summaryrefslogtreecommitdiff
path: root/libs/ode-0.16.1/OPCODE/Ice/IceMatrix3x3.h
diff options
context:
space:
mode:
Diffstat (limited to 'libs/ode-0.16.1/OPCODE/Ice/IceMatrix3x3.h')
-rw-r--r--libs/ode-0.16.1/OPCODE/Ice/IceMatrix3x3.h499
1 files changed, 499 insertions, 0 deletions
diff --git a/libs/ode-0.16.1/OPCODE/Ice/IceMatrix3x3.h b/libs/ode-0.16.1/OPCODE/Ice/IceMatrix3x3.h
new file mode 100644
index 0000000..e3b950f
--- /dev/null
+++ b/libs/ode-0.16.1/OPCODE/Ice/IceMatrix3x3.h
@@ -0,0 +1,499 @@
+///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+/**
+ * Contains code for 3x3 matrices.
+ * \file IceMatrix3x3.h
+ * \author Pierre Terdiman
+ * \date April, 4, 2000
+ */
+///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+// Include Guard
+#ifndef __ICEMATRIX3X3_H__
+#define __ICEMATRIX3X3_H__
+
+ // Forward declarations
+ class Quat;
+
+ #define MATRIX3X3_EPSILON (1.0e-7f)
+
+ class ICEMATHS_API Matrix3x3
+ {
+ public:
+ //! Empty constructor
+ inline_ Matrix3x3() {}
+ //! Constructor from 9 values
+ inline_ Matrix3x3(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22)
+ {
+ m[0][0] = m00; m[0][1] = m01; m[0][2] = m02;
+ m[1][0] = m10; m[1][1] = m11; m[1][2] = m12;
+ m[2][0] = m20; m[2][1] = m21; m[2][2] = m22;
+ }
+ //! Copy constructor
+ inline_ Matrix3x3(const Matrix3x3& mat) { CopyMemory(m, &mat.m, 9*sizeof(float)); }
+ //! Destructor
+ inline_ ~Matrix3x3() {}
+
+ //! Assign values
+ template<typename trotationfloat>
+ inline_ void Set(trotationfloat m00, trotationfloat m01, trotationfloat m02,
+ trotationfloat m10, trotationfloat m11, trotationfloat m12,
+ trotationfloat m20, trotationfloat m21, trotationfloat m22)
+ {
+ m[0][0] = (float)m00; m[0][1] = (float)m01; m[0][2] = (float)m02;
+ m[1][0] = (float)m10; m[1][1] = (float)m11; m[1][2] = (float)m12;
+ m[2][0] = (float)m20; m[2][1] = (float)m21; m[2][2] = (float)m22;
+ }
+
+ //! Sets the scale from a Point. The point is put on the diagonal.
+ inline_ void SetScale(const Point& p) { m[0][0] = p.x; m[1][1] = p.y; m[2][2] = p.z; }
+
+ //! Sets the scale from floats. Values are put on the diagonal.
+ inline_ void SetScale(float sx, float sy, float sz) { m[0][0] = sx; m[1][1] = sy; m[2][2] = sz; }
+
+ //! Scales from a Point. Each row is multiplied by a component.
+ inline_ void Scale(const Point& p)
+ {
+ m[0][0] *= p.x; m[0][1] *= p.x; m[0][2] *= p.x;
+ m[1][0] *= p.y; m[1][1] *= p.y; m[1][2] *= p.y;
+ m[2][0] *= p.z; m[2][1] *= p.z; m[2][2] *= p.z;
+ }
+
+ //! Scales from floats. Each row is multiplied by a value.
+ inline_ void Scale(float sx, float sy, float sz)
+ {
+ m[0][0] *= sx; m[0][1] *= sx; m[0][2] *= sx;
+ m[1][0] *= sy; m[1][1] *= sy; m[1][2] *= sy;
+ m[2][0] *= sz; m[2][1] *= sz; m[2][2] *= sz;
+ }
+
+ //! Copy from a Matrix3x3
+ inline_ void Copy(const Matrix3x3& source) { CopyMemory(m, source.m, 9*sizeof(float)); }
+
+ // Row-column access
+ //! Returns a row.
