diff options
Diffstat (limited to 'libs/ode-0.16.1/ode/src/lcp.cpp')
-rw-r--r-- | libs/ode-0.16.1/ode/src/lcp.cpp | 1317 |
1 files changed, 1317 insertions, 0 deletions
diff --git a/libs/ode-0.16.1/ode/src/lcp.cpp b/libs/ode-0.16.1/ode/src/lcp.cpp new file mode 100644 index 0000000..58db0bd --- /dev/null +++ b/libs/ode-0.16.1/ode/src/lcp.cpp @@ -0,0 +1,1317 @@ +/*************************************************************************
+ * *
+ * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
+ * All rights reserved. Email: russ@q12.org Web: www.q12.org *
+ * *
+ * This library is free software; you can redistribute it and/or *
+ * modify it under the terms of EITHER: *
+ * (1) The GNU Lesser General Public License as published by the Free *
+ * Software Foundation; either version 2.1 of the License, or (at *
+ * your option) any later version. The text of the GNU Lesser *
+ * General Public License is included with this library in the *
+ * file LICENSE.TXT. *
+ * (2) The BSD-style license that is included with this library in *
+ * the file LICENSE-BSD.TXT. *
+ * *
+ * This library is distributed in the hope that it will be useful, *
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of *
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
+ * LICENSE.TXT and LICENSE-BSD.TXT for more details. *
+ * *
+ *************************************************************************/
+
+/*
+
+
+THE ALGORITHM
+-------------
+
+solve A*x = b+w, with x and w subject to certain LCP conditions.
+each x(i),w(i) must lie on one of the three line segments in the following
+diagram. each line segment corresponds to one index set :
+
+ w(i)
+ /|\ | :
+ | | :
+ | |i in N :
+ w>0 | |state[i]=0 :
+ | | :
+ | | : i in C
+ w=0 + +-----------------------+
+ | : |
+ | : |
+ w<0 | : |i in N
+ | : |state[i]=1
+ | : |
+ | : |
+ +-------|-----------|-----------|----------> x(i)
+ lo 0 hi
+
+the Dantzig algorithm proceeds as follows:
+ for i=1:n
+ * if (x(i),w(i)) is not on the line, push x(i) and w(i) positive or
+ negative towards the line. as this is done, the other (x(j),w(j))
+ for j<i are constrained to be on the line. if any (x,w) reaches the
+ end of a line segment then it is switched between index sets.
+ * i is added to the appropriate index set depending on what line segment
+ it hits.
+
+we restrict lo(i) <= 0 and hi(i) >= 0. this makes the algorithm a bit
+simpler, because the starting point for x(i),w(i) is always on the dotted
+line x=0 and x will only ever increase in one direction, so it can only hit
+two out of the three line segments.
+
+
+NOTES
+-----
+
+this is an implementation of "lcp_dantzig2_ldlt.m" and "lcp_dantzig_lohi.m".
+the implementation is split into an LCP problem object (dLCP) and an LCP
+driver function. most optimization occurs in the dLCP object.
+
+a naive implementation of the algorithm requires either a lot of data motion
+or a lot of permutation-array lookup, because we are constantly re-ordering
+rows and columns. to avoid this and make a more optimized algorithm, a
+non-trivial data structure is used to represent the matrix A (this is
+implemented in the fast version of the dLCP object).
+
+during execution of this algorithm, some indexes in A are clamped (set C),
+some are non-clamped (set N), and some are "don't care" (where x=0).
+A,x,b,w (and other problem vectors) are permuted such that the clamped
+indexes are first, the unclamped indexes are next, and the don't-care
+indexes are last. this permutation is recorded in the array `p'.
+initially p = 0..n-1, and as the rows and columns of A,x,b,w are swapped,
+the corresponding elements of p are swapped.
+
+because the C and N elements are grouped together in the rows of A, we can do
+lots of work with a fast dot product function. if A,x,etc were not permuted
+and we only had a permutation array, then those dot products would be much
+slower as we would have a permutation array lookup in some inner loops.
+
+A is accessed through an array of row pointers, so that element (i,j) of the
+permuted matrix is A[i][j]. this makes row swapping fast. for column swapping
+we still have to actually move the data.
+
+during execution of this algorithm we maintain an L*D*L' factorization of
+the clamped submatrix of A (call it `AC') which is the top left nC*nC
+submatrix of A. there are two ways we could arrange the rows/columns in AC.
+
+(1) AC is always permuted such that L*D*L' = AC. this causes a problem
+when a row/column is removed from C, because then all the rows/columns of A
+between the deleted index and the end of C need to be rotated downward.
+this results in a lot of data motion and slows things down.
+(2) L*D*L' is actually a factorization of a *permutation* of AC (which is
+itself a permutation of the underlying A). this is what we do - the
+permutation is recorded in the vector C. call this permutation A[C,C].
+when a row/column is removed from C, all we have to do is swap two
+rows/columns and manipulate C.
+
+*/
+
+#include <ode/common.h>
+#include <ode/misc.h>
+#include <ode/timer.h> // for testing
+#include "config.h"
+#include "lcp.h"
+#include "util.h"
+#include "matrix.h"
+#include "mat.h" // for testing
+#include "threaded_solver_ldlt.h"
+
+#include "fastdot_impl.h"
+#include "fastldltfactor_impl.h"
+#include "fastldltsolve_impl.h"
+
+
+//***************************************************************************
+// code generation parameters
+
+// LCP debugging (mostly for fast dLCP) - this slows things down a lot
+//#define DEBUG_LCP
+
+#define dLCP_FAST // use fast dLCP object
+
+#define NUB_OPTIMIZATIONS // use NUB optimizations
+
+
+// option 1 : matrix row pointers (less data copying)
+#define ROWPTRS
+#define ATYPE dReal **
+#define AROW(i) (m_A[i])
+
+// option 2 : no matrix row pointers (slightly faster inner loops)
+//#define NOROWPTRS
+//#define ATYPE dReal *
+//#define AROW(i) (m_A+(i)*m_nskip)
+
+
+//***************************************************************************
+
+#define dMIN(A,B) ((A)>(B) ? (B) : (A))
+#define dMAX(A,B) ((B)>(A) ? (B) : (A))
+
+
+#define LMATRIX_ALIGNMENT dMAX(64, EFFICIENT_ALIGNMENT)
+
+//***************************************************************************
+
+
+// transfer b-values to x-values
+template<bool zero_b>
+inline
+void transfer_b_to_x(dReal pairsbx[PBX__MAX], unsigned n)
+{
+ dReal *const endbx = pairsbx + (sizeint)n * PBX__MAX;
+ for (dReal *currbx = pairsbx; currbx != endbx; currbx += PBX__MAX) {
+ currbx[PBX_X] = currbx[PBX_B];
+ if (zero_b) {
+ currbx[PBX_B] = REAL(0.0);
+ }
+ }
+}
+
+// swap row/column i1 with i2 in the n*n matrix A. the leading dimension of
+// A is nskip. this only references and swaps the lower triangle.
+// if `do_fast_row_swaps' is nonzero and row pointers are being used, then
+// rows will be swapped by exchanging row pointers. otherwise the data will
+// be copied.
