summaryrefslogtreecommitdiff
path: root/libs/pixman-0.40.0/test/cover-test.c
diff options
context:
space:
mode:
Diffstat (limited to 'libs/pixman-0.40.0/test/cover-test.c')
-rw-r--r--libs/pixman-0.40.0/test/cover-test.c449
1 files changed, 0 insertions, 449 deletions
diff --git a/libs/pixman-0.40.0/test/cover-test.c b/libs/pixman-0.40.0/test/cover-test.c
deleted file mode 100644
index 83e2972..0000000
--- a/libs/pixman-0.40.0/test/cover-test.c
+++ /dev/null
@@ -1,449 +0,0 @@
-/*
- * Copyright © 2015 RISC OS Open Ltd
- *
- * Permission to use, copy, modify, distribute, and sell this software and its
- * documentation for any purpose is hereby granted without fee, provided that
- * the above copyright notice appear in all copies and that both that
- * copyright notice and this permission notice appear in supporting
- * documentation, and that the name of the copyright holders not be used in
- * advertising or publicity pertaining to distribution of the software without
- * specific, written prior permission. The copyright holders make no
- * representations about the suitability of this software for any purpose. It
- * is provided "as is" without express or implied warranty.
- *
- * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
- * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
- * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
- * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
- * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
- * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
- * SOFTWARE.
- *
- * Author: Ben Avison (bavison@riscosopen.org)
- *
- */
-
-/*
- * This test aims to verify both numerical correctness and the honouring of
- * array bounds for scaled plots (both nearest-neighbour and bilinear) at or
- * close to the boundary conditions for applicability of "cover" type fast paths
- * and iter fetch routines.
- *
- * It has a secondary purpose: by setting the env var EXACT (to any value) it
- * will only test plots that are exactly on the boundary condition. This makes
- * it possible to ensure that "cover" routines are being used to the maximum,
- * although this requires the use of a debugger or code instrumentation to
- * verify.
- */
-
-#include "utils.h"
-#include <stdlib.h>
-#include <stdio.h>
-
-/* Approximate limits for random scale factor generation - these ensure we can
- * get at least 8x reduction and 8x enlargement.
- */
-#define LOG2_MAX_FACTOR (3)
-
-/* 1/sqrt(2) (or sqrt(0.5), or 2^-0.5) as a 0.32 fixed-point number */
-#define INV_SQRT_2_0POINT32_FIXED (0xB504F334u)
-
-/* The largest increment that can be generated by random_scale_factor().
- * This occurs when the "mantissa" part is 0xFFFFFFFF and the "exponent"
- * part is -LOG2_MAX_FACTOR.
- */
-#define MAX_INC ((pixman_fixed_t) \
- (INV_SQRT_2_0POINT32_FIXED >> (31 - 16 - LOG2_MAX_FACTOR)))
-
-/* Minimum source width (in pixels) based on a typical page size of 4K and
- * maximum colour depth of 32bpp.
- */
-#define MIN_SRC_WIDTH (4096 / 4)
-
-/* Derive the destination width so that at max increment we fit within source */
-#define DST_WIDTH (MIN_SRC_WIDTH * pixman_fixed_1 / MAX_INC)
-
-/* Calculate heights the other way round.
- * No limits due to page alignment here.
- */
-#define DST_HEIGHT 3
-#define SRC_HEIGHT ((DST_HEIGHT * MAX_INC + pixman_fixed_1 - 1) / pixman_fixed_1)
-
-/* At the time of writing, all the scaled fast paths use SRC, OVER or ADD
- * Porter-Duff operators. XOR is included in the list to ensure good
- * representation of iter scanline fetch routines.
- */
-static const pixman_op_t op_list[] = {
- PIXMAN_OP_SRC,
- PIXMAN_OP_OVER,
- PIXMAN_OP_ADD,
- PIXMAN_OP_XOR,
-};
-
-/* At the time of writing, all the scaled fast paths use a8r8g8b8, x8r8g8b8
- * or r5g6b5, or red-blue swapped versions of the same. When a mask channel is
- * used, it is always a8 (and so implicitly not component alpha). a1r5g5b5 is
- * included because it is the only other format to feature in any iters. */
-static const pixman_format_code_t img_fmt_list[] = {
- PIXMAN_a8r8g8b8,
- PIXMAN_x8r8g8b8,
- PIXMAN_r5g6b5,
- PIXMAN_a1r5g5b5
-};
-
-/* This is a flag reflecting the environment variable EXACT. It can be used
- * to ensure that source coordinates corresponding exactly to the "cover" limits
- * are used, rather than any "near misses". This can, for example, be used in
- * conjunction with a debugger to ensure that only COVER fast paths are used.