+ inline_ void GetRow(const udword r, Point& p) const { p.x = m[r][0]; p.y = m[r][1]; p.z = m[r][2]; }
+ //! Returns a row.
+ inline_ const Point& GetRow(const udword r) const { return *(const Point*)&m[r][0]; }
+ //! Returns a row.
+ inline_ Point& GetRow(const udword r) { return *(Point*)&m[r][0]; }
+ //! Sets a row.
+ inline_ void SetRow(const udword r, const Point& p) { m[r][0] = p.x; m[r][1] = p.y; m[r][2] = p.z; }
+ //! Returns a column.
+ inline_ void GetCol(const udword c, Point& p) const { p.x = m[0][c]; p.y = m[1][c]; p.z = m[2][c]; }
+ //! Sets a column.
+ inline_ void SetCol(const udword c, const Point& p) { m[0][c] = p.x; m[1][c] = p.y; m[2][c] = p.z; }
+
+ //! Computes the trace. The trace is the sum of the 3 diagonal components.
+ inline_ float Trace() const { return m[0][0] + m[1][1] + m[2][2]; }
+ //! Clears the matrix.
+ inline_ void Zero() { ZeroMemory(&m, sizeof(m)); }
+ //! Sets the identity matrix.
+ inline_ void Identity() { Zero(); m[0][0] = m[1][1] = m[2][2] = 1.0f; }
+ //! Checks for identity
+ inline_ bool IsIdentity() const
+ {
+ if(IR(m[0][0])!=IEEE_1_0) return false;
+ if(IR(m[0][1])!=0) return false;
+ if(IR(m[0][2])!=0) return false;
+
+ if(IR(m[1][0])!=0) return false;
+ if(IR(m[1][1])!=IEEE_1_0) return false;
+ if(IR(m[1][2])!=0) return false;
+
+ if(IR(m[2][0])!=0) return false;
+ if(IR(m[2][1])!=0) return false;
+ if(IR(m[2][2])!=IEEE_1_0) return false;
+
+ return true;
+ }
+
+ //! Checks matrix validity
+ inline_ BOOL IsValid() const
+ {
+ for(udword j=0;j<3;j++)
+ {
+ for(udword i=0;i<3;i++)
+ {
+ if(!IsValidFloat(m[j][i])) return FALSE;
+ }
+ }
+ return TRUE;
+ }
+
+ //! Makes a skew-symmetric matrix (a.k.a. Star(*) Matrix)
+ //! [ 0.0 -a.z a.y ]
+ //! [ a.z 0.0 -a.x ]
+ //! [ -a.y a.x 0.0 ]
+ //! This is also called a "cross matrix" since for any vectors A and B,
+ //! A^B = Skew(A) * B = - B * Skew(A);
+ inline_ void SkewSymmetric(const Point& a)
+ {
+ m[0][0] = 0.0f;
+ m[0][1] = -a.z;
+ m[0][2] = a.y;
+
+ m[1][0] = a.z;
+ m[1][1] = 0.0f;
+ m[1][2] = -a.x;
+
+ m[2][0] = -a.y;
+ m[2][1] = a.x;
+ m[2][2] = 0.0f;
+ }
+
+ //! Negates the matrix
+ inline_ void Neg()
+ {
+ m[0][0] = -m[0][0]; m[0][1] = -m[0][1]; m[0][2] = -m[0][2];
+ m[1][0] = -m[1][0]; m[1][1] = -m[1][1]; m[1][2] = -m[1][2];
+ m[2][0] = -m[2][0]; m[2][1] = -m[2][1]; m[2][2] = -m[2][2];
+ }
+
+ //! Neg from another matrix
+ inline_ void Neg(const Matrix3x3& mat)
+ {
+ m[0][0] = -mat.m[0][0]; m[0][1] = -mat.m[0][1]; m[0][2] = -mat.m[0][2];
+ m[1][0] = -mat.m[1][0]; m[1][1] = -mat.m[1][1]; m[1][2] = -mat.m[1][2];
