diff options
Diffstat (limited to 'libs/ode-0.16.1/OPCODE/OPC_TriBoxOverlap.h')
-rw-r--r-- | libs/ode-0.16.1/OPCODE/OPC_TriBoxOverlap.h | 339 |
1 files changed, 339 insertions, 0 deletions
diff --git a/libs/ode-0.16.1/OPCODE/OPC_TriBoxOverlap.h b/libs/ode-0.16.1/OPCODE/OPC_TriBoxOverlap.h new file mode 100644 index 0000000..b3a9bde --- /dev/null +++ b/libs/ode-0.16.1/OPCODE/OPC_TriBoxOverlap.h @@ -0,0 +1,339 @@ + +//! This macro quickly finds the min & max values among 3 variables +#define FINDMINMAX(x0, x1, x2, min, max) \ + min = max = x0; \ + if(x1<min) min=x1; \ + if(x1>max) max=x1; \ + if(x2<min) min=x2; \ + if(x2>max) max=x2; + +//! TO BE DOCUMENTED +inline_ BOOL planeBoxOverlap(const Point& normal, const float d, const Point& maxbox) +{ + Point vmin, vmax; + for(udword q=0;q<=2;q++) + { + if(normal[q]>0.0f) { vmin[q]=-maxbox[q]; vmax[q]=maxbox[q]; } + else { vmin[q]=maxbox[q]; vmax[q]=-maxbox[q]; } + } + if((normal|vmin)+d>0.0f) return FALSE; + if((normal|vmax)+d>=0.0f) return TRUE; + + return FALSE; +} + +//! TO BE DOCUMENTED +#define AXISTEST_X01(a, b, fa, fb) \ + min = a*v0.y - b*v0.z; \ + max = a*v2.y - b*v2.z; \ + if(min>max) {const float tmp=max; max=min; min=tmp; } \ + rad = fa * extents.y + fb * extents.z; \ + if(min>rad || max<-rad) return FALSE; + +//! TO BE DOCUMENTED +#define AXISTEST_X2(a, b, fa, fb) \ + min = a*v0.y - b*v0.z; \ + max = a*v1.y - b*v1.z; \ + if(min>max) {const float tmp=max; max=min; min=tmp; } \ + rad = fa * extents.y + fb * extents.z; \ + if(min>rad || max<-rad) return FALSE; + +//! TO BE DOCUMENTED +#define AXISTEST_Y02(a, b, fa, fb) \ + min = b*v0.z - a*v0.x; \ + max = b*v2.z - a*v2.x; \ + if(min>max) {const float tmp=max; max=min; min=tmp; } \ + rad = fa * extents.x + fb * extents.z; \ + if(min>rad || max<-rad) return FALSE; + +//! TO BE DOCUMENTED +#define AXISTEST_Y1(a, b, fa, fb) \ + min = b*v0.z - a*v0.x; \ + max = b*v1.z - a*v1.x; \ + if(min>max) {const float tmp=max; max=min; min=tmp; } \ + rad = fa * extents.x + fb * extents.z; \ + if(min>rad || max<-rad) return FALSE; + +//! TO BE DOCUMENTED +#define AXISTEST_Z12(a, b, fa, fb) \ + min = a*v1.x - b*v1.y; \ + max = a*v2.x - b*v2.y; \ + if(min>max) {const float tmp=max; max=min; min=tmp; } \ + rad = fa * extents.x + fb * extents.y; \ + if(min>rad || max<-rad) return FALSE; + +//! TO BE DOCUMENTED +#define AXISTEST_Z0(a, b, fa, fb) \ + min = a*v0.x - b*v0.y; \ + max = a*v1.x - b*v1.y; \ + if(min>max) {const float tmp=max; max=min; min=tmp; } \ + rad = fa * extents.x + fb * extents.y; \ + if(min>rad || max<-rad) return FALSE; + +// compute triangle edges +// - edges lazy evaluated to take advantage of early exits +// - fabs precomputed (half less work, possible since extents are always >0) +// - customized macros to take advantage of the null component +// - axis vector discarded, possibly saves useless movs +#define IMPLEMENT_CLASS3_TESTS \ + float rad; \ + float min, max; \ + \ + const float fey0 = fabsf(e0.y); \ + const float fez0 = fabsf(e0.z); \ + AXISTEST_X01(e0.z, e0.y, fez0, fey0); \ + const float fex0 = fabsf(e0.x); \ + AXISTEST_Y02(e0.z, e0.x, fez0, fex0); \ + AXISTEST_Z12(e0.y, e0.x, fey0, fex0); \ + \ + const float fey1 = fabsf(e1.y); \ + const float fez1 = fabsf(e1.z); \ + AXISTEST_X01(e1.z, e1.y, fez1, fey1); \ + const float fex1 = fabsf(e1.x); \ + AXISTEST_Y02(e1.z, e1.x, fez1, fex1); \ + AXISTEST_Z0(e1.y, e1.x, fey1, fex1); \ + \ + const Point e2 = mLeafVerts[0] - mLeafVerts[2]; \ + const float fey2 = fabsf(e2.y); \ + const float fez2 = fabsf(e2.z); \ + AXISTEST_X2(e2.z, e2.y, fez2, fey2); \ + const float fex2 = fabsf(e2.x); \ + AXISTEST_Y1(e2.z, e2.x, fez2, fex2); \ + AXISTEST_Z12(e2.y, e2.x, fey2, fex2); + +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +/** + * Triangle-Box overlap test using the separating axis theorem. + * This is the code from Tomas Möller, a