- */
-static int exact;
-
-static pixman_image_t *
-create_src_image (pixman_format_code_t fmt)
-{
- pixman_image_t *tmp_img, *img;
-
- /* We need the left-most and right-most MIN_SRC_WIDTH pixels to have
- * predictable values, even though fence_image_create_bits() may allocate
- * an image somewhat larger than that, by an amount that varies depending
- * upon the page size on the current platform. The solution is to create a
- * temporary non-fenced image that is exactly MIN_SRC_WIDTH wide and blit it
- * into the fenced image.
- */
- tmp_img = pixman_image_create_bits (fmt, MIN_SRC_WIDTH, SRC_HEIGHT,
- NULL, 0);
- if (tmp_img == NULL)
- return NULL;
-
- img = fence_image_create_bits (fmt, MIN_SRC_WIDTH, SRC_HEIGHT, TRUE);
- if (img == NULL)
- {
- pixman_image_unref (tmp_img);
- return NULL;
- }
-
- prng_randmemset (tmp_img->bits.bits,
- tmp_img->bits.rowstride * SRC_HEIGHT * sizeof (uint32_t),
- 0);
- image_endian_swap (tmp_img);
-
- pixman_image_composite (PIXMAN_OP_SRC, tmp_img, NULL, img,
- 0, 0, 0, 0, 0, 0,
- MIN_SRC_WIDTH, SRC_HEIGHT);
- pixman_image_composite (PIXMAN_OP_SRC, tmp_img, NULL, img,
- 0, 0, 0, 0, img->bits.width - MIN_SRC_WIDTH, 0,
- MIN_SRC_WIDTH, SRC_HEIGHT);
-
- pixman_image_unref (tmp_img);
-
- return img;
-}
-
-static pixman_fixed_t
-random_scale_factor(void)
-{
- /* Get a random number with top bit set. */
- uint32_t f = prng_rand () | 0x80000000u;
-
- /* In log(2) space, this is still approximately evenly spread between 31
- * and 32. Divide by sqrt(2) to centre the distribution on 2^31.
- */
- f = ((uint64_t) f * INV_SQRT_2_0POINT32_FIXED) >> 32;
-
- /* Now shift right (ie divide by an integer power of 2) to spread the
- * distribution between centres at 2^(16 +/- LOG2_MAX_FACTOR).
- */
- f >>= 31 - 16 + prng_rand_n (2 * LOG2_MAX_FACTOR + 1) - LOG2_MAX_FACTOR;
-
- return f;
-}
-
-static pixman_fixed_t
-calc_translate (int dst_size,
- int src_size,
- pixman_fixed_t scale,
- pixman_bool_t low_align,
- pixman_bool_t bilinear)
-{
- pixman_fixed_t ref_src, ref_dst, scaled_dst;
-
- if (low_align)
- {
- ref_src = bilinear ? pixman_fixed_1 / 2 : pixman_fixed_e;
- ref_dst = pixman_fixed_1 / 2;
- }
- else
- {
- ref_src = pixman_int_to_fixed (src_size) -
- bilinear * pixman_fixed_1 / 2;
- ref_dst = pixman_int_to_fixed (dst_size) - pixman_fixed_1 / 2;
- }
-
- scaled_dst = ((uint64_t) ref_dst * scale + pixman_fixed_1 / 2) /
- pixman_fixed_1;
-
- /* We need the translation to be set such that when ref_dst is fed through
- * the transformation matrix, we get ref_src as the result.
- */
- return ref_src - scaled_dst;
-}
-
-static pixman_fixed_t
-random_offset (void)
-{
- pixman_fixed_t offset = 0;
-
- /* Ensure we test the exact case quite a lot */
- if (prng_rand_n (2))
- return offset;
-
- /* What happens when we are close to the edge of the first
- * interpolation step?
