summaryrefslogtreecommitdiff
path: root/libs/ode-0.16.1/ode/src/collision_util.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libs/ode-0.16.1/ode/src/collision_util.cpp')
-rw-r--r--libs/ode-0.16.1/ode/src/collision_util.cpp613
1 files changed, 613 insertions, 0 deletions
diff --git a/libs/ode-0.16.1/ode/src/collision_util.cpp b/libs/ode-0.16.1/ode/src/collision_util.cpp
new file mode 100644
index 0000000..39ac87e
--- /dev/null
+++ b/libs/ode-0.16.1/ode/src/collision_util.cpp
@@ -0,0 +1,613 @@
+/*************************************************************************
+ * *
+ * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
+ * All rights reserved. Email: russ@q12.org Web: www.q12.org *
+ * *
+ * This library is free software; you can redistribute it and/or *
+ * modify it under the terms of EITHER: *
+ * (1) The GNU Lesser General Public License as published by the Free *
+ * Software Foundation; either version 2.1 of the License, or (at *
+ * your option) any later version. The text of the GNU Lesser *
+ * General Public License is included with this library in the *
+ * file LICENSE.TXT. *
+ * (2) The BSD-style license that is included with this library in *
+ * the file LICENSE-BSD.TXT. *
+ * *
+ * This library is distributed in the hope that it will be useful, *
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of *
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
+ * LICENSE.TXT and LICENSE-BSD.TXT for more details. *
+ * *
+ *************************************************************************/
+
+/*
+
+some useful collision utility stuff. this includes some API utility
+functions that are defined in the public header files.
+
+*/
+
+#include <ode/common.h>
+#include <ode/collision.h>
+#include "config.h"
+#include "odemath.h"
+#include "collision_util.h"
+
+//****************************************************************************
+
+int dCollideSpheres (dVector3 p1, dReal r1,
+ dVector3 p2, dReal r2, dContactGeom *c)
+{
+ // printf ("d=%.2f (%.2f %.2f %.2f) (%.2f %.2f %.2f) r1=%.2f r2=%.2f\n",
+ // d,p1[0],p1[1],p1[2],p2[0],p2[1],p2[2],r1,r2);
+
+ dReal d = dCalcPointsDistance3(p1,p2);
+ if (d > (r1 + r2)) return 0;
+ if (d <= 0) {
+ c->pos[0] = p1[0];
+ c->pos[1] = p1[1];
+ c->pos[2] = p1[2];
+ c->normal[0] = 1;
+ c->normal[1] = 0;
+ c->normal[2] = 0;
+ c->depth = r1 + r2;
+ }
+ else {
+ dReal d1 = dRecip (d);
+ c->normal[0] = (p1[0]-p2[0])*d1;
+ c->normal[1] = (p1[1]-p2[1])*d1;
+ c->normal[2] = (p1[2]-p2[2])*d1;
+ dReal k = REAL(0.5) * (r2 - r1 - d);
+ c->pos[0] = p1[0] + c->normal[0]*k;
+ c->pos[1] = p1[1] + c->normal[1]*k;
+ c->pos[2] = p1[2] + c->normal[2]*k;
+ c->depth = r1 + r2 - d;
+ }
+ return 1;
+}
+
+
+void dLineClosestApproach (const dVector3 pa, const dVector3 ua,
+ const dVector3 pb, const dVector3 ub,
+ dReal *alpha, dReal *beta)
+{
+ dVector3 p;
+ p[0] = pb[0] - pa[0];
+ p[1] = pb[1] - pa[1];
+ p[2] = pb[2] - pa[2];
+ dReal uaub = dCalcVectorDot3(ua,ub);
+ dReal q1 = dCalcVectorDot3(ua,p);
+ dReal q2 = -dCalcVectorDot3(ub,p);
+ dReal d = 1-uaub*uaub;
+ if (d <= REAL(0.0001)) {
+ // @@@ this needs to be made more robust
+ *alpha = 0;
+ *beta = 0;
+ }
+ else {
+ d = dRecip(d);
+ *alpha = (q1 + uaub*q2)*d;
+ *beta = (uaub*q1 + q2)*d;
+ }
+}
+
+
+// given two line segments A and B with endpoints a1-a2 and b1-b2, return the
+// points on A and B that are closest to each other (in cp1 and cp2).