+
+static
+void swapRowsAndCols (ATYPE A, unsigned n, unsigned i1, unsigned i2, unsigned nskip,
+ int do_fast_row_swaps)
+{
+ dAASSERT (A && n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n &&
+ nskip >= n && i1 < i2);
+
+# ifdef ROWPTRS
+ dReal *A_i1 = A[i1];
+ dReal *A_i2 = A[i2];
+ for (unsigned i=i1+1; i<i2; ++i) {
+ dReal *A_i_i1 = A[i] + i1;
+ A_i1[i] = *A_i_i1;
+ *A_i_i1 = A_i2[i];
+ }
+ A_i1[i2] = A_i1[i1];
+ A_i1[i1] = A_i2[i1];
+ A_i2[i1] = A_i2[i2];
+ // swap rows, by swapping row pointers
+ if (do_fast_row_swaps) {
+ A[i1] = A_i2;
+ A[i2] = A_i1;
+ }
+ else {
+ // Only swap till i2 column to match A plain storage variant.
+ for (unsigned k = 0; k <= i2; ++k) {
+ dxSwap(A_i1[k], A_i2[k]);
+ }
+ }
+ // swap columns the hard way
+ for (unsigned j = i2 + 1; j < n; ++j) {
+ dReal *A_j = A[j];
+ dxSwap(A_j[i1], A_j[i2]);
+ }
+# else
+ dReal *A_i1 = A + (sizeint)nskip * i1;
+ dReal *A_i2 = A + (sizeint)nskip * i2;
+
+ for (unsigned k = 0; k < i1; ++k) {
+ dxSwap(A_i1[k], A_i2[k]);
+ }
+
+ dReal *A_i = A_i1 + nskip;
+ for (unsigned i= i1 + 1; i < i2; A_i += nskip, ++i) {
+ dxSwap(A_i2[i], A_i[i1]);
+ }
+
+ dxSwap(A_i1[i1], A_i2[i2]);
+
+ dReal *A_j = A_i2 + nskip;
+ for (unsigned j = i2 + 1; j < n; A_j += nskip, ++j) {
+ dxSwap(A_j[i1], A_j[i2]);
+ }
+# endif
+}
+
+
+// swap two indexes in the n*n LCP problem. i1 must be <= i2.
+
+static
+void swapProblem (ATYPE A, dReal pairsbx[PBX__MAX], dReal *w, dReal pairslh[PLH__MAX],
+ unsigned *p, bool *state, int *findex,
+ unsigned n, unsigned i1, unsigned i2, unsigned nskip,
+ int do_fast_row_swaps)
+{
+ dIASSERT (n>0 && i1 < n && i2 < n && nskip >= n && i1 <= i2);
+
+ if (i1 != i2) {
+ swapRowsAndCols (A, n, i1, i2, nskip, do_fast_row_swaps);
+
+ dxSwap((pairsbx + (sizeint)i1 * PBX__MAX)[PBX_B], (pairsbx + (sizeint)i2 * PBX__MAX)[PBX_B]);
+ dxSwap((pairsbx + (sizeint)i1 * PBX__MAX)[PBX_X], (pairsbx + (sizeint)i2 * PBX__MAX)[PBX_X]);
+ dSASSERT(PBX__MAX == 2);
+
+ dxSwap(w[i1], w[i2]);
+
+ dxSwap((pairslh + (sizeint)i1 * PLH__MAX)[PLH_LO], (pairslh + (sizeint)i2 * PLH__MAX)[PLH_LO]);
+ dxSwap((pairslh + (sizeint)i1 * PLH__MAX)[PLH_HI], (pairslh + (sizeint)i2 * PLH__MAX)[PLH_HI]);
+ dSASSERT(PLH__MAX == 2);
+
+ dxSwap(p[i1], p[i2]);
+ dxSwap(state[i1], state[i2]);
+
+ if (findex != NULL) {
+ dxSwap(findex[i1], findex[i2]);
+ }
+ }
+}
+
+
+// for debugging - check that L,d is the factorization of A[C,C].
+// A[C,C] has size nC*nC and leading dimension nskip.
+// L has size nC*nC and leading dimension nskip.
+// d has size nC.
+
+#ifdef DEBUG_LCP
+
+static
+void checkFactorization (ATYPE A, dReal *_L, dReal *_d,
+ unsigned nC, unsigned *C, unsigned nskip)
+{
+ unsigned i, j;
+ if (nC == 0) return;
+
+ // get A1=A, copy the lower triangle to the upper triangle, get A2=A[C,C]
+ dMatrix A1 (nC, nC);
+ for (i=0; i < nC; i++) {
+ for (j = 0; j <= i; j++) A1(i, j) = A1(j, i) = AROW(i)[j];
+ }
+ dMatrix A2 = A1.select (nC, C, nC, C);
+
+ // printf ("A1=\n"); A1.print(); printf ("\n");
+ // printf ("A2=\n"); A2.print(); printf ("\n");
+
+ // compute A3 = L*D*L'
+ dMatrix L (nC, nC, _L, nskip, 1);
+ dMatrix D (nC, nC);
+ for (i = 0; i < nC; i++) D(i, i) = 1.0 / _d[i];
+ L.clearUpperTriangle();
+ for (i = 0; i < nC; i++) L(i, i) = 1;
+ dMatrix A3 = L * D * L.transpose();
+
+ // printf ("L=\n"); L.print(); printf ("\n");
+ // printf ("D=\n"); D.print(); printf ("\n");
+ // printf ("A3=\n"); A2.print(); printf ("\n");
+
+ // compare A2 and A3
+ dReal diff = A2.maxDifference (A3);
+ if (diff > 1e-8)
+ dDebug (0, "L*D*L' check, maximum difference = %.6e\n", diff);
+}
+
+#endif
+
+
+// for debugging
+
+#ifdef DEBUG_LCP
+
+static
+void checkPermutations (unsigned i, unsigned n, unsigned nC, unsigned nN, unsigned *p, unsigned *C)
+{
+ unsigned j,k;
+ dIASSERT (/*nC >= 0 && nN >= 0 && */(nC + nN) == i && i < n);
+ for (k=0; k<i; k++) dIASSERT (p[k] >= 0 && p[k] < i);
+ for (k=i; k<n; k++) dIASSERT (p[k] == k);
+ for (j=0; j<nC; j++) {
+ int C_is_bad = 1;
+ for (k=0; k<nC; k++) if (C[k]==j) C_is_bad = 0;
+ dIASSERT (C_is_bad==0);
+ }
+}
+
+#endif
+
+//***************************************************************************
+// dLCP manipulator object. this represents an n*n LCP problem.
+//
+// two index sets C and N are kept. each set holds a subset of
+// the variable indexes 0..n-1. an index can only be in one set.
+// initially both sets are empty.
+//
+// the index set C is special: solutions to A(C,C)\A(C,i) can be generated.
+
+//***************************************************************************
+// fast implementation of dLCP. see the above definition of dLCP for
+// interface comments.
+//
+// `p' records the permutation of A,x,b,w,etc. p is initially 1:n and is
+// permuted as the other vectors/matrices are permuted.
+//
+// A,x,b,w,lo,hi,state,findex,p,c are permuted such that sets C,N have
+// contiguous indexes. the don't-care indexes follow N.