- */
- if (prng_rand_n (2))
- offset += (pixman_fixed_1 >> BILINEAR_INTERPOLATION_BITS) - 16;
-
- /* Try fine-grained variations */
- offset += prng_rand_n (32);
-
- /* Test in both directions */
- if (prng_rand_n (2))
- offset = -offset;
-
- return offset;
-}
-
-static void
-check_transform (pixman_image_t *dst_img,
- pixman_image_t *src_img,
- pixman_transform_t *transform,
- pixman_bool_t bilinear)
-{
- pixman_vector_t v1, v2;
-
- v1.vector[0] = pixman_fixed_1 / 2;
- v1.vector[1] = pixman_fixed_1 / 2;
- v1.vector[2] = pixman_fixed_1;
- assert (pixman_transform_point (transform, &v1));
-
- v2.vector[0] = pixman_int_to_fixed (dst_img->bits.width) -
- pixman_fixed_1 / 2;
- v2.vector[1] = pixman_int_to_fixed (dst_img->bits.height) -
- pixman_fixed_1 / 2;
- v2.vector[2] = pixman_fixed_1;
- assert (pixman_transform_point (transform, &v2));
-
- if (bilinear)
- {
- assert (v1.vector[0] >= pixman_fixed_1 / 2);
- assert (v1.vector[1] >= pixman_fixed_1 / 2);
- assert (v2.vector[0] <= pixman_int_to_fixed (src_img->bits.width) -
- pixman_fixed_1 / 2);
- assert (v2.vector[1] <= pixman_int_to_fixed (src_img->bits.height) -
- pixman_fixed_1 / 2);
- }
- else
- {
- assert (v1.vector[0] >= pixman_fixed_e);
- assert (v1.vector[1] >= pixman_fixed_e);
- assert (v2.vector[0] <= pixman_int_to_fixed (src_img->bits.width));
- assert (v2.vector[1] <= pixman_int_to_fixed (src_img->bits.height));
- }
-}
-
-static uint32_t
-test_cover (int testnum, int verbose)
-{
- pixman_fixed_t x_scale, y_scale;
- pixman_bool_t left_align, top_align;
- pixman_bool_t bilinear;
- pixman_filter_t filter;
- pixman_op_t op;
- size_t src_fmt_index;
- pixman_format_code_t src_fmt, dst_fmt, mask_fmt;
- pixman_image_t *src_img, *dst_img, *mask_img;
- pixman_transform_t src_transform, mask_transform;
- pixman_fixed_t fuzz[4];
- uint32_t crc32;
-
- /* We allocate one fenced image for each pixel format up-front. This is to
- * avoid spending a lot of time on memory management rather than on testing
- * Pixman optimisations. We need one per thread because the transformation
- * matrices and filtering are properties of the source and mask images.
- */
- static pixman_image_t *src_imgs[ARRAY_LENGTH (img_fmt_list)];
- static pixman_image_t *mask_bits_img;
- static pixman_bool_t fence_images_created;
-#ifdef USE_OPENMP
-#pragma omp threadprivate (src_imgs)
-#pragma omp threadprivate (mask_bits_img)
-#pragma omp threadprivate (fence_images_created)
-#endif
-
- if (!fence_images_created)
- {
- int i;
-
- prng_srand (0);
-
- for (i = 0; i < ARRAY_LENGTH (img_fmt_list); i++)
- src_imgs[i] = create_src_image (img_fmt_list[i]);
-
- mask_bits_img = create_src_image (PIXMAN_a8);
-
- fence_images_created = TRUE;
- }
-
- prng_srand (testnum);
-
- x_scale = random_scale_factor ();
- y_scale = random_scale_factor ();
- left_align = prng_rand_n (2);
- top_align = prng_rand_n (2);
- bilinear = prng_rand_n (2);
- filter = bilinear ? PIXMAN_FILTER_BILINEAR : PIXMAN_FILTER_NEAREST;
-
- op = op_list[prng_rand_n (ARRAY_LENGTH (op_list))];
-
- dst_fmt = img_fmt_list[prng_rand_n (ARRAY_LENGTH (img_fmt_list))];
- dst_img = pixman_image_create_bits (dst_fmt, DST_WIDTH, DST_HEIGHT,
- NULL, 0);
- prng_randmemset (dst_img->bits.bits,
- dst_img->bits.rowstride * DST_HEIGHT * sizeof (uint32_t),
- 0);
- image_endian_swap (dst_img);
-
- src_fmt_index = prng_rand_n (ARRAY_LENGTH (img_fmt_list));