+// in the case of parallel lines where there are multiple solutions, a
+// solution involving the endpoint of at least one line will be returned.
+// this will work correctly for zero length lines, e.g. if a1==a2 and/or
+// b1==b2.
+//
+// the algorithm works by applying the voronoi clipping rule to the features
+// of the line segments. the three features of each line segment are the two
+// endpoints and the line between them. the voronoi clipping rule states that,
+// for feature X on line A and feature Y on line B, the closest points PA and
+// PB between X and Y are globally the closest points if PA is in V(Y) and
+// PB is in V(X), where V(X) is the voronoi region of X.
+
+void dClosestLineSegmentPoints (const dVector3 a1, const dVector3 a2,
+ const dVector3 b1, const dVector3 b2,
+ dVector3 cp1, dVector3 cp2)
+{
+ dVector3 a1a2,b1b2,a1b1,a1b2,a2b1,a2b2,n;
+ dReal la,lb,k,da1,da2,da3,da4,db1,db2,db3,db4,det;
+
+#define SET2(a,b) a[0]=b[0]; a[1]=b[1]; a[2]=b[2];
+#define SET3(a,b,op,c) a[0]=b[0] op c[0]; a[1]=b[1] op c[1]; a[2]=b[2] op c[2];
+
+ // check vertex-vertex features
+
+ SET3 (a1a2,a2,-,a1);
+ SET3 (b1b2,b2,-,b1);
+ SET3 (a1b1,b1,-,a1);
+ da1 = dCalcVectorDot3(a1a2,a1b1);
+ db1 = dCalcVectorDot3(b1b2,a1b1);
+ if (da1 <= 0 && db1 >= 0) {
+ SET2 (cp1,a1);
+ SET2 (cp2,b1);
+ return;
+ }
+
+ SET3 (a1b2,b2,-,a1);
+ da2 = dCalcVectorDot3(a1a2,a1b2);
+ db2 = dCalcVectorDot3(b1b2,a1b2);
+ if (da2 <= 0 && db2 <= 0) {
+ SET2 (cp1,a1);
+ SET2 (cp2,b2);
+ return;
+ }
+
+ SET3 (a2b1,b1,-,a2);
+ da3 = dCalcVectorDot3(a1a2,a2b1);
+ db3 = dCalcVectorDot3(b1b2,a2b1);
+ if (da3 >= 0 && db3 >= 0) {
+ SET2 (cp1,a2);
+ SET2 (cp2,b1);
+ return;
+ }
+
+ SET3 (a2b2,b2,-,a2);
+ da4 = dCalcVectorDot3(a1a2,a2b2);
+ db4 = dCalcVectorDot3(b1b2,a2b2);
+ if (da4 >= 0 && db4 <= 0) {
+ SET2 (cp1,a2);
+ SET2 (cp2,b2);
+ return;
+ }
+
+ // check edge-vertex features.
+ // if one or both of the lines has zero length, we will never get to here,
+ // so we do not have to worry about the following divisions by zero.