bit optimized: + * - with some more lazy evaluation (faster path on PC) + * - with a tiny bit of assembly + * - with "SAT-lite" applied if needed + * - and perhaps with some more minor modifs... + * + * \param center [in] box center + * \param extents [in] box extents + * \return true if triangle & box overlap + */ +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +inline_ BOOL AABBTreeCollider::TriBoxOverlap(const Point& center, const Point& extents) +{ + // Stats + mNbBVPrimTests++; + + // use separating axis theorem to test overlap between triangle and box + // need to test for overlap in these directions: + // 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle + // we do not even need to test these) + // 2) normal of the triangle + // 3) crossproduct(edge from tri, {x,y,z}-directin) + // this gives 3x3=9 more tests + + // move everything so that the boxcenter is in (0,0,0) + Point v0, v1, v2; + v0.x = mLeafVerts[0].x - center.x; + v1.x = mLeafVerts[1].x - center.x; + v2.x = mLeafVerts[2].x - center.x; + + // First, test overlap in the {x,y,z}-directions +#ifdef OPC_USE_FCOMI + // find min, max of the triangle in x-direction, and test for overlap in X + if(FCMin3(v0.x, v1.x, v2.x)>extents.x) return FALSE; + if(FCMax3(v0.x, v1.x, v2.x)<-extents.x) return FALSE; + + // same for Y + v0.y = mLeafVerts[0].y - center.y; + v1.y = mLeafVerts[1].y - center.y; + v2.y = mLeafVerts[2].y - center.y; + + if(FCMin3(v0.y, v1.y, v2.y)>extents.y) return FALSE; + if(FCMax3(v0.y, v1.y, v2.y)<-extents.y) return FALSE; + + // same for Z + v0.z = mLeafVerts[0].z - center.z; + v1.z = mLeafVerts[1].z - center.z; + v2.z = mLeafVerts[2].z - center.z; + + if(FCMin3(v0.z, v1.z, v2.z)>extents.z) return FALSE; + if(FCMax3(v0.z, v1.z, v2.z)<-extents.z) return FALSE; +#else + float min,max; + // Find min, max of the triangle in x-direction, and test for overlap in X + FINDMINMAX(v0.x, v1.x, v2.x, min, max); + if(min>extents.x || max<-extents.x) return FALSE; + + // Same for Y + v0.y = mLeafVerts[0].y - center.y; + v1.y = mLeafVerts[1].y - center.y; + v2.y = mLeafVerts[2].y - center.y; + + FINDMINMAX(v0.y, v1.y, v2.y, min, max); + if(min>extents.y || max<-extents.y) return FALSE; + + // Same for Z + v0.z = mLeafVerts[0].z - center.z; + v1.z = mLeafVerts[1].z - center.z; + v2.z = mLeafVerts[2].z - center.z; + + FINDMINMAX(v0.z, v1.z, v2.z, min, max); + if(min>extents.z || max<-extents.z) return FALSE; +#endif + // 2) Test if the box intersects the plane of the triangle + // compute plane equation of triangle: normal*x+d=0 + // ### could be precomputed since we use the same leaf triangle several times + const Point e0 = v1 - v0; + const Point e1 = v2 - v1; + const Point normal = e0 ^ e1; + const float d = -normal|v0; + if(!planeBoxOverlap(normal, d, extents)) return FALSE; + + // 3) "Class III" tests + if(mFullPrimBoxTest) + { + IMPLEMENT_CLASS3_TESTS + } + return TRUE; +} + +//! A dedicated version where the box is constant +inline_ BOOL OBBCollider::TriBoxOverlap() +{ + // Stats + mNbVolumePrimTests++; + + // Hook + const Point& extents = mBoxExtents; + const Point& v0 = mLeafVerts[0]; + const Point& v1 = mLeafVerts[1]; + const Point& v2 = mLeafVerts[2]; + + // use separating axis theorem to test overlap between triangle and box + // need to test for overlap in these directions: + // 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle + // we do not even need to test these) + // 2) normal of the triangle + // 3) crossproduct(edge from tri, {x,y,z}-directin) + // this gives 3x3=9 more tests + + // Box center is already in (0,0,0) + + // First, test overlap in the {x,y,z}-directions +#ifdef OPC_USE_FCOMI + // find min, max of the triangle in x-direction, and test for overlap in X + if(FCMin3(v0.x, v1.x, v2.x)>mBoxExtents.x) return FALSE; + if(FCMax3(v0.x, v1.x, v2.x)<-mBoxExtents.x) return