- src_fmt = img_fmt_list[src_fmt_index];
- src_img = src_imgs[src_fmt_index];
- pixman_image_set_filter (src_img, filter, NULL, 0);
- pixman_transform_init_scale (&src_transform, x_scale, y_scale);
- src_transform.matrix[0][2] = calc_translate (dst_img->bits.width,
- src_img->bits.width,
- x_scale, left_align, bilinear);
- src_transform.matrix[1][2] = calc_translate (dst_img->bits.height,
- src_img->bits.height,
- y_scale, top_align, bilinear);
-
- if (prng_rand_n (2))
- {
- /* No mask */
- mask_fmt = PIXMAN_null;
- mask_img = NULL;
- }
- else if (prng_rand_n (2))
- {
- /* a8 bitmap mask */
- mask_fmt = PIXMAN_a8;
- mask_img = mask_bits_img;
- pixman_image_set_filter (mask_img, filter, NULL, 0);
- pixman_transform_init_scale (&mask_transform, x_scale, y_scale);
- mask_transform.matrix[0][2] = calc_translate (dst_img->bits.width,
- mask_img->bits.width,
- x_scale, left_align,
- bilinear);
- mask_transform.matrix[1][2] = calc_translate (dst_img->bits.height,
- mask_img->bits.height,
- y_scale, top_align,
- bilinear);
- }
- else
- {
- /* Solid mask */
- pixman_color_t color;
- memset (&color, 0xAA, sizeof color);
- mask_fmt = PIXMAN_solid;
- mask_img = pixman_image_create_solid_fill (&color);
- }
-
- if (!exact)
- {
- int i = 0;
-
- while (i < 4)
- fuzz[i++] = random_offset ();
-
- src_transform.matrix[0][2] += fuzz[0];
- src_transform.matrix[1][2] += fuzz[1];
- mask_transform.matrix[0][2] += fuzz[2];
- mask_transform.matrix[1][2] += fuzz[3];
- }
-
- pixman_image_set_transform (src_img, &src_transform);
- if (mask_fmt == PIXMAN_a8)
- pixman_image_set_transform (mask_img, &mask_transform);
-
- if (verbose)
- {
- printf ("op=%s\n", operator_name (op));
- printf ("src_fmt=%s, dst_fmt=%s, mask_fmt=%s\n",
- format_name (src_fmt), format_name (dst_fmt),
- format_name (mask_fmt));
- printf ("x_scale=0x%08X, y_scale=0x%08X, align %s/%s, %s\n",
- x_scale, y_scale,
- left_align ? "left" : "right", top_align ? "top" : "bottom",
- bilinear ? "bilinear" : "nearest");
-
- if (!exact)
- {
- int i = 0;
-
- printf ("fuzz factors");
- while (i < 4)
- printf (" %d", fuzz[i++]);
- printf ("\n");
- }
- }
-
- if (exact)
- {
- check_transform (dst_img, src_img, &src_transform, bilinear);
- if (mask_fmt == PIXMAN_a8)
- check_transform (dst_img, mask_img, &mask_transform, bilinear);
- }
-
- pixman_image_composite (op, src_img, mask_img, dst_img,
- 0, 0, 0, 0, 0, 0,
- dst_img->bits.width, dst_img->bits.height);
-
- if (verbose)
- print_image (dst_img);
-
- crc32 = compute_crc32_for_image (0, dst_img);
-
- pixman_image_unref (dst_img);
- if (mask_fmt == PIXMAN_solid)
- pixman_image_unref (mask_img);
-
- return crc32;
-}
-
-#if BILINEAR_INTERPOLATION_BITS == 7
-#define CHECKSUM_FUZZ 0x6B56F607
-#define CHECKSUM_EXACT 0xA669F4A3
-#elif BILINEAR_INTERPOLATION_BITS == 4
-#define CHECKSUM_FUZZ 0x83119ED0
-#define CHECKSUM_EXACT 0x0D3382CD
-#else
-#define CHECKSUM_FUZZ 0x00000000
-#define CHECKSUM_EXACT 0x00000000
-#endif
-
-int
-main (int argc, const char *argv[])
-{
- unsigned long page_size;
-
- page_size = fence_get_page_size ();
- if (page_size == 0 || page_size > 16 * 1024)
- return 77; /* automake SKIP */
-
- exact = getenv ("EXACT") != NULL;
- if (exact)
- printf ("Doing plots that are exactly aligned to boundaries\n");
-
- return fuzzer_test_main ("cover", 2000000,
- exact ? CHECKSUM_EXACT : CHECKSUM_FUZZ,
- test_cover, argc, argv);
-}