+
+ la = dCalcVectorDot3(a1a2,a1a2);
+ if (da1 >= 0 && da3 <= 0) {
+ k = da1 / la;
+ SET3 (n,a1b1,-,k*a1a2);
+ if (dCalcVectorDot3(b1b2,n) >= 0) {
+ SET3 (cp1,a1,+,k*a1a2);
+ SET2 (cp2,b1);
+ return;
+ }
+ }
+
+ if (da2 >= 0 && da4 <= 0) {
+ k = da2 / la;
+ SET3 (n,a1b2,-,k*a1a2);
+ if (dCalcVectorDot3(b1b2,n) <= 0) {
+ SET3 (cp1,a1,+,k*a1a2);
+ SET2 (cp2,b2);
+ return;
+ }
+ }
+
+ lb = dCalcVectorDot3(b1b2,b1b2);
+ if (db1 <= 0 && db2 >= 0) {
+ k = -db1 / lb;
+ SET3 (n,-a1b1,-,k*b1b2);
+ if (dCalcVectorDot3(a1a2,n) >= 0) {
+ SET2 (cp1,a1);
+ SET3 (cp2,b1,+,k*b1b2);
+ return;
+ }
+ }
+
+ if (db3 <= 0 && db4 >= 0) {
+ k = -db3 / lb;
+ SET3 (n,-a2b1,-,k*b1b2);
+ if (dCalcVectorDot3(a1a2,n) <= 0) {
+ SET2 (cp1,a2);
+ SET3 (cp2,b1,+,k*b1b2);
+ return;
+ }
+ }
+
+ // it must be edge-edge
+
+ k = dCalcVectorDot3(a1a2,b1b2);
+ det = la*lb - k*k;
+ if (det <= 0) {
+ // this should never happen, but just in case...
+ SET2(cp1,a1);
+ SET2(cp2,b1);
+ return;
+ }
+ det = dRecip (det);
+ dReal alpha = (lb*da1 - k*db1) * det;
+ dReal beta = ( k*da1 - la*db1) * det;
+ SET3 (cp1,a1,+,alpha*a1a2);
+ SET3 (cp2,b1,+,beta*b1b2);
+
+# undef SET2
+# undef SET3
+}
+
+
+// a simple root finding algorithm is used to find the value of 't' that
+// satisfies:
+// d|D(t)|^2/dt = 0
+// where:
+// |D(t)| = |p(t)-b(t)|
+// where p(t) is a point on the line parameterized by t:
+// p(t) = p1 + t*(p2-p1)
+// and b(t) is that same point clipped to the boundary of the box. in box-
+// relative coordinates d|D(t)|^2/dt is the sum of three x,y,z components
+// each of which looks like this:
+//
+// t_lo /
+// ______/ -->t
+// / t_hi
+// /
+//
+// t_lo and t_hi are the t values where the line passes through the planes
+// corresponding to the sides of the box. the algorithm computes d|D(t)|^2/dt
+// in a piecewise fashion from t=0 to t=1, stopping at the point where
+// d|D(t)|^2/dt crosses from negative to positive.
+
+void dClosestLineBoxPoints (const dVector3 p1, const dVector3 p2,
+ const dVector3 c, const dMatrix3 R,
+ const dVector3 side,
+ dVector3 lret, dVector3 bret)
+{
+ int i;
+
+ // compute the start and delta of the line p1-p2 relative to the box.
+ // we will do all subsequent computations in this box-relative coordinate
+ // system. we have to do a translation and rotation for each point.
+ dVector3 tmp,s,v;
+ tmp[0] = p1[0] - c[0];
+ tmp[1] = p1[1] - c[1];
+ tmp[2] = p1[2] - c[2];
+ dMultiply1_331 (s,R,tmp);
+ tmp[0] = p2[0] - p1[0];
+ tmp[1] = p2[1] - p1[1];
+ tmp[2] = p2[2] - p1[2];
+ dMultiply1_331 (v,R,tmp);
+
+ // mirror the line so that v has all components >= 0
+ dVector3 sign;
+ for (i=0; i<3; i++) {
+ if (v[i] < 0) {
+ s[i] = -s[i];
+ v[i] = -v[i];
+ sign[i] = -1;
+ }
+ else sign[i] = 1;
+ }
+
+ // compute v^2
+ dVector3 v2;
+ v2[0] = v[0]*v[0];
+ v2[1] = v[1]*v[1];
+ v2[2] = v[2]*v[2];
+
+ // compute the half-sides of the box
+ dReal h[3];
+ h[0] = REAL(0.5) * side[0];
+ h[1] = REAL(0.5) * side[1];
+ h[2] = REAL(0.5) * side[2];
+
+ // region is -1,0,+1 depending on which side of the box planes each
+ // coordinate is on. tanchor is the next t value at which there is a
+ // transition, or the last one if there are no more.