+//
+// an L*D*L' factorization is maintained of A(C,C), and whenever indexes are
+// added or removed from the set C the factorization is updated.
+// thus L*D*L'=A[C,C], i.e. a permuted top left nC*nC submatrix of A.
+// the leading dimension of the matrix L is always `nskip'.
+//
+// at the start there may be other indexes that are unbounded but are not
+// included in `nub'. dLCP will permute the matrix so that absolutely all
+// unbounded vectors are at the start. thus there may be some initial
+// permutation.
+//
+// the algorithms here assume certain patterns, particularly with respect to
+// index transfer.
+
+#ifdef dLCP_FAST
+
+struct dLCP {
+ const unsigned m_n;
+ const unsigned m_nskip;
+ unsigned m_nub;
+ unsigned m_nC, m_nN; // size of each index set
+ ATYPE const m_A; // A rows
+ dReal *const m_pairsbx, *const m_w, *const m_pairslh; // permuted LCP problem data
+ dReal *const m_L, *const m_d; // L*D*L' factorization of set C
+ dReal *const m_Dell, *const m_ell, *const m_tmp;
+ bool *const m_state;
+ int *const m_findex;
+ unsigned *const m_p, *const m_C;
+
+ dLCP (unsigned _n, unsigned _nskip, unsigned _nub, dReal *_Adata, dReal *_pairsbx, dReal *_w,
+ dReal *_pairslh, dReal *_L, dReal *_d,
+ dReal *_Dell, dReal *_ell, dReal *_tmp,
+ bool *_state, int *_findex, unsigned *_p, unsigned *_C, dReal **Arows);
+ unsigned getNub() const { return m_nub; }
+ void transfer_i_to_C (unsigned i);
+ void transfer_i_to_N (unsigned /*i*/) { m_nN++; } // because we can assume C and N span 1:i-1
+ void transfer_i_from_N_to_C (unsigned i);
+ void transfer_i_from_C_to_N (unsigned i, void *tmpbuf);
+ static sizeint estimate_transfer_i_from_C_to_N_mem_req(unsigned nC, unsigned nskip) { return dEstimateLDLTRemoveTmpbufSize(nC, nskip); }
+ unsigned numC() const { return m_nC; }
+ unsigned numN() const { return m_nN; }
+ unsigned indexC (unsigned i) const { return i; }
+ unsigned indexN (unsigned i) const { return i+m_nC; }
+ dReal Aii (unsigned i) const { return AROW(i)[i]; }
+ template<unsigned q_stride>
+ dReal AiC_times_qC (unsigned i, dReal *q) const { return calculateLargeVectorDot<q_stride> (AROW(i), q, m_nC); }
+ template<unsigned q_stride>
+ dReal AiN_times_qN (unsigned i, dReal *q) const { return calculateLargeVectorDot<q_stride> (AROW(i) + m_nC, q + (sizeint)m_nC * q_stride, m_nN); }
+ void pN_equals_ANC_times_qC (dReal *p, dReal *q);
+ void pN_plusequals_ANi (dReal *p, unsigned i, bool dir_positive);
+ template<unsigned p_stride>
+ void pC_plusequals_s_times_qC (dReal *p, dReal s, dReal *q);
+ void pN_plusequals_s_times_qN (dReal *p, dReal s, dReal *q);
+ void solve1 (dReal *a, unsigned i, bool dir_positive, int only_transfer=0);
+ void unpermute_X();
+ void unpermute_W();
+};
+
+
+dLCP::dLCP (unsigned _n, unsigned _nskip, unsigned _nub, dReal *_Adata, dReal *_pairsbx, dReal *_w,
+ dReal *_pairslh, dReal *_L, dReal *_d,
+ dReal *_Dell, dReal *_ell, dReal *_tmp,
+ bool *_state, int *_findex, unsigned *_p, unsigned *_C, dReal **Arows):
+ m_n(_n), m_nskip(_nskip), m_nub(_nub), m_nC(0), m_nN(0),
+# ifdef ROWPTRS
+ m_A(Arows),
+#else
+ m_A(_Adata),
+#endif
+ m_pairsbx(_pairsbx), m_w(_w), m_pairslh(_pairslh),
+ m_L(_L), m_d(_d), m_Dell(_Dell), m_ell(_ell), m_tmp(_tmp),
+ m_state(_state), m_findex(_findex), m_p(_p), m_C(_C)
+{
+ dxtSetZero<PBX__MAX>(m_pairsbx + PBX_X, m_n);
+
+ {
+# ifdef ROWPTRS
+ // make matrix row pointers
+ dReal *aptr = _Adata;
+ ATYPE A = m_A;
+ const unsigned n = m_n, nskip = m_nskip;
+ for (unsigned k=0; k<n; aptr+=nskip, ++k) A[k] = aptr;
+# endif
+ }
+
+ {
+ unsigned *p = m_p;
+ const unsigned n = m_n;
+ for (unsigned k=0; k != n; ++k) p[k] = k; // initially unpermutted
+ }
+
+ /*
+ // for testing, we can do some random swaps in the area i > nub
+ {
+ const unsigned n = m_n;
+ const unsigned nub = m_nub;
+ if (nub < n) {
+ for (unsigned k=0; k<100; k++) {
+ unsigned i1,i2;
+ do {
+ i1 = dRandInt(n-nub)+nub;
+ i2 = dRandInt(n-nub)+nub;
+ }
+ while (i1 > i2);
+ //printf ("--> %d %d\n",i1,i2);
+ swapProblem (m_A, m_pairsbx, m_w, m_pairslh, m_p, m_state, m_findex, n, i1, i2, m_nskip, 0);
+ }
+ }
+ */
+
+ // permute the problem so that *all* the unbounded variables are at the
+ // start, i.e. look for unbounded variables not included in `nub'. we can
+ // potentially push up `nub' this way and get a bigger initial factorization.
+ // note that when we swap rows/cols here we must not just swap row pointers,
+ // as the initial factorization relies on the data being all in one chunk.
+ // variables that have findex >= 0 are *not* considered to be unbounded even
+ // if lo=-inf and hi=inf - this is because these limits may change during the
+ // solution process.
+
+ {
+ int *findex = m_findex;
+ dReal *pairslh = m_pairslh;
+ const unsigned n = m_n;
+ for (unsigned k = m_nub; k < n; ++k) {
+ if (findex && findex[k] >= 0) continue;
+ if ((pairslh + (sizeint)k * PLH__MAX)[PLH_LO] == -dInfinity && (pairslh + (sizeint)k * PLH__MAX)[PLH_HI] == dInfinity) {
+ swapProblem (m_A, m_pairsbx, m_w, pairslh, m_p, m_state, findex, n, m_nub, k, m_nskip, 0);
+ m_nub++;
+ }
+ }
+ }
+
+ // if there are unbounded variables at the start, factorize A up to that
+ // point and solve for x. this puts all indexes 0..nub-1 into C.
