diff options
Diffstat (limited to 'src/mesh/assimp-master/code/AssetLib/IFC/IFCUtil.cpp')
-rw-r--r-- | src/mesh/assimp-master/code/AssetLib/IFC/IFCUtil.cpp | 701 |
1 files changed, 701 insertions, 0 deletions
diff --git a/src/mesh/assimp-master/code/AssetLib/IFC/IFCUtil.cpp b/src/mesh/assimp-master/code/AssetLib/IFC/IFCUtil.cpp new file mode 100644 index 0000000..6b378c1 --- /dev/null +++ b/src/mesh/assimp-master/code/AssetLib/IFC/IFCUtil.cpp @@ -0,0 +1,701 @@ +/* +Open Asset Import Library (assimp) +---------------------------------------------------------------------- + +Copyright (c) 2006-2022, assimp team + + +All rights reserved. + +Redistribution and use of this software in source and binary forms, +with or without modification, are permitted provided that the +following conditions are met: + +* Redistributions of source code must retain the above + copyright notice, this list of conditions and the + following disclaimer. + +* Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the + following disclaimer in the documentation and/or other + materials provided with the distribution. + +* Neither the name of the assimp team, nor the names of its + contributors may be used to endorse or promote products + derived from this software without specific prior + written permission of the assimp team. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +---------------------------------------------------------------------- +*/ + +/** @file IFCUtil.cpp + * @brief Implementation of conversion routines for some common Ifc helper entities. + */ + +#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER + +#include "AssetLib/IFC/IFCUtil.h" +#include "Common/PolyTools.h" +#include "PostProcessing/ProcessHelper.h" + +namespace Assimp { +namespace IFC { + +// ------------------------------------------------------------------------------------------------ +void TempOpening::Transform(const IfcMatrix4& mat) { + if(profileMesh) { + profileMesh->Transform(mat); + } + if(profileMesh2D) { + profileMesh2D->Transform(mat); + } + extrusionDir *= IfcMatrix3(mat); +} + +// ------------------------------------------------------------------------------------------------ +aiMesh* TempMesh::ToMesh() +{ + ai_assert(mVerts.size() == std::accumulate(mVertcnt.begin(),mVertcnt.end(),size_t(0))); + + if (mVerts.empty()) { + return nullptr; + } + + std::unique_ptr<aiMesh> mesh(new aiMesh()); + + // copy vertices + mesh->mNumVertices = static_cast<unsigned int>(mVerts.size()); + mesh->mVertices = new aiVector3D[mesh->mNumVertices]; + std::copy(mVerts.begin(),mVerts.end(),mesh->mVertices); + + // and build up faces + mesh->mNumFaces = static_cast<unsigned int>(mVertcnt.size()); + mesh->mFaces = new aiFace[mesh->mNumFaces]; + + for(unsigned int i = 0,n=0, acc = 0; i < mesh->mNumFaces; ++n) { + aiFace& f = mesh->mFaces[i]; + if (!mVertcnt[n]) { + --mesh->mNumFaces; + continue; + } + + f.mNumIndices = mVertcnt[n]; + f.mIndices = new unsigned int[f.mNumIndices]; + for(unsigned int a = 0; a < f.mNumIndices; ++a) { + f.mIndices[a] = acc++; + } + + ++i; + } + + return mesh.release(); +} + +// ------------------------------------------------------------------------------------------------ +void TempMesh::Clear() +{ + mVerts.clear(); + mVertcnt.clear(); +} + +// ------------------------------------------------------------------------------------------------ +void TempMesh::Transform(const IfcMatrix4& mat) +{ + for(IfcVector3& v : mVerts) { + v *= mat; + } +} + +// ------------------------------------------------------------------------------ +IfcVector3 TempMesh::Center() const +{ + return (mVerts.size() == 0) ? IfcVector3(0.0f, 0.0f, 0.0f) : (std::accumulate(mVerts.begin(),mVerts.end(),IfcVector3()) / static_cast<IfcFloat>(mVerts.size())); +} + +// ------------------------------------------------------------------------------------------------ +void