+ int region[3];
+ dReal tanchor[3];
+
+ // Denormals are a problem, because we divide by v[i], and then
+ // multiply that by 0. Alas, infinity times 0 is infinity (!)
+ // We also use v2[i], which is v[i] squared. Here's how the epsilons
+ // are chosen:
+ // float epsilon = 1.175494e-038 (smallest non-denormal number)
+ // double epsilon = 2.225074e-308 (smallest non-denormal number)
+ // For single precision, choose an epsilon such that v[i] squared is
+ // not a denormal; this is for performance.
+ // For double precision, choose an epsilon such that v[i] is not a
+ // denormal; this is for correctness. (Jon Watte on mailinglist)
+
+#if defined( dSINGLE )
+ const dReal tanchor_eps = REAL(1e-19);
+#else
+ const dReal tanchor_eps = REAL(1e-307);
+#endif
+
+ // find the region and tanchor values for p1
+ for (i=0; i<3; i++) {
+ if (v[i] > tanchor_eps) {
+ if (s[i] < -h[i]) {
+ region[i] = -1;
+ tanchor[i] = (-h[i]-s[i])/v[i];
+ }
+ else {
+ region[i] = (s[i] > h[i]);
+ tanchor[i] = (h[i]-s[i])/v[i];
+ }
+ }
+ else {
+ region[i] = 0;
+ tanchor[i] = 2; // this will never be a valid tanchor
+ }
+ }
+
+ // compute d|d|^2/dt for t=0. if it's >= 0 then p1 is the closest point
+ dReal t=0;
+ dReal dd2dt = 0;
+ for (i=0; i<3; i++) dd2dt -= (region[i] ? v2[i] : 0) * tanchor[i];
+ if (dd2dt >= 0) goto got_answer;
+
+ do {
+ // find the point on the line that is at the next clip plane boundary
+ dReal next_t = 1;
+ for (i=0; i<3; i++) {
+ if (tanchor[i] > t && tanchor[i] < 1 && tanchor[i] < next_t)
+ next_t = tanchor[i];
+ }
+
+ // compute d|d|^2/dt for the next t
+ dReal next_dd2dt = 0;
+ for (i=0; i<3; i++) {
+ next_dd2dt += (region[i] ? v2[i] : 0) * (next_t - tanchor[i]);
+ }
+
+ // if the sign of d|d|^2/dt has changed, solution = the crossover point
+ if (next_dd2dt >= 0) {
+ dReal m = (next_dd2dt-dd2dt)/(next_t - t);
+ t -= dd2dt/m;
+ goto got_answer;
+ }
+
+ // advance to the next anchor point / region
+ for (i=0; i<3; i++) {
+ if (tanchor[i] == next_t) {
+ tanchor[i] = (h[i]-s[i])/v[i];
+ region[i]++;
+ }
+ }
+ t = next_t;
+ dd2dt = next_dd2dt;
+ }
+ while (t < 1);
+ t = 1;
+
+got_answer:
+
+ // compute closest point on the line
+ for (i=0; i<3; i++) lret[i] = p1[i] + t*tmp[i]; // note: tmp=p2-p1
+
+ // compute closest point on the box
+ for (i=0; i<3; i++) {
+ tmp[i] = sign[i] * (s[i] + t*v[i]);
+ if (tmp[i] < -h[i]) tmp[i] = -h[i];
+ else if (tmp[i] > h[i]) tmp[i] = h[i];
+ }
+ dMultiply0_331 (s,R,tmp);
+ for (i=0; i<3; i++) bret[i] = s[i] + c[i];
+}
+
+
+// given boxes (p1,R1,side1) and (p1,R1,side1), return 1 if they intersect
+// or 0 if not.