+ m[2][0] = -mat.m[2][0]; m[2][1] = -mat.m[2][1]; m[2][2] = -mat.m[2][2];
+ }
+
+ //! Add another matrix
+ inline_ void Add(const Matrix3x3& mat)
+ {
+ m[0][0] += mat.m[0][0]; m[0][1] += mat.m[0][1]; m[0][2] += mat.m[0][2];
+ m[1][0] += mat.m[1][0]; m[1][1] += mat.m[1][1]; m[1][2] += mat.m[1][2];
+ m[2][0] += mat.m[2][0]; m[2][1] += mat.m[2][1]; m[2][2] += mat.m[2][2];
+ }
+
+ //! Sub another matrix
+ inline_ void Sub(const Matrix3x3& mat)
+ {
+ m[0][0] -= mat.m[0][0]; m[0][1] -= mat.m[0][1]; m[0][2] -= mat.m[0][2];
+ m[1][0] -= mat.m[1][0]; m[1][1] -= mat.m[1][1]; m[1][2] -= mat.m[1][2];
+ m[2][0] -= mat.m[2][0]; m[2][1] -= mat.m[2][1]; m[2][2] -= mat.m[2][2];
+ }
+ //! Mac
+ inline_ void Mac(const Matrix3x3& a, const Matrix3x3& b, float s)
+ {
+ m[0][0] = a.m[0][0] + b.m[0][0] * s;
+ m[0][1] = a.m[0][1] + b.m[0][1] * s;
+ m[0][2] = a.m[0][2] + b.m[0][2] * s;
+
+ m[1][0] = a.m[1][0] + b.m[1][0] * s;
+ m[1][1] = a.m[1][1] + b.m[1][1] * s;
+ m[1][2] = a.m[1][2] + b.m[1][2] * s;
+
+ m[2][0] = a.m[2][0] + b.m[2][0] * s;
+ m[2][1] = a.m[2][1] + b.m[2][1] * s;
+ m[2][2] = a.m[2][2] + b.m[2][2] * s;
+ }
+ //! Mac
+ inline_ void Mac(const Matrix3x3& a, float s)
+ {
+ m[0][0] += a.m[0][0] * s; m[0][1] += a.m[0][1] * s; m[0][2] += a.m[0][2] * s;
+ m[1][0] += a.m[1][0] * s; m[1][1] += a.m[1][1] * s; m[1][2] += a.m[1][2] * s;
+ m[2][0] += a.m[2][0] * s; m[2][1] += a.m[2][1] * s; m[2][2] += a.m[2][2] * s;
+ }
+
+ //! this = A * s
+ inline_ void Mult(const Matrix3x3& a, float s)
+ {
+ m[0][0] = a.m[0][0] * s; m[0][1] = a.m[0][1] * s; m[0][2] = a.m[0][2] * s;
+ m[1][0] = a.m[1][0] * s; m[1][1] = a.m[1][1] * s; m[1][2] = a.m[1][2] * s;
+ m[2][0] = a.m[2][0] * s; m[2][1] = a.m[2][1] * s; m[2][2] = a.m[2][2] * s;
+ }
+
+ inline_ void Add(const Matrix3x3& a, const Matrix3x3& b)
+ {
+ m[0][0] = a.m[0][0] + b.m[0][0]; m[0][1] = a.m[0][1] + b.m[0][1]; m[0][2] = a.m[0][2] + b.m[0][2];
+ m[1][0] = a.m[1][0] + b.m[1][0]; m[1][1] = a.m[1][1] + b.m[1][1]; m[1][2] = a.m[1][2] + b.m[1][2];
+ m[2][0] = a.m[2][0] + b.m[2][0]; m[2][1] = a.m[2][1] + b.m[2][1]; m[2][2] = a.m[2][2] + b.m[2][2];
+ }
+
+ inline_ void Sub(const Matrix3x3& a, const Matrix3x3& b)
+ {
+ m[0][0] = a.m[0][0] - b.m[0][0]; m[0][1] = a.m[0][1] - b.m[0][1]; m[0][2] = a.m[0][2] - b.m[0][2];
+ m[1][0] = a.m[1][0] - b.m[1][0]; m[1][1] = a.m[1][1] - b.m[1][1]; m[1][2] = a.m[1][2] - b.m[1][2];
+ m[2][0] = a.m[2][0] - b.m[2][0]; m[2][1] = a.m[2][1] - b.m[2][1]; m[2][2] = a.m[2][2] - b.m[2][2];
+ }
+
+ //! this = a * b
+ inline_ void Mult(const Matrix3x3& a, const Matrix3x3& b)
+ {
+ m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[1][0] + a.m[0][2] * b.m[2][0];