+ if (m_nub > 0) {
+ const unsigned nub = m_nub;
+ {
+ dReal *Lrow = m_L;
+ const unsigned nskip = m_nskip;
+ for (unsigned j = 0; j < nub; Lrow += nskip, ++j) memcpy(Lrow, AROW(j), (j + 1) * sizeof(dReal));
+ }
+ transfer_b_to_x<false> (m_pairsbx, nub);
+ factorMatrixAsLDLT<1> (m_L, m_d, nub, m_nskip);
+ solveEquationSystemWithLDLT<1, PBX__MAX> (m_L, m_d, m_pairsbx + PBX_X, nub, m_nskip);
+ dSetZero (m_w, nub);
+ {
+ unsigned *C = m_C;
+ for (unsigned k = 0; k < nub; ++k) C[k] = k;
+ }
+ m_nC = nub;
+ }
+
+ // permute the indexes > nub such that all findex variables are at the end
+ if (m_findex) {
+ const unsigned nub = m_nub;
+ int *findex = m_findex;
+ unsigned num_at_end = 0;
+ for (unsigned k = m_n; k > nub; ) {
+ --k;
+ if (findex[k] >= 0) {
+ swapProblem (m_A, m_pairsbx, m_w, m_pairslh, m_p, m_state, findex, m_n, k, m_n - 1 - num_at_end, m_nskip, 1);
+ num_at_end++;
+ }
+ }
+ }
+
+ // print info about indexes
+ /*
+ {
+ const unsigned n = m_n;
+ const unsigned nub = m_nub;
+ for (unsigned k=0; k<n; k++) {
+ if (k<nub) printf ("C");
+ else if ((m_pairslh + (sizeint)k * PLH__MAX)[PLH_LO] == -dInfinity && (m_pairslh + (sizeint)k * PLH__MAX)[PLH_HI] == dInfinity) printf ("c");
+ else printf (".");
+ }
+ printf ("\n");
+ }
+ */
+}
+
+
+void dLCP::transfer_i_to_C (unsigned i)
+{
+ {
+ const unsigned nC = m_nC;
+
+ if (nC > 0) {
+ // ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C))
+ dReal *const Ltgt = m_L + (sizeint)m_nskip * nC, *ell = m_ell;
+ memcpy(Ltgt, ell, nC * sizeof(dReal));
+
+ dReal ell_Dell_dot = dxDot(m_ell, m_Dell, nC);
+ dReal AROW_i_i = AROW(i)[i] != ell_Dell_dot ? AROW(i)[i] : dNextAfter(AROW(i)[i], dInfinity); // A hack to avoid getting a zero in the denominator
+ m_d[nC] = dRecip (AROW_i_i - ell_Dell_dot);
+ }
+ else {
+ m_d[0] = dRecip (AROW(i)[i]);
+ }
+
+ swapProblem (m_A, m_pairsbx, m_w, m_pairslh, m_p, m_state, m_findex, m_n, nC, i, m_nskip, 1);
+
+ m_C[nC] = nC;
+ m_nC = nC + 1; // nC value is outdated after this line
+ }
+
+# ifdef DEBUG_LCP
+ checkFactorization (m_A, m_L, m_d, m_nC, m_C, m_nskip);
+ if (i < (m_n-1)) checkPermutations (i+1, m_n, m_nC, m_nN, m_p, m_C);
+# endif
+}
+
+
+void dLCP::transfer_i_from_N_to_C (unsigned i)
+{
+ {
+ const unsigned nC = m_nC;
+ if (nC > 0) {
+ {
+ dReal *const aptr = AROW(i);
+ dReal *Dell = m_Dell;
+ const unsigned *C = m_C;
+# ifdef NUB_OPTIMIZATIONS
+ // if nub>0, initial part of aptr unpermuted
+ const unsigned nub = m_nub;
+ unsigned j=0;
+ for ( ; j<nub; ++j) Dell[j] = aptr[j];
+ for ( ; j<nC; ++j) Dell[j] = aptr[C[j]];
+# else
+ for (unsigned j=0; j<nC; ++j) Dell[j] = aptr[C[j]];
+# endif
+ }
+ solveL1Straight<1>(m_L, m_Dell, nC, m_nskip);
+
+ dReal ell_Dell_dot = REAL(0.0);
+ dReal *const Ltgt = m_L + (sizeint)m_nskip * nC;
+ dReal *ell = m_ell, *Dell = m_Dell, *d = m_d;
+ for (unsigned j = 0; j < nC; ++j) {
+ dReal ell_j, Dell_j = Dell[j];
+ Ltgt[j] = ell[j] = ell_j = Dell_j * d[j];
+ ell_Dell_dot += ell_j * Dell_j;
+ }
+
+ dReal AROW_i_i = AROW(i)[i] != ell_Dell_dot ? AROW(i)[i] : dNextAfter(AROW(i)[i], dInfinity); // A hack to avoid getting a zero in the denominator
+ m_d[nC] = dRecip (AROW_i_i - ell_Dell_dot);
+ }
+ else {
+ m_d[0] = dRecip (AROW(i)[i]);
+ }
+
+ swapProblem (m_A, m_pairsbx, m_w, m_pairslh, m_p, m_state, m_findex, m_n, nC, i, m_nskip, 1);
+
+ m_C[nC] = nC;
+ m_nN--;
+ m_nC = nC + 1; // nC value is outdated after this line
+ }
+
+ // @@@ TO DO LATER
+ // if we just finish here then we'll go back and re-solve for
+ // delta_x. but actually we can be more efficient and incrementally
+ // update delta_x here. but if we do this, we wont have ell and Dell
+ // to use in updating the factorization later.
+
+# ifdef DEBUG_LCP
+ checkFactorization (m_A,m_L,m_d,m_nC,m_C,m_nskip);
+# endif
+}
+
+
+void dLCP::transfer_i_from_C_to_N (unsigned i, void *tmpbuf)
+{
+ {
+ unsigned *C = m_C;
+ // remove a row/column from the factorization, and adjust the
+ // indexes (black magic!)
+ int last_idx = -1;
+ const unsigned nC = m_nC;
+ unsigned j = 0;
+ for ( ; j < nC; ++j) {
+ if (C[j] == nC - 1) {
+ last_idx = j;
+ }
+ if (C[j] == i) {
+ dxLDLTRemove (m_A, C, m_L, m_d, m_n, nC, j, m_nskip, tmpbuf);
+ unsigned k;
+ if (last_idx == -1) {
+ for (k = j + 1 ; k < nC; ++k) {
+ if (C[k] == nC - 1) {
+ break;
+ }
+ }
+ dIASSERT (k < nC);
+ }
+ else {
+ k = last_idx;
+ }
+ C[k] = C[j];
+ if (j != (nC - 1)) memmove (C + j, C + j + 1, (nC - j - 1) * sizeof(C[0]));
+ break;
+ }
+ }
+ dIASSERT (j < nC);
+
+ swapProblem (m_A, m_pairsbx, m_w, m_pairslh, m_p, m_state, m_findex, m_n, i, nC - 1, m_nskip, 1);
+
+ m_nN++;
+ m_nC = nC - 1; // nC value is outdated after this line
+ }
+
+# ifdef DEBUG_LCP
+ checkFactorization (m_A, m_L, m_d, m_nC, m_C, m_nskip);
+# endif
+}
+
+
+void dLCP::pN_equals_ANC_times_qC (dReal *p, dReal *q)
+{
+ // we could try to make this matrix-vector multiplication faster using
+ // outer product matrix tricks, e.g. with the dMultidotX() functions.