+
+int dBoxTouchesBox (const dVector3 p1, const dMatrix3 R1,
+ const dVector3 side1, const dVector3 p2,
+ const dMatrix3 R2, const dVector3 side2)
+{
+ // two boxes are disjoint if (and only if) there is a separating axis
+ // perpendicular to a face from one box or perpendicular to an edge from
+ // either box. the following tests are derived from:
+ // "OBB Tree: A Hierarchical Structure for Rapid Interference Detection",
+ // S.Gottschalk, M.C.Lin, D.Manocha., Proc of ACM Siggraph 1996.
+
+ // Rij is R1'*R2, i.e. the relative rotation between R1 and R2.
+ // Qij is abs(Rij)
+ dVector3 p,pp;
+ dReal A1,A2,A3,B1,B2,B3,R11,R12,R13,R21,R22,R23,R31,R32,R33,
+ Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33;
+
+ // get vector from centers of box 1 to box 2, relative to box 1
+ p[0] = p2[0] - p1[0];
+ p[1] = p2[1] - p1[1];
+ p[2] = p2[2] - p1[2];
+ dMultiply1_331 (pp,R1,p); // get pp = p relative to body 1
+
+ // get side lengths / 2
+ A1 = side1[0]*REAL(0.5); A2 = side1[1]*REAL(0.5); A3 = side1[2]*REAL(0.5);
+ B1 = side2[0]*REAL(0.5); B2 = side2[1]*REAL(0.5); B3 = side2[2]*REAL(0.5);
+
+ // for the following tests, excluding computation of Rij, in the worst case,
+ // 15 compares, 60 adds, 81 multiplies, and 24 absolutes.
+ // notation: R1=[u1 u2 u3], R2=[v1 v2 v3]
+
+ // separating axis = u1,u2,u3
+ R11 = dCalcVectorDot3_44(R1+0,R2+0); R12 = dCalcVectorDot3_44(R1+0,R2+1); R13 = dCalcVectorDot3_44(R1+0,R2+2);
+ Q11 = dFabs(R11); Q12 = dFabs(R12); Q13 = dFabs(R13);
+ if (dFabs(pp[0]) > (A1 + B1*Q11 + B2*Q12 + B3*Q13)) return 0;
+ R21 = dCalcVectorDot3_44(R1+1,R2+0); R22 = dCalcVectorDot3_44(R1+1,R2+1); R23 = dCalcVectorDot3_44(R1+1,R2+2);
+ Q21 = dFabs(R21); Q22 = dFabs(R22); Q23 = dFabs(R23);
+ if (dFabs(pp[1]) > (A2 + B1*Q21 + B2*Q22 + B3*Q23)) return 0;
+ R31 = dCalcVectorDot3_44(R1+2,R2+0); R32 = dCalcVectorDot3_44(R1+2,R2+1); R33 = dCalcVectorDot3_44(R1+2,R2+2);
+ Q31 = dFabs(R31); Q32 = dFabs(R32); Q33 = dFabs(R33);
+ if (dFabs(pp[2]) > (A3 + B1*Q31 + B2*Q32 + B3*Q33)) return 0;
+
+ // separating axis = v1,v2,v3
+ if (dFabs(dCalcVectorDot3_41(R2+0,p)) > (A1*Q11 + A2*Q21 + A3*Q31 + B1)) return 0;
+ if (dFabs(dCalcVectorDot3_41(R2+1,p)) > (A1*Q12 + A2*Q22 + A3*Q32 + B2)) return 0;
+ if (dFabs(dCalcVectorDot3_41(R2+2,p)) > (A1*Q13 + A2*Q23 + A3*Q33 + B3)) return 0;
+
+ // separating axis = u1 x (v1,v2,v3)
+ if (dFabs(pp[2]*R21-pp[1]*R31) > A2*Q31 + A3*Q21 + B2*Q13 + B3*Q12) return 0;
+ if (dFabs(pp[2]*R22-pp[1]*R32) > A2*Q32 + A3*Q22 + B1*Q13 + B3*Q11) return 0;
+ if (dFabs(pp[2]*R23-pp[1]*R33) > A2*Q33 + A3*Q23 + B1*Q12 + B2*Q11) return 0;
+
+ // separating axis = u2 x (v1,v2,v3)