+ m[0][1] = a.m[0][0] * b.m[0][1] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[2][1];
+ m[0][2] = a.m[0][0] * b.m[0][2] + a.m[0][1] * b.m[1][2] + a.m[0][2] * b.m[2][2];
+ m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[1][2] * b.m[2][0];
+ m[1][1] = a.m[1][0] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[2][1];
+ m[1][2] = a.m[1][0] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[1][2] * b.m[2][2];
+ m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[1][0] + a.m[2][2] * b.m[2][0];
+ m[2][1] = a.m[2][0] * b.m[0][1] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[2][1];
+ m[2][2] = a.m[2][0] * b.m[0][2] + a.m[2][1] * b.m[1][2] + a.m[2][2] * b.m[2][2];
+ }
+
+ //! this = transpose(a) * b
+ inline_ void MultAtB(const Matrix3x3& a, const Matrix3x3& b)
+ {
+ m[0][0] = a.m[0][0] * b.m[0][0] + a.m[1][0] * b.m[1][0] + a.m[2][0] * b.m[2][0];
+ m[0][1] = a.m[0][0] * b.m[0][1] + a.m[1][0] * b.m[1][1] + a.m[2][0] * b.m[2][1];
+ m[0][2] = a.m[0][0] * b.m[0][2] + a.m[1][0] * b.m[1][2] + a.m[2][0] * b.m[2][2];
+ m[1][0] = a.m[0][1] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[2][1] * b.m[2][0];
+ m[1][1] = a.m[0][1] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[2][1] * b.m[2][1];
+ m[1][2] = a.m[0][1] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[2][1] * b.m[2][2];
+ m[2][0] = a.m[0][2] * b.m[0][0] + a.m[1][2] * b.m[1][0] + a.m[2][2] * b.m[2][0];
+ m[2][1] = a.m[0][2] * b.m[0][1] + a.m[1][2] * b.m[1][1] + a.m[2][2] * b.m[2][1];
+ m[2][2] = a.m[0][2] * b.m[0][2] + a.m[1][2] * b.m[1][2] + a.m[2][2] * b.m[2][2];
+ }
+
+ //! this = a * transpose(b)
+ inline_ void MultABt(const Matrix3x3& a, const Matrix3x3& b)
+ {
+ m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[0][1] + a.m[0][2] * b.m[0][2];
+ m[0][1] = a.m[0][0] * b.m[1][0] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[1][2];
+ m[0][2] = a.m[0][0] * b.m[2][0] + a.m[0][1] * b.m[2][1] + a.m[0][2] * b.m[2][2];
+ m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[0][1] + a.m[1][2] * b.m[0][2];
+ m[1][1] = a.m[1][0] * b.m[1][0] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[1][2];
+ m[1][2] = a.m[1][0] * b.m[2][0] + a.m[1][1] * b.m[2][1] + a.m[1][2] * b.m[2][2];
+ m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[0][1] + a.m[2][2] * b.m[0][2];
+ m[2][1] = a.m[2][0] * b.m[1][0] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[1][2];
+ m[2][2] = a.m[2][0] * b.m[2][0] + a.m[2][1] * b.m[2][1] + a.m[2][2] * b.m[2][2];
+ }
+
+ //! Makes a rotation matrix mapping vector "from" to vector "to".