+ // but i tried it and it actually made things slower on random 100x100
+ // problems because of the overhead involved. so we'll stick with the
+ // simple method for now.
+ const unsigned nC = m_nC;
+ dReal *ptgt = p + nC;
+ const unsigned nN = m_nN;
+ for (unsigned i = 0; i < nN; ++i) {
+ ptgt[i] = dxDot (AROW(i + nC), q, nC);
+ }
+}
+
+
+void dLCP::pN_plusequals_ANi (dReal *p, unsigned i, bool dir_positive)
+{
+ const unsigned nC = m_nC;
+ dReal *aptr = AROW(i) + nC;
+ dReal *ptgt = p + nC;
+ if (dir_positive) {
+ const unsigned nN = m_nN;
+ for (unsigned j=0; j < nN; ++j) ptgt[j] += aptr[j];
+ }
+ else {
+ const unsigned nN = m_nN;
+ for (unsigned j=0; j < nN; ++j) ptgt[j] -= aptr[j];
+ }
+}
+
+template<unsigned p_stride>
+void dLCP::pC_plusequals_s_times_qC (dReal *p, dReal s, dReal *q)
+{
+ const unsigned nC = m_nC;
+ dReal *q_end = q + nC;
+ for (; q != q_end; p += p_stride, ++q) {
+ *p += s * (*q);
+ }
+}
+
+void dLCP::pN_plusequals_s_times_qN (dReal *p, dReal s, dReal *q)
+{
+ const unsigned nC = m_nC;
+ dReal *ptgt = p + nC, *qsrc = q + nC;
+ const unsigned nN = m_nN;
+ for (unsigned i = 0; i < nN; ++i) {
+ ptgt[i] += s * qsrc[i];
+ }
+}
+
+void dLCP::solve1 (dReal *a, unsigned i, bool dir_positive, int only_transfer)
+{
+ // the `Dell' and `ell' that are computed here are saved. if index i is
+ // later added to the factorization then they can be reused.
+ //
+ // @@@ question: do we need to solve for entire delta_x??? yes, but
+ // only if an x goes below 0 during the step.
+
+ const unsigned nC = m_nC;
+ if (nC > 0) {
+ {
+ dReal *Dell = m_Dell;
+ unsigned *C = m_C;
+ dReal *aptr = AROW(i);
+# ifdef NUB_OPTIMIZATIONS
+ // if nub>0, initial part of aptr[] is guaranteed unpermuted
+ const unsigned nub = m_nub;
+ unsigned j = 0;
+ for ( ; j < nub; ++j) Dell[j] = aptr[j];
+ for ( ; j < nC; ++j) Dell[j] = aptr[C[j]];
+# else
+ for (unsigned j = 0; j < nC; ++j) Dell[j] = aptr[C[j]];
+# endif
+ }
+ solveL1Straight<1>(m_L, m_Dell, nC, m_nskip);
+ {
+ dReal *ell = m_ell, *Dell = m_Dell, *d = m_d;
+ for (unsigned j = 0; j < nC; ++j) ell[j] = Dell[j] * d[j];
+ }
+
+ if (!only_transfer) {
+ dReal *tmp = m_tmp, *ell = m_ell;
+ {
+ for (unsigned j = 0; j < nC; ++j) tmp[j] = ell[j];
+ }
+ solveL1Transposed<1>(m_L, tmp, nC, m_nskip);
+ if (dir_positive) {
+ unsigned *C = m_C;
+ dReal *tmp = m_tmp;
+ for (unsigned j = 0; j < nC; ++j) a[C[j]] = -tmp[j];
+ } else {
+ unsigned *C = m_C;
+ dReal *tmp = m_tmp;
+ for (unsigned j = 0; j < nC; ++j) a[C[j]] = tmp[j];
+ }
+ }
+ }
+}
+
+
+void dLCP::unpermute_X()
+{
+ unsigned *p = m_p;
+ dReal *pairsbx = m_pairsbx;
+ const unsigned n = m_n;
+ for (unsigned j = 0; j < n; ++j) {
+ unsigned k = p[j];
+ if (k != j) {
+ // p[j] = j; -- not going to be checked anymore anyway
+ dReal x_j = (pairsbx + (sizeint)j * PBX__MAX)[PBX_X];
+ for (;;) {
+ dxSwap(x_j, (pairsbx + (sizeint)k * PBX__MAX)[PBX_X]);
+
+ unsigned orig_k = p[k];
+ p[k] = k;
+ if (orig_k == j) {
+ break;
+ }
+ k = orig_k;
+ }
+ (pairsbx + (sizeint)j * PBX__MAX)[PBX_X] = x_j;
+ }
+ }
+}
+
+void dLCP::unpermute_W()
+{
+ memcpy (m_tmp, m_w, m_n * sizeof(dReal));
+
+ const unsigned *p = m_p;
+ dReal *w = m_w, *tmp = m_tmp;
+ const unsigned n = m_n;
+ for (unsigned j = 0; j < n; ++j) {
+ unsigned k = p[j];
+ w[k] = tmp[j];
+ }
+}
+
+#endif // dLCP_FAST
+
+
+static void dxSolveLCP_AllUnbounded (dxWorldProcessMemArena *memarena, unsigned n, dReal *A, dReal pairsbx[PBX__MAX]);
+static void dxSolveLCP_Generic (dxWorldProcessMemArena *memarena, unsigned n, dReal *A, dReal pairsbx[PBX__MAX],
+ dReal *outer_w/*=NULL*/, unsigned nub, dReal pairslh[PLH__MAX], int *findex);
+
+/*extern */
+void dxSolveLCP (dxWorldProcessMemArena *memarena, unsigned n, dReal *A, dReal pairsbx[PBX__MAX],
+ dReal *outer_w/*=NULL*/, unsigned nub, dReal pairslh[PLH__MAX], int *findex)
+{
+ if (nub >= n)
+ {
+ dxSolveLCP_AllUnbounded (memarena, n, A, pairsbx);
+ }
+ else
+ {
+ dxSolveLCP_Generic (memarena, n, A, pairsbx, outer_w, nub, pairslh, findex);
+ }
+}
+
+//***************************************************************************
+// if all the variables are unbounded then we can just factor, solve, and return
+
+static
+void dxSolveLCP_AllUnbounded (dxWorldProcessMemArena *memarena, unsigned n, dReal *A, dReal pairsbx[PBX__MAX])
+{
+ dAASSERT(A != NULL);
+ dAASSERT(pairsbx != NULL);
+ dAASSERT(n != 0);
+
+ transfer_b_to_x<true>(pairsbx, n);
+
+ unsigned nskip = dPAD(n);
+ factorMatrixAsLDLT<PBX__MAX> (A, pairsbx + PBX_B, n, nskip);
+ solveEquationSystemWithLDLT<PBX__MAX, PBX__MAX> (A, pairsbx + PBX_B, pairsbx + PBX_X, n, nskip);
+}
+
+//***************************************************************************
+// an optimized Dantzig LCP driver routine for the lo-hi LCP problem.