+ if (dFabs(pp[0]*R31-pp[2]*R11) > A1*Q31 + A3*Q11 + B2*Q23 + B3*Q22) return 0;
+ if (dFabs(pp[0]*R32-pp[2]*R12) > A1*Q32 + A3*Q12 + B1*Q23 + B3*Q21) return 0;
+ if (dFabs(pp[0]*R33-pp[2]*R13) > A1*Q33 + A3*Q13 + B1*Q22 + B2*Q21) return 0;
+
+ // separating axis = u3 x (v1,v2,v3)
+ if (dFabs(pp[1]*R11-pp[0]*R21) > A1*Q21 + A2*Q11 + B2*Q33 + B3*Q32) return 0;
+ if (dFabs(pp[1]*R12-pp[0]*R22) > A1*Q22 + A2*Q12 + B1*Q33 + B3*Q31) return 0;
+ if (dFabs(pp[1]*R13-pp[0]*R23) > A1*Q23 + A2*Q13 + B1*Q32 + B2*Q31) return 0;
+
+ return 1;
+}
+
+//****************************************************************************
+// other utility functions
+
+/*ODE_API */void dInfiniteAABB (dxGeom *geom, dReal aabb[6])
+{
+ aabb[0] = -dInfinity;
+ aabb[1] = dInfinity;
+ aabb[2] = -dInfinity;
+ aabb[3] = dInfinity;
+ aabb[4] = -dInfinity;
+ aabb[5] = dInfinity;
+}
+
+
+//****************************************************************************
+// Helpers for Croteam's collider - by Nguyen Binh
+
+int dClipEdgeToPlane( dVector3 &vEpnt0, dVector3 &vEpnt1, const dVector4& plPlane)
+{
+ // calculate distance of edge points to plane
+ dReal fDistance0 = dPointPlaneDistance( vEpnt0 ,plPlane );
+ dReal fDistance1 = dPointPlaneDistance( vEpnt1 ,plPlane );
+
+ // if both points are behind the plane
+ if ( fDistance0 < 0 && fDistance1 < 0 )
+ {
+ // do nothing
+ return 0;
+ // if both points in front of the plane
+ }
+ else if ( fDistance0 > 0 && fDistance1 > 0 )
+ {
+ // accept them
+ return 1;
+ // if we have edge/plane intersection
+ } else if ((fDistance0 > 0 && fDistance1 < 0) || ( fDistance0 < 0 && fDistance1 > 0))
+ {
+
+ // find intersection point of edge and plane
+ dVector3 vIntersectionPoint;
+ vIntersectionPoint[0]= vEpnt0[0]-(vEpnt0[0]-vEpnt1[0])*fDistance0/(fDistance0-fDistance1);
+ vIntersectionPoint[1]= vEpnt0[1]-(vEpnt0[1]-vEpnt1[1])*fDistance0/(fDistance0-fDistance1);
+ vIntersectionPoint[2]= vEpnt0[2]-(vEpnt0[2]-vEpnt1[2])*fDistance0/(fDistance0-fDistance1);
+
+ // clamp correct edge to intersection point
+ if ( fDistance0 < 0 )
+ {
+ dVector3Copy(vIntersectionPoint,vEpnt0);
+ } else
+ {
+ dVector3Copy(vIntersectionPoint,vEpnt1);
+ }
+ return 1;
+ }
+ return 1;
+}
+
+// clip polygon with plane and generate new polygon points
+void dClipPolyToPlane( const dVector3 avArrayIn[], const int ctIn,
+ dVector3 avArrayOut[], int &ctOut,
+ const dVector4 &plPlane )
+{
+ // start with no output points
+ ctOut = 0;
+
+ int i0 = ctIn-1;
+
+ // for each edge in input polygon
+ for (int i1=0; i1<ctIn; i0=i1, i1++) {
+
+
+ // calculate distance of edge points to plane
+ dReal fDistance0 = dPointPlaneDistance( avArrayIn[i0],plPlane );