+ Matrix3x3& FromTo(const Point& from, const Point& to);
+
+ //! Set a rotation matrix around the X axis.
+ //! 1 0 0
+ //! RX = 0 cx sx
+ //! 0 -sx cx
+ void RotX(float angle);
+ //! Set a rotation matrix around the Y axis.
+ //! cy 0 -sy
+ //! RY = 0 1 0
+ //! sy 0 cy
+ void RotY(float angle);
+ //! Set a rotation matrix around the Z axis.
+ //! cz sz 0
+ //! RZ = -sz cz 0
+ //! 0 0 1
+ void RotZ(float angle);
+ //! cy sx.sy -sy.cx
+ //! RY.RX 0 cx sx
+ //! sy -sx.cy cx.cy
+ void RotYX(float y, float x);
+
+ //! Make a rotation matrix about an arbitrary axis
+ Matrix3x3& Rot(float angle, const Point& axis);
+
+ //! Transpose the matrix.
+ void Transpose()
+ {
+ TSwap(m[1][0], m[0][1]);
+ TSwap(m[2][0], m[0][2]);
+ TSwap(m[2][1], m[1][2]);
+ }
+
+ //! this = Transpose(a)
+ void Transpose(const Matrix3x3& a)
+ {
+ m[0][0] = a.m[0][0]; m[0][1] = a.m[1][0]; m[0][2] = a.m[2][0];
+ m[1][0] = a.m[0][1]; m[1][1] = a.m[1][1]; m[1][2] = a.m[2][1];
+ m[2][0] = a.m[0][2]; m[2][1] = a.m[1][2]; m[2][2] = a.m[2][2];
+ }
+
+ //! Compute the determinant of the matrix. We use the rule of Sarrus.
+ float Determinant() const
+ {
+ return (m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0] + m[0][2]*m[1][0]*m[2][1])
+ - (m[2][0]*m[1][1]*m[0][2] + m[2][1]*m[1][2]*m[0][0] + m[2][2]*m[1][0]*m[0][1]);
+ }
+/*
+ //! Compute a cofactor. Used for matrix inversion.
+ float CoFactor(ubyte row, ubyte column) const
+ {
+ static const sdword gIndex[3+2] = { 0, 1, 2, 0, 1 };
+ return (m[gIndex[row+1]][gIndex[column+1]]*m[gIndex[row+2]][gIndex[column+2]] - m[gIndex[row+2]][gIndex[column+1]]*m[gIndex[row+1]][gIndex[column+2]]);
+ }
+*/
+ //! Invert the matrix. Determinant must be different from zero, else matrix can't be inverted.