FALSE; + + if(FCMin3(v0.y, v1.y, v2.y)>mBoxExtents.y) return FALSE; + if(FCMax3(v0.y, v1.y, v2.y)<-mBoxExtents.y) return FALSE; + + if(FCMin3(v0.z, v1.z, v2.z)>mBoxExtents.z) return FALSE; + if(FCMax3(v0.z, v1.z, v2.z)<-mBoxExtents.z) return FALSE; +#else + float min,max; + // Find min, max of the triangle in x-direction, and test for overlap in X + FINDMINMAX(v0.x, v1.x, v2.x, min, max); + if(min>mBoxExtents.x || max<-mBoxExtents.x) return FALSE; + + FINDMINMAX(v0.y, v1.y, v2.y, min, max); + if(min>mBoxExtents.y || max<-mBoxExtents.y) return FALSE; + + FINDMINMAX(v0.z, v1.z, v2.z, min, max); + if(min>mBoxExtents.z || max<-mBoxExtents.z) return FALSE; +#endif + // 2) Test if the box intersects the plane of the triangle + // compute plane equation of triangle: normal*x+d=0 + // ### could be precomputed since we use the same leaf triangle several times + const Point e0 = v1 - v0; + const Point e1 = v2 - v1; + const Point normal = e0 ^ e1; + const float d = -normal|v0; + if(!planeBoxOverlap(normal, d, mBoxExtents)) return FALSE; + + // 3) "Class III" tests - here we always do full tests since the box is a primitive (not a BV) + { + IMPLEMENT_CLASS3_TESTS + } + return TRUE; +} + +//! ...and another one, jeez +inline_ BOOL AABBCollider::TriBoxOverlap() +{ + // Stats + mNbVolumePrimTests++; + + // Hook + const Point& center = mBox.mCenter; + const Point& extents = mBox.mExtents; + + // use separating axis theorem to test overlap between triangle and box + // need to test for overlap in these directions: + // 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle + // we do not even need to test these) + // 2) normal of the triangle + // 3) crossproduct(edge from tri, {x,y,z}-directin) + // this gives 3x3=9 more tests + + // move everything so that the boxcenter is in (0,0,0) + Point v0, v1, v2; + v0.x = mLeafVerts[0].x - center.x; + v1.x = mLeafVerts[1].x - center.x; + v2.x = mLeafVerts[2].x - center.x; + + // First, test overlap in the {x,y,z}-directions +#ifdef OPC_USE_FCOMI + // find min, max of the triangle in x-direction, and test for overlap in X + if(FCMin3(v0.x, v1.x, v2.x)>extents.x) return FALSE; + if(FCMax3(v0.x, v1.x, v2.x)<-extents.x) return FALSE; + + // same for Y + v0.y = mLeafVerts[0].y - center.y; + v1.y = mLeafVerts[1].y - center.y; + v2.y = mLeafVerts[2].y - center.y; + + if(FCMin3(v0.y, v1.y, v2.y)>extents.y) return FALSE; + if(FCMax3(v0.y, v1.y, v2.y)<-extents.y) return FALSE; + + // same for Z + v0.z = mLeafVerts[0].z - center.z; + v1.z = mLeafVerts[1].z - center.z; + v2.z = mLeafVerts[2].z - center.z; + + if(FCMin3(v0.z, v1.z, v2.z)>extents.z) return FALSE; + if(FCMax3(v0.z, v1.z, v2.z)<-extents.z) return FALSE; +#else + float min,max; + // Find min, max of the triangle in x-direction, and test for overlap in X + FINDMINMAX(v0.x, v1.x, v2.x, min, max); + if(min>extents.x || max<-extents.x) return FALSE; + + // Same for Y + v0.y = mLeafVerts[0].y - center.y; + v1.y = mLeafVerts[1].y - center.y; + v2.y = mLeafVerts[2].y - center.y; + + FINDMINMAX(v0.y, v1.y, v2.y, min, max); + if(min>extents.y || max<-extents.y) return FALSE; + + // Same for Z + v0.z = mLeafVerts[0].z - center.z; + v1.z = mLeafVerts[1].z - center.z; + v2.z = mLeafVerts[2].z - center.z; + + FINDMINMAX(v0.z, v1.z, v2.z, min, max); + if(min>extents.z || max<-extents.z) return FALSE; +#endif + // 2) Test if the box intersects the plane of the triangle + // compute plane equation of triangle: normal*x+d=0 + // ### could be precomputed since we use the same leaf triangle several times + const Point e0 = v1 - v0; + const Point e1 = v2 - v1; + const Point normal = e0 ^ e1; + const float d = -normal|v0; + if(!planeBoxOverlap(normal, d, extents)) return FALSE; + + // 3) "Class III" tests - here we always do full tests since the box is a primitive (not a BV) + { + IMPLEMENT_CLASS3_TESTS + } + return TRUE; +} |