+ dReal fDistance1 = dPointPlaneDistance( avArrayIn[i1],plPlane );
+
+ // if first point is in front of plane
+ if( fDistance0 >= 0 ) {
+ // emit point
+ avArrayOut[ctOut][0] = avArrayIn[i0][0];
+ avArrayOut[ctOut][1] = avArrayIn[i0][1];
+ avArrayOut[ctOut][2] = avArrayIn[i0][2];
+ ctOut++;
+ }
+
+ // if points are on different sides
+ if( (fDistance0 > 0 && fDistance1 < 0) || ( fDistance0 < 0 && fDistance1 > 0) ) {
+
+ // find intersection point of edge and plane
+ dVector3 vIntersectionPoint;
+ vIntersectionPoint[0]= avArrayIn[i0][0] -
+ (avArrayIn[i0][0]-avArrayIn[i1][0])*fDistance0/(fDistance0-fDistance1);
+ vIntersectionPoint[1]= avArrayIn[i0][1] -
+ (avArrayIn[i0][1]-avArrayIn[i1][1])*fDistance0/(fDistance0-fDistance1);
+ vIntersectionPoint[2]= avArrayIn[i0][2] -
+ (avArrayIn[i0][2]-avArrayIn[i1][2])*fDistance0/(fDistance0-fDistance1);
+
+ // emit intersection point
+ avArrayOut[ctOut][0] = vIntersectionPoint[0];
+ avArrayOut[ctOut][1] = vIntersectionPoint[1];
+ avArrayOut[ctOut][2] = vIntersectionPoint[2];
+ ctOut++;
+ }
+ }
+
+}
+
+void dClipPolyToCircle(const dVector3 avArrayIn[], const int ctIn,
+ dVector3 avArrayOut[], int &ctOut,
+ const dVector4 &plPlane ,dReal fRadius)
+{
+ // start with no output points
+ ctOut = 0;
+
+ int i0 = ctIn-1;
+
+ // for each edge in input polygon
+ for (int i1=0; i1<ctIn; i0=i1, i1++)
+ {
+ // calculate distance of edge points to plane
+ dReal fDistance0 = dPointPlaneDistance( avArrayIn[i0],plPlane );
+ dReal fDistance1 = dPointPlaneDistance( avArrayIn[i1],plPlane );
+
+ // if first point is in front of plane
+ if( fDistance0 >= 0 )
+ {
+ // emit point
+ if (dVector3LengthSquare(avArrayIn[i0]) <= fRadius*fRadius)
+ {
+ avArrayOut[ctOut][0] = avArrayIn[i0][0];
+ avArrayOut[ctOut][1] = avArrayIn[i0][1];
+ avArrayOut[ctOut][2] = avArrayIn[i0][2];
+ ctOut++;
+ }
+ }
+
+ // if points are on different sides
+ if( (fDistance0 > 0 && fDistance1 < 0) || ( fDistance0 < 0 && fDistance1 > 0) )
+ {
+
+ // find intersection point of edge and plane
+ dVector3 vIntersectionPoint;
+ vIntersectionPoint[0]= avArrayIn[i0][0] -
+ (avArrayIn[i0][0]-avArrayIn[i1][0])*fDistance0/(fDistance0-fDistance1);
+ vIntersectionPoint[1]= avArrayIn[i0][1] -
+ (avArrayIn[i0][1]-avArrayIn[i1][1])*fDistance0/(fDistance0-fDistance1);
+ vIntersectionPoint[2]= avArrayIn[i0][2] -
+ (avArrayIn[i0][2]-avArrayIn[i1][2])*fDistance0/(fDistance0-fDistance1);
+
+ // emit intersection point
+ if (dVector3LengthSquare(avArrayIn[i0]) <= fRadius*fRadius)
+ {
+ avArrayOut[ctOut][0] = vIntersectionPoint[0];
+ avArrayOut[ctOut][1] = vIntersectionPoint[1];
+ avArrayOut[ctOut][2] = vIntersectionPoint[2];
+ ctOut++;
+ }
+ }
+ }
+}
+