+ Matrix3x3& Invert()
+ {
+ float Det = Determinant(); // Must be !=0
+ float OneOverDet = 1.0f / Det;
+
+ Matrix3x3 Temp;
+ Temp.m[0][0] = +(m[1][1] * m[2][2] - m[2][1] * m[1][2]) * OneOverDet;
+ Temp.m[1][0] = -(m[1][0] * m[2][2] - m[2][0] * m[1][2]) * OneOverDet;
+ Temp.m[2][0] = +(m[1][0] * m[2][1] - m[2][0] * m[1][1]) * OneOverDet;
+ Temp.m[0][1] = -(m[0][1] * m[2][2] - m[2][1] * m[0][2]) * OneOverDet;
+ Temp.m[1][1] = +(m[0][0] * m[2][2] - m[2][0] * m[0][2]) * OneOverDet;
+ Temp.m[2][1] = -(m[0][0] * m[2][1] - m[2][0] * m[0][1]) * OneOverDet;
+ Temp.m[0][2] = +(m[0][1] * m[1][2] - m[1][1] * m[0][2]) * OneOverDet;
+ Temp.m[1][2] = -(m[0][0] * m[1][2] - m[1][0] * m[0][2]) * OneOverDet;
+ Temp.m[2][2] = +(m[0][0] * m[1][1] - m[1][0] * m[0][1]) * OneOverDet;
+
+ *this = Temp;
+
+ return *this;
+ }
+
+ Matrix3x3& Normalize();
+
+ //! this = exp(a)
+ Matrix3x3& Exp(const Matrix3x3& a);
+
+void FromQuat(const Quat &q);
+void FromQuatL2(const Quat &q, float l2);
+
+ // Arithmetic operators
+ //! Operator for Matrix3x3 Plus = Matrix3x3 + Matrix3x3;
+ inline_ Matrix3x3 operator+(const Matrix3x3& mat) const
+ {
+ return Matrix3x3(
+ m[0][0] + mat.m[0][0], m[0][1] + mat.m[0][1], m[0][2] + mat.m[0][2],
+ m[1][0] + mat.m[1][0], m[1][1] + mat.m[1][1], m[1][2] + mat.m[1][2],
+ m[2][0] + mat.m[2][0], m[2][1] + mat.m[2][1], m[2][2] + mat.m[2][2]);
+ }
+
+ //! Operator for Matrix3x3 Minus = Matrix3x3 - Matrix3x3;
+ inline_ Matrix3x3 operator-(const Matrix3x3& mat) const
+ {
+ return Matrix3x3(
+ m[0][0] - mat.m[0][0], m[0][1] - mat.m[0][1], m[0][2] - mat.m[0][2],
+ m[1][0] - mat.m[1][0], m[1][1] - mat.m[1][1], m[1][2] - mat.m[1][2],
+ m[2][0] - mat.m[2][0], m[2][1] - mat.m[2][1], m[2][2] - mat.m[2][2]);
+ }
+
+ //! Operator for Matrix3x3 Mul = Matrix3x3 * Matrix3x3;
+ inline_ Matrix3x3 operator*(const Matrix3x3& mat) const
+ {
+ return Matrix3x3(
+ m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0],
+ m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1],
+ m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2],
+
+ m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0],
+ m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1],
+ m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2],
+
+ m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0],
+ m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1],
+ m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2]);
+ }
+
+ //! Operator for Point Mul = Matrix3x3 * Point;
+ inline_ Point operator*(const Point& v) const { return Point(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v); }
+
+ //! Operator for Matrix3x3 Mul = Matrix3x3 * float;
+ inline_ Matrix3x3 operator*(float s) const
+ {
+ return Matrix3x3(
+ m[0][0]*s, m[0][1]*s, m[0][2]*s,
+ m[1][0]*s, m[1][1]*s, m[1][2]*s,
+ m[2][0]*s, m[2][1]*s, m[2][2]*s);
+ }
+
+ //! Operator for Matrix3x3 Mul = float * Matrix3x3;
+ inline_ friend Matrix3x3 operator*(float s, const Matrix3x3& mat)
+ {
+ return Matrix3x3(