TempMesh::Append(const TempMesh& other) +{ + mVerts.insert(mVerts.end(),other.mVerts.begin(),other.mVerts.end()); + mVertcnt.insert(mVertcnt.end(),other.mVertcnt.begin(),other.mVertcnt.end()); +} + +// ------------------------------------------------------------------------------------------------ +void TempMesh::RemoveDegenerates() +{ + // The strategy is simple: walk the mesh and compute normals using + // Newell's algorithm. The length of the normals gives the area + // of the polygons, which is close to zero for lines. + + std::vector<IfcVector3> normals; + ComputePolygonNormals(normals, false); + + bool drop = false; + size_t inor = 0; + + std::vector<IfcVector3>::iterator vit = mVerts.begin(); + for (std::vector<unsigned int>::iterator it = mVertcnt.begin(); it != mVertcnt.end(); ++inor) { + const unsigned int pcount = *it; + + if (normals[inor].SquareLength() < 1e-10f) { + it = mVertcnt.erase(it); + vit = mVerts.erase(vit, vit + pcount); + + drop = true; + continue; + } + + vit += pcount; + ++it; + } + + if(drop) { + IFCImporter::LogVerboseDebug("removing degenerate faces"); + } +} + +// ------------------------------------------------------------------------------------------------ +IfcVector3 TempMesh::ComputePolygonNormal(const IfcVector3* vtcs, size_t cnt, bool normalize) +{ + std::vector<IfcFloat> temp((cnt+2)*3); + for( size_t vofs = 0, i = 0; vofs < cnt; ++vofs ) + { + const IfcVector3& v = vtcs[vofs]; + temp[i++] = v.x; + temp[i++] = v.y; + temp[i++] = v.z; + } + + IfcVector3 nor; + NewellNormal<3, 3, 3>(nor, static_cast<int>(cnt), &temp[0], &temp[1], &temp[2]); + return normalize ? nor.Normalize() : nor; +} + +// ------------------------------------------------------------------------------------------------ +void TempMesh::ComputePolygonNormals(std::vector<IfcVector3>& normals, + bool normalize, + size_t ofs) const +{ + size_t max_vcount = 0; + std::vector<unsigned int>::const_iterator begin = mVertcnt.begin()+ofs, end = mVertcnt.end(), iit; + for(iit = begin; iit != end; ++iit) { + max_vcount = std::max(max_vcount,static_cast<size_t>(*iit)); + } + + std::vector<IfcFloat> temp((max_vcount+2)*4); + normals.reserve( normals.size() + mVertcnt.size()-ofs ); + + // `NewellNormal()` currently has a relatively strange interface and need to + // re-structure things a bit to meet them. + size_t vidx = std::accumulate(mVertcnt.begin(),begin,0); + for(iit = begin; iit != end; vidx += *iit++) { + if (!*iit) { + normals.push_back(IfcVector3()); + continue; + } + for(size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) { + const IfcVector3& v = mVerts[vidx+vofs]; + temp[cnt++] = v.x; + temp[cnt++] = v.y; + temp[cnt++] = v.z; +#ifdef ASSIMP_BUILD_DEBUG + temp[cnt] = std::numeric_limits<IfcFloat>::quiet_NaN(); +#endif + ++cnt; + } + + normals.push_back(IfcVector3()); + NewellNormal<4,4,4>(normals.back(),*iit,&temp[0],&temp[1],&temp[2]); + } + + if(normalize) { + for(IfcVector3& n : normals) { + n.Normalize(); + } + } +} + +// ------------------------------------------------------------------------------------------------ +// Compute the normal of the last polygon in the given mesh +IfcVector3 TempMesh::ComputeLastPolygonNormal(bool normalize) const { + return ComputePolygonNormal(&mVerts[mVerts.size() - mVertcnt.back()], mVertcnt.back(), normalize); +} + +struct CompareVector { + bool operator () (const IfcVector3& a, const IfcVector3& b) const { + IfcVector3 d = a - b; + IfcFloat eps = ai_epsilon; + return d.x < -eps || (std::abs(d.x) < eps && d.y < -eps) || (std::abs(d.x) < eps && std::abs(d.y) < eps && d.z < -eps); + } +}; + +struct FindVector { + IfcVector3 v; + FindVector(const IfcVector3& p) : v(p) { } + bool operator()(const IfcVector3 &p) { + return