quaternions
+ * using spherical linear interpolation (SLERP)
+ *
+ * @param[in] from from
+ * @param[in] to to
+ * @param[in] t amout
+ * @param[out] dest result quaternion
+ */
+CGLM_INLINE
+void
+glm_quat_slerp(versor from, versor to, float t, versor dest) {
+ CGLM_ALIGN(16) vec4 q1, q2;
+ float cosTheta, sinTheta, angle;
+
+ cosTheta = glm_quat_dot(from, to);
+ glm_quat_copy(from, q1);
+
+ if (fabsf(cosTheta) >= 1.0f) {
+ glm_quat_copy(q1, dest);
+ return;
+ }
+
+ if (cosTheta < 0.0f) {
+ glm_vec4_negate(q1);
+ cosTheta = -cosTheta;
+ }
+
+ sinTheta = sqrtf(1.0f - cosTheta * cosTheta);
+
+ /* LERP to avoid zero division */
+ if (fabsf(sinTheta) < 0.001f) {
+ glm_quat_lerp(from, to, t, dest);
+ return;
+ }
+
+ /* SLERP */
+ angle = acosf(cosTheta);
+ glm_vec4_scale(q1, sinf((1.0f - t) * angle), q1);
+ glm_vec4_scale(to, sinf(t * angle), q2);
+
+ glm_vec4_add(q1, q2, q1);
+ glm_vec4_scale(q1, 1.0f / sinTheta, dest);
+}
+
+/*!
+ * @brief creates view matrix using quaternion as camera orientation
+ *
+ * @param[in] eye eye
+ * @param[in] ori orientation in world space as quaternion
+ * @param[out] dest view matrix
+ */
+CGLM_INLINE
+void
+glm_quat_look(vec3 eye, versor ori, mat4 dest) {
+ /* orientation */
+ glm_quat_mat4t(ori, dest);
+
+ /* translate */
+ glm_mat4_mulv3(dest, eye, 1.0f, dest[3]);
+ glm_vec3_negate(dest[3]);
+}
+
+/*!
+ * @brief creates look rotation quaternion
+ *
+ * @param[in] dir direction to look
+ * @param[in] up up vector
+ * @param[out] dest destination quaternion
+ */
+CGLM_INLINE
+void
+glm_quat_for(vec3 dir, vec3 up, versor dest) {
+ CGLM_ALIGN_MAT mat3 m;
+
+ glm_vec3_normalize_to(dir, m[2]);
+
+ /* No need to negate in LH, but we use RH here */
+ glm_vec3_negate(m[2]);
+
+ glm_vec3_crossn(up, m[2], m[0]);
+ glm_vec3_cross(m[2], m[0], m[1]);
+
+ glm_mat3_quat(m, dest);
+}
+
+/*!
+ * @brief creates look rotation quaternion using source and
+ * destination positions p suffix stands for position
+ *
+ * @param[in] from source point
+ * @param[in] to destination point
+ * @param[in] up up vector
+ * @param[out] dest destination quaternion
+ */
+CGLM_INLINE
+void
+glm_quat_forp(vec3 from, vec3 to, vec3 up, versor dest) {
+ CGLM_ALIGN(8) vec3 dir;
+ glm_vec3_sub(to, from, dir);
+ glm_quat_for(dir, up, dest);
+}
+
+/*!
+ * @brief rotate vector using using quaternion
+ *
+ * @param[in] q quaternion
+ * @param[in] v vector to rotate
+ * @param[out] dest rotated vector
+ */
+CGLM_INLINE
+void
+glm_quat_rotatev(versor q, vec3 v, vec3 dest) {
+ CGLM_ALIGN(16) versor p;
+ CGLM_ALIGN(8) vec3 u, v1, v2;
+ float s;
+
+ glm_quat_normalize_to(q, p);
+ glm_quat_imag(p, u);
+ s = glm_quat_real(p);
+
+ glm_vec3_scale(u, 2.0f * glm_vec3_dot(u, v), v1);
+ glm_vec3_scale(v, s * s - glm_vec3_dot(u, u), v2);
+ glm_vec3_add(v1, v2, v1);
+
+ glm_vec3_cross(u, v, v2);
+ glm_vec3_scale(v2, 2.0f * s, v2);
+
+ glm_vec3_add(v1, v2, dest);
+}
+
+/*!
+ * @brief rotate existing transform matrix using quaternion
+ *
+ * @param[in] m existing transform matrix
+ * @param[in] q quaternion
+ * @param[out] dest rotated matrix/transform
+ */
+CGLM_INLINE
+void
+glm_quat_rotate(mat4 m, versor q, mat4 dest) {
+ CGLM_ALIGN_MAT mat4 rot;
+ glm_quat_mat4(q, rot);
+ glm_mul_rot(m, rot, dest);
+}
+
+/*!
+ * @brief rotate existing transform matrix using quaternion at pivot point
+ *
+ * @param[in, out] m existing transform matrix
+ * @param[in] q quaternion
+ * @param[out] pivot pivot
+ */
+CGLM_INLINE
+void
+glm_quat_rotate_at(mat4 m, versor q, vec3 pivot) {
+ CGLM_ALIGN(8) vec3 pivotInv;
+
+ glm_vec3_negate_to(pivot, pivotInv);
+
+ glm_translate(m, pivot);
+ glm_quat_rotate(m, q, m);
+ glm_translate(m, pivotInv);
+}
+
+/*!
+ * @brief rotate NEW transform matrix using quaternion at pivot point
+ *
+ * this creates rotation matrix, it assumes you don't have a matrix
+ *
+ * this should work faster than glm_quat_rotate_at because it reduces
+ * one glm_translate.
+ *
+ * @param[out] m existing transform matrix
+ * @param[in] q quaternion
+ * @param[in] pivot pivot
+ */
+CGLM_INLINE
+void
+glm_quat_rotate_atm(mat4 m, versor q, vec3 pivot) {
+ CGLM_ALIGN(8) vec3 pivotInv;
+
+ glm_vec3_negate_to(pivot, pivotInv);
+
+ glm_translate_make(m, pivot);
+ glm_quat_rotate(m, q, m);
+ glm_translate(m, pivotInv);
+}
+
+#endif /* cglm_quat_h */