+ s*mat.m[0][0], s*mat.m[0][1], s*mat.m[0][2],
+ s*mat.m[1][0], s*mat.m[1][1], s*mat.m[1][2],
+ s*mat.m[2][0], s*mat.m[2][1], s*mat.m[2][2]);
+ }
+
+ //! Operator for Matrix3x3 Div = Matrix3x3 / float;
+ inline_ Matrix3x3 operator/(float s) const
+ {
+ if (s) s = 1.0f / s;
+ return Matrix3x3(
+ m[0][0]*s, m[0][1]*s, m[0][2]*s,
+ m[1][0]*s, m[1][1]*s, m[1][2]*s,
+ m[2][0]*s, m[2][1]*s, m[2][2]*s);
+ }
+
+ //! Operator for Matrix3x3 Div = float / Matrix3x3;
+ inline_ friend Matrix3x3 operator/(float s, const Matrix3x3& mat)
+ {
+ return Matrix3x3(
+ s/mat.m[0][0], s/mat.m[0][1], s/mat.m[0][2],
+ s/mat.m[1][0], s/mat.m[1][1], s/mat.m[1][2],
+ s/mat.m[2][0], s/mat.m[2][1], s/mat.m[2][2]);
+ }
+
+ //! Operator for Matrix3x3 += Matrix3x3
+ inline_ Matrix3x3& operator+=(const Matrix3x3& mat)
+ {
+ m[0][0] += mat.m[0][0]; m[0][1] += mat.m[0][1]; m[0][2] += mat.m[0][2];
+ m[1][0] += mat.m[1][0]; m[1][1] += mat.m[1][1]; m[1][2] += mat.m[1][2];
+ m[2][0] += mat.m[2][0]; m[2][1] += mat.m[2][1]; m[2][2] += mat.m[2][2];
+ return *this;
+ }
+
+ //! Operator for Matrix3x3 -= Matrix3x3
+ inline_ Matrix3x3& operator-=(const Matrix3x3& mat)
+ {
+ m[0][0] -= mat.m[0][0]; m[0][1] -= mat.m[0][1]; m[0][2] -= mat.m[0][2];
+ m[1][0] -= mat.m[1][0]; m[1][1] -= mat.m[1][1]; m[1][2] -= mat.m[1][2];
+ m[2][0] -= mat.m[2][0]; m[2][1] -= mat.m[2][1]; m[2][2] -= mat.m[2][2];
+ return *this;
+ }
+
+ //! Operator for Matrix3x3 *= Matrix3x3
+ inline_ Matrix3x3& operator*=(const Matrix3x3& mat)
+ {
+ Point TempRow;
+
+ GetRow(0, TempRow);
+ m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0];
+ m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1];
+ m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2];
+
+ GetRow(1, TempRow);
+ m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0];
+ m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1];
+ m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2];
+
+ GetRow(2, TempRow);
+ m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0];
+ m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1];
+ m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2];
+ return *this;
+ }
+
+ //! Operator for Matrix3x3 *= float
+ inline_ Matrix3x3& operator*=(float s)
+ {
+ m[0][0] *= s; m[0][1] *= s; m[0][2] *= s;
+ m[1][0] *= s; m[1][1] *= s; m[1][2] *= s;
+ m[2][0] *= s; m[2][1] *= s; m[2][2] *= s;
+ return *this;
+ }
+
+ //! Operator for Matrix3x3 /= float
+ inline_ Matrix3x3& operator/=(float s)
+ {
+ if (s) s = 1.0f / s;
+ m[0][0] *= s; m[0][1] *= s; m[0][2] *= s;
+ m[1][0] *= s; m[1][1] *= s; m[1][2] *= s;
+ m[2][0] *= s; m[2][1] *= s; m[2][2] *= s;
+ return *this;
+ }
+
+ // Cast operators
+ //! Cast a Matrix3x3 to a Matrix4x4.
+ operator Matrix4x4() const;
+ //! Cast a Matrix3x3 to a Quat.
+ operator Quat() const;
+
+ inline_ const Point& operator[](int row) const { return *(const Point*)&m[row][0]; }
+ inline_ Point& operator[](int row) { return *(Point*)&m[row][0]; }
+
+ public:
+
+ float m[3][3];
+ };
+
+#endif // __ICEMATRIX3X3_H__
+