+
+static
+void dxSolveLCP_Generic (dxWorldProcessMemArena *memarena, unsigned n, dReal *A, dReal pairsbx[PBX__MAX],
+ dReal *outer_w/*=NULL*/, unsigned nub, dReal pairslh[PLH__MAX], int *findex)
+{
+ dAASSERT (n > 0 && A && pairsbx && pairslh && nub >= 0 && nub < n);
+# ifndef dNODEBUG
+ {
+ // check restrictions on lo and hi
+ dReal *endlh = pairslh + (sizeint)n * PLH__MAX;
+ for (dReal *currlh = pairslh; currlh != endlh; currlh += PLH__MAX) dIASSERT (currlh[PLH_LO] <= 0 && currlh[PLH_HI] >= 0);
+ }
+# endif
+
+ const unsigned nskip = dPAD(n);
+ dReal *L = memarena->AllocateOveralignedArray<dReal> ((sizeint)nskip * n, LMATRIX_ALIGNMENT);
+ dReal *d = memarena->AllocateArray<dReal> (n);
+ dReal *w = outer_w != NULL ? outer_w : memarena->AllocateArray<dReal> (n);
+ dReal *delta_w = memarena->AllocateArray<dReal> (n);
+ dReal *delta_x = memarena->AllocateArray<dReal> (n);
+ dReal *Dell = memarena->AllocateArray<dReal> (n);
+ dReal *ell = memarena->AllocateArray<dReal> (n);
+#ifdef ROWPTRS
+ dReal **Arows = memarena->AllocateArray<dReal *> (n);
+#else
+ dReal **Arows = NULL;
+#endif
+ unsigned *p = memarena->AllocateArray<unsigned> (n);
+ unsigned *C = memarena->AllocateArray<unsigned> (n);
+
+ // for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i)
+ bool *state = memarena->AllocateArray<bool> (n);
+
+ // create LCP object. note that tmp is set to delta_w to save space, this
+ // optimization relies on knowledge of how tmp is used, so be careful!
+ dLCP lcp(n, nskip, nub, A, pairsbx, w, pairslh, L, d, Dell, ell, delta_w, state, findex, p, C, Arows);
+ unsigned adj_nub = lcp.getNub();
+
+ // loop over all indexes adj_nub..n-1. for index i, if x(i),w(i) satisfy the
+ // LCP conditions then i is added to the appropriate index set. otherwise
+ // x(i),w(i) is driven either +ve or -ve to force it to the valid region.
+ // as we drive x(i), x(C) is also adjusted to keep w(C) at zero.
+ // while driving x(i) we maintain the LCP conditions on the other variables
+ // 0..i-1. we do this by watching out for other x(i),w(i) values going
+ // outside the valid region, and then switching them between index sets
+ // when that happens.
+
+ bool hit_first_friction_index = false;
+ for (unsigned i = adj_nub; i < n; ++i) {
+ bool s_error = false;
+ // the index i is the driving index and indexes i+1..n-1 are "dont care",
+ // i.e. when we make changes to the system those x's will be zero and we
+ // don't care what happens to those w's. in other words, we only consider
+ // an (i+1)*(i+1) sub-problem of A*x=b+w.
+
+ // if we've hit the first friction index, we have to compute the lo and
+ // hi values based on the values of x already computed. we have been
+ // permuting the indexes, so the values stored in the findex vector are
+ // no longer valid. thus we have to temporarily unpermute the x vector.
+ // for the purposes of this computation, 0*infinity = 0 ... so if the
+ // contact constraint's normal force is 0, there should be no tangential
+ // force applied.
+
+ if (!hit_first_friction_index && findex && findex[i] >= 0) {
+ // un-permute x into delta_w, which is not being used at the moment
+ for (unsigned j = 0; j < n; ++j) delta_w[p[j]] = (pairsbx + (sizeint)j * PBX__MAX)[PBX_X];
+
+ // set lo and hi values
+ for (unsigned k = i; k < n; ++k) {
+ dReal *currlh = pairslh + (sizeint)k * PLH__MAX;
+ dReal wfk = delta_w[findex[k]];
+ if (wfk == 0) {
+ currlh[PLH_HI] = 0;
+ currlh[PLH_LO] = 0;
+ }
+ else {
+ currlh[PLH_HI] = dFabs (currlh[PLH_HI] * wfk);
+ currlh[PLH_LO] = -currlh[PLH_HI];
+ }
+ }
+ hit_first_friction_index = true;
+ }
+
+ // thus far we have not even been computing the w values for indexes
+ // greater than i, so compute w[i] now.
+ dReal wPrep = lcp.AiC_times_qC<PBX__MAX> (i, pairsbx + PBX_X) + lcp.AiN_times_qN<PBX__MAX> (i, pairsbx + PBX_X);
+
+ dReal *currbx = pairsbx + (sizeint)i * PBX__MAX;
+
+ w[i] = wPrep - currbx[PBX_B];
+
+ // if lo=hi=0 (which can happen for tangential friction when normals are
+ // 0) then the index will be assigned to set N with some state. however,
+ // set C's line has zero size, so the index will always remain in set N.
+ // with the "normal" switching logic, if w changed sign then the index
+ // would have to switch to set C and then back to set N with an inverted
+ // state. this is pointless, and also computationally expensive. to
+ // prevent this from happening, we use the rule that indexes with lo=hi=0
+ // will never be checked for set changes. this means that the state for
+ // these indexes may be incorrect, but that doesn't matter.
+
+ dReal *currlh = pairslh + (sizeint)i * PLH__MAX;
+
+ // see if x(i),w(i) is in a valid region
+ if (currlh[PLH_LO] == 0 && w[i] >= 0) {
+ lcp.transfer_i_to_N (i);
+ state[i] = false;
+ }
+ else if (currlh[PLH_HI] == 0 && w[i] <= 0) {
+ lcp.transfer_i_to_N (i);
+ state[i] = true;
+ }
+ else if (w[i] == 0) {
+ // this is a degenerate case. by the time we get to this test we know
+ // that lo != 0, which means that lo < 0 as lo is not allowed to be +ve,
+ // and similarly that hi > 0. this means that the line segment
+ // corresponding to set C is at least finite in extent, and we are on it.
+ // NOTE: we must call lcp.solve1() before lcp.transfer_i_to_C()
+ lcp.solve1 (delta_x, i, false, 1);
+
+ lcp.transfer_i_to_C (i);
+ }
+ else {
+ // we must push x(i) and w(i)
+ for (;;) {
+ // find direction to push on x(i)
+ bool dir_positive = (w[i] <= 0);
+
+ // compute: delta_x(C) = -dir*A(C,C)\A(C,i)
+ lcp.solve1 (delta_x, i, dir_positive);
+
+ // note that delta_x[i] = (dir_positive ? 1 : -1), but we wont bother to set it
+
+ // compute: delta_w = A*delta_x ... note we only care about
+ // delta_w(N) and delta_w(i), the rest is ignored
+ lcp.pN_equals_ANC_times_qC (delta_w, delta_x);
+ lcp.pN_plusequals_ANi (delta_w, i, dir_positive);
+ delta_w[i] = dir_positive
+ ? lcp.AiC_times_qC<1> (i, delta_x) + lcp.Aii(i)
+ : lcp.AiC_times_qC<1> (i, delta_x) - lcp.Aii(i);
+
+ // find largest step we can take (size=s), either to drive x(i),w(i)
+ // to the valid LCP region or to drive an already-valid variable
+ // outside the valid region.
+
+ int cmd = 1; // index switching command
+ unsigned si = 0; // si = index to switch if cmd>3
+
+ dReal s = delta_w[i] != REAL(0.0)
+ ? -w[i] / delta_w[i]
+ : (w[i] != REAL(0.0) ? dCopySign(dInfinity, -w[i]) : REAL(0.0));
+
+ if (dir_positive) {
+ if (currlh[PLH_HI] < dInfinity) {
+ dReal s2 = (currlh[PLH_HI] - currbx[PBX_X]); // was (hi[i]-x[i])/dirf // step to x(i)=hi(i)
+ if (s2 < s) {
+ s = s2;
+ cmd = 3;
+ }
+ }
+ }
+ else {
+ if (currlh[PLH_LO] > -dInfinity) {
+ dReal s2 = (currbx[PBX_X] - currlh[PLH_LO]); // was (lo[i]-x[i])/dirf // step to x(i)=lo(i)
+ if (s2 < s) {
+ s = s2;
+ cmd = 2;
+ }
+ }
+ }
+
+ {
+ const unsigned numN = lcp.numN();
+ for (unsigned k = 0; k < numN; ++k) {
+ const unsigned indexN_k = lcp.indexN(k);
+ if (!state[indexN_k] ? delta_w[indexN_k] < 0 : delta_w[indexN_k] > 0) {
+ // don't bother checking if lo=hi=0
+ dReal *indexlh = pairslh + (sizeint)indexN_k * PLH__MAX;
+ if (indexlh[PLH_LO] == 0 && indexlh[PLH_HI] == 0) continue;
+ dReal s2 = -w[indexN_k] / delta_w[indexN_k];
+ if (s2 < s) {
+ s = s2;
+ cmd = 4;
+ si = indexN_k;
+ }
+ }
+ }
+ }
+
+ {
+ const unsigned numC = lcp.numC();
+ for (unsigned k = adj_nub; k < numC; ++k) {
+ const unsigned indexC_k = lcp.indexC(k);
+ dReal *indexlh = pairslh + (sizeint)indexC_k * PLH__MAX;
+ if (delta_x[indexC_k] < 0 && indexlh[PLH_LO] > -dInfinity) {
+ dReal s2 = (indexlh[PLH_LO] - (pairsbx + (sizeint)indexC_k * PBX__MAX)[PBX_X]) / delta_x[indexC_k];
+ if (s2 < s) {
+ s = s2;
+ cmd = 5;
+ si = indexC_k;
+ }
+ }
+ if (delta_x[indexC_k] > 0 && indexlh[PLH_HI] < dInfinity) {
+ dReal s2 = (indexlh[PLH_HI] - (pairsbx + (sizeint)indexC_k * PBX__MAX)[PBX_X]) / delta_x[indexC_k];
+ if (s2 < s) {
+ s = s2;
+ cmd = 6;
+ si = indexC_k;
+ }
+ }
+ }
+ }
+
+ //static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C",
+ // "C->NL","C->NH"};
+ //printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i);
+
+ // if s <= 0 then we've got a problem. if we just keep going then
+ // we're going to get stuck in an infinite loop. instead, just cross
+ // our fingers and exit with the current solution.
+ if (s <= REAL(0.0)) {
+ dMessage (d_ERR_LCP, "LCP internal error, s <= 0 (s=%.4e)",(double)s);
+ if (i < n) {
+ dxtSetZero<PBX__MAX>(currbx + PBX_X, n - i);
+ dxSetZero (w + i, n - i);
+ }
+ s_error = true;
+ break;
+ }
+
+ // apply x = x + s * delta_x
+ lcp.pC_plusequals_s_times_qC<PBX__MAX> (pairsbx + PBX_X, s, delta_x);
+ currbx[PBX_X] = dir_positive
+ ? currbx[PBX_X] + s
+ : currbx[PBX_X] - s;
+
+ // apply w = w + s * delta_w
+ lcp.pN_plusequals_s_times_qN (w, s, delta_w);
+ w[i] += s * delta_w[i];
+
+ void *tmpbuf;
+ // switch indexes between sets if necessary
+ switch (cmd) {
+ case 1: // done
+ w[i] = 0;
+ lcp.transfer_i_to_C (i);
+ break;
+ case 2: // done
+ currbx[PBX_X] = currlh[PLH_LO];
+ state[i] = false;
+ lcp.transfer_i_to_N (i);
+ break;
+ case 3: // done
+ currbx[PBX_X] = currlh[PLH_HI];
+ state[i] = true;
+ lcp.transfer_i_to_N (i);
+ break;
+ case 4: // keep going
+ w[si] = 0;
+ lcp.transfer_i_from_N_to_C (si);
+ break;
+ case 5: // keep going
+ (pairsbx + (sizeint)si * PBX__MAX)[PBX_X] = (pairslh + (sizeint)si * PLH__MAX)[PLH_LO];
+ state[si] = false;
+ tmpbuf = memarena->PeekBufferRemainder();
+ lcp.transfer_i_from_C_to_N (si, tmpbuf);
+ break;
+ case 6: // keep going
+ (pairsbx + (sizeint)si * PBX__MAX)[PBX_X] = (pairslh + (sizeint)si * PLH__MAX)[PLH_HI];
+ state[si] = true;
+ tmpbuf = memarena->PeekBufferRemainder();
+ lcp.transfer_i_from_C_to_N (si, tmpbuf);
+ break;
+ }
+
+ if (cmd <= 3) break;
+ } // for (;;)
+ } // else
+
+ if (s_error) {
+ break;
+ }
+ } // for (unsigned i = adj_nub; i < n; ++i)
+
+ // now we have to un-permute x and w
+ if (outer_w != NULL) {
+ lcp.unpermute_W();
+ }
+ lcp.unpermute_X(); // This destroys p[] and must be done last
+}
+
+sizeint dxEstimateSolveLCPMemoryReq(unsigned n, bool outer_w_avail)
+{
+ const unsigned nskip = dPAD(n);
+
+ sizeint res = 0;
+
+ res += dOVERALIGNED_SIZE(sizeof(dReal) * ((sizeint)n * nskip), LMATRIX_ALIGNMENT); // for L
+ res += 5 * dEFFICIENT_SIZE(sizeof(dReal) * n); // for d, delta_w, delta_x, Dell, ell
+ if (!outer_w_avail) {
+ res += dEFFICIENT_SIZE(sizeof(dReal) * n); // for w
+ }
+#ifdef ROWPTRS
+ res += dEFFICIENT_SIZE(sizeof(dReal *) * n); // for Arows
+#endif
+ res += 2 * dEFFICIENT_SIZE(sizeof(unsigned) * n); // for p, C
+ res += dEFFICIENT_SIZE(sizeof(bool) * n); // for state
+
+ // Use n instead of nC as nC varies at runtime while n is greater or equal to nC
+ sizeint lcp_transfer_req = dLCP::estimate_transfer_i_from_C_to_N_mem_req(n, nskip);
+ res += dEFFICIENT_SIZE(lcp_transfer_req); // for dLCP::transfer_i_from_C_to_N
+
+ return res;
+}
+
+
+//***************************************************************************
+// accuracy and timing test
+
+static sizeint EstimateTestSolveLCPMemoryReq(unsigned n)
+{
+ const unsigned nskip = dPAD(n);
+
+ sizeint res = 0;
+
+ res += 2 * dEFFICIENT_SIZE(sizeof(dReal) * ((sizeint)n * nskip)); // for A, A2
+ res += 7 * dEFFICIENT_SIZE(sizeof(dReal) * n); // for x, b, w, lo, hi, tmp1, tmp2
+ res += dEFFICIENT_SIZE(sizeof(dReal) * PBX__MAX * n); // for pairsbx,
+ res += dEFFICIENT_SIZE(sizeof(dReal) * PLH__MAX * n); // for pairslh
+
+ res += dxEstimateSolveLCPMemoryReq(n, true);
+
+ return res;
+}
+
+extern "C" ODE_API int dTestSolveLCP()
+{
+ const unsigned n = 100;
+
+ sizeint memreq = EstimateTestSolveLCPMemoryReq(n);
+ dxWorldProcessMemArena *arena = dxAllocateTemporaryWorldProcessMemArena(memreq, NULL, NULL);
+ if (arena == NULL) {
+ return 0;
+ }
+ arena->ResetState();
+
+ unsigned i,nskip = dPAD(n);
+#ifdef dDOUBLE
+ const dReal tol = REAL(1e-9);
+#endif
+#ifdef dSINGLE
+ const dReal tol = REAL(1e-4);
+#endif
+ printf ("dTestSolveLCP()\n");
+
+ dReal *A = arena->AllocateArray<dReal> (n*nskip);
+ dReal *x = arena->AllocateArray<dReal> (n);
+ dReal *b = arena->AllocateArray<dReal> (n);
+ dReal *w = arena->AllocateArray<dReal> (n);
+ dReal *lo = arena->AllocateArray<dReal> (n);
+ dReal *hi = arena->AllocateArray<dReal> (n);
+
+ dReal *A2 = arena->AllocateArray<dReal> (n*nskip);
+ dReal *pairsbx = arena->AllocateArray<dReal> (n * PBX__MAX);
+ dReal *pairslh = arena->AllocateArray<dReal> (n * PLH__MAX);
+
+ dReal *tmp1 = arena->AllocateArray<dReal> (n);
+ dReal *tmp2 = arena->AllocateArray<dReal> (n);
+
+ double total_time = 0;
+ for (unsigned count=0; count < 1000; count++) {
+ BEGIN_STATE_SAVE(arena, saveInner) {
+
+ // form (A,b) = a random positive definite LCP problem
+ dMakeRandomMatrix (A2,n,n,1.0);
+ dMultiply2 (A,A2,A2,n,n,n);
+ dMakeRandomMatrix (x,n,1,1.0);
+ dMultiply0 (b,A,x,n,n,1);
+ for (i=0; i<n; i++) b[i] += (dRandReal()*REAL(0.2))-REAL(0.1);
+
+ // choose `nub' in the range 0..n-1
+ unsigned nub = 50; //dRandInt (n);
+
+ // make limits
+ for (i=0; i<nub; i++) lo[i] = -dInfinity;
+ for (i=0; i<nub; i++) hi[i] = dInfinity;
+ //for (i=nub; i<n; i++) lo[i] = 0;
+ //for (i=nub; i<n; i++) hi[i] = dInfinity;
+ //for (i=nub; i<n; i++) lo[i] = -dInfinity;
+ //for (i=nub; i<n; i++) hi[i] = 0;
+ for (i=nub; i<n; i++) lo[i] = -(dRandReal()*REAL(1.0))-REAL(0.01);
+ for (i=nub; i<n; i++) hi[i] = (dRandReal()*REAL(1.0))+REAL(0.01);
+
+ // set a few limits to lo=hi=0
+ /*
+ for (i=0; i<10; i++) {
+ unsigned j = dRandInt (n-nub) + nub;
+ lo[j] = 0;
+ hi[j] = 0;
+ }
+ */
+
+ // solve the LCP. we must make copy of A,b,lo,hi (A2,b2,lo2,hi2) for
+ // SolveLCP() to permute. also, we'll clear the upper triangle of A2 to
+ // ensure that it doesn't get referenced (if it does, the answer will be
+ // wrong).
+
+ memcpy (A2, A, n * nskip * sizeof(dReal));
+ dClearUpperTriangle (A2, n);
+ for (i = 0; i != n; ++i) {
+ dReal *currbx = pairsbx + i * PBX__MAX;
+ currbx[PBX_B] = b[i];
+ currbx[PBX_X] = 0;
+ }
+ for (i = 0; i != n; ++i) {
+ dReal *currlh = pairslh + i * PLH__MAX;
+ currlh[PLH_LO] = lo[i];
+ currlh[PLH_HI] = hi[i];
+ }
+ dSetZero (w,n);
+
+ dStopwatch sw;
+ dStopwatchReset (&sw);
+ dStopwatchStart (&sw);
+
+ dxSolveLCP (arena,n,A2,pairsbx,w,nub,pairslh,0);
+
+ dStopwatchStop (&sw);
+ double time = dStopwatchTime(&sw);
+ total_time += time;
+ double average = total_time / double(count+1) * 1000.0;
+
+ for (i = 0; i != n; ++i) {
+ const dReal *currbx = pairsbx + i * PBX__MAX;
+ x[i] = currbx[PBX_X];
+ }
+
+ // check the solution
+
+ dMultiply0 (tmp1,A,x,n,n,1);
+ for (i=0; i<n; i++) tmp2[i] = b[i] + w[i];
+ dReal diff = dMaxDifference (tmp1,tmp2,n,1);
+ // printf ("\tA*x = b+w, maximum difference = %.6e - %s (1)\n",diff,
+ // diff > tol ? "FAILED" : "passed");
+ if (diff > tol) dDebug (0,"A*x = b+w, maximum difference = %.6e",diff);
+ unsigned n1=0,n2=0,n3=0;
+ for (i=0; i<n; i++) {
+ if (x[i]==lo[i] && w[i] >= 0) {
+ n1++; // ok
+ }
+ else if (x[i]==hi[i] && w[i] <= 0) {
+ n2++; // ok
+ }
+ else if (x[i] >= lo[i] && x[i] <= hi[i] && w[i] == 0) {
+ n3++; // ok
+ }
+ else {
+ dDebug (0,"FAILED: i=%d x=%.4e w=%.4e lo=%.4e hi=%.4e",i,
+ x[i],w[i],lo[i],hi[i]);
+ }
+ }
+
+ // pacifier
+ printf ("passed: NL=%3d NH=%3d C=%3d ",n1,n2,n3);
+ printf ("time=%10.3f ms avg=%10.4f\n",time * 1000.0,average);
+
+ } END_STATE_SAVE(arena, saveInner);
+ }
+
+ dxFreeTemporaryWorldProcessMemArena(arena);
+ return 1;
+}
|