FuzzyVectorCompare(ai_epsilon)(p, v); + } +}; + +// ------------------------------------------------------------------------------------------------ +void TempMesh::FixupFaceOrientation() +{ + const IfcVector3 vavg = Center(); + + // create a list of start indices for all faces to allow random access to faces + std::vector<size_t> faceStartIndices(mVertcnt.size()); + for( size_t i = 0, a = 0; a < mVertcnt.size(); i += mVertcnt[a], ++a ) + faceStartIndices[a] = i; + + // list all faces on a vertex + std::map<IfcVector3, std::vector<size_t>, CompareVector> facesByVertex; + for( size_t a = 0; a < mVertcnt.size(); ++a ) + { + for( size_t b = 0; b < mVertcnt[a]; ++b ) + facesByVertex[mVerts[faceStartIndices[a] + b]].push_back(a); + } + // determine neighbourhood for all polys + std::vector<size_t> neighbour(mVerts.size(), SIZE_MAX); + std::vector<size_t> tempIntersect(10); + for( size_t a = 0; a < mVertcnt.size(); ++a ) + { + for( size_t b = 0; b < mVertcnt[a]; ++b ) + { + size_t ib = faceStartIndices[a] + b, nib = faceStartIndices[a] + (b + 1) % mVertcnt[a]; + const std::vector<size_t>& facesOnB = facesByVertex[mVerts[ib]]; + const std::vector<size_t>& facesOnNB = facesByVertex[mVerts[nib]]; + // there should be exactly one or two faces which appear in both lists. Our face and the other side + std::vector<size_t>::iterator sectstart = tempIntersect.begin(); + std::vector<size_t>::iterator sectend = std::set_intersection( + facesOnB.begin(), facesOnB.end(), facesOnNB.begin(), facesOnNB.end(), sectstart); + + if( std::distance(sectstart, sectend) != 2 ) + continue; + if( *sectstart == a ) + ++sectstart; + neighbour[ib] = *sectstart; + } + } + + // now we're getting started. We take the face which is the farthest away from the center. This face is most probably + // facing outwards. So we reverse this face to point outwards in relation to the center. Then we adapt neighbouring + // faces to have the same winding until all faces have been tested. + std::vector<bool> faceDone(mVertcnt.size(), false); + while( std::count(faceDone.begin(), faceDone.end(), false) != 0 ) + { + // find the farthest of the remaining faces + size_t farthestIndex = SIZE_MAX; + IfcFloat farthestDistance = -1.0; + for( size_t a = 0; a < mVertcnt.size(); ++a ) + { + if( faceDone[a] ) + continue; + IfcVector3 faceCenter = std::accumulate(mVerts.begin() + faceStartIndices[a], + mVerts.begin() + faceStartIndices[a] + mVertcnt[a], IfcVector3(0.0)) / IfcFloat(mVertcnt[a]); + IfcFloat dst = (faceCenter - vavg).SquareLength(); + if( dst > farthestDistance ) { farthestDistance = dst; farthestIndex = a; } + } + + // calculate its normal and reverse the poly if its facing towards the mesh center + IfcVector3 farthestNormal = ComputePolygonNormal(mVerts.data() + faceStartIndices[farthestIndex], mVertcnt[farthestIndex]); + IfcVector3 farthestCenter = std::accumulate(mVerts.begin() + faceStartIndices[farthestIndex], + mVerts.begin() + faceStartIndices[farthestIndex] + mVertcnt[farthestIndex], IfcVector3(0.0)) + / IfcFloat(mVertcnt[farthestIndex]); + // We accept a bit of negative orientation without reversing. In case of doubt, prefer the orientation given in + // the file. + if( (farthestNormal * (farthestCenter - vavg).Normalize()) < -0.4 ) + { + size_t fsi = faceStartIndices[farthestIndex], fvc = mVertcnt[farthestIndex]; + std::reverse(mVerts.begin() + fsi, mVerts.begin() + fsi + fvc); + std::reverse(neighbour.begin() + fsi, neighbour.begin() + fsi + fvc); + // because of the neighbour index belonging to the edge starting with the point at the same index, we need to + // cycle the neighbours through to match the edges again. + // Before: points A - B - C - D with edge neighbour p - q - r - s + // After: points D - C - B - A, reversed neighbours are s - r - q - p, but the should be + // r q p s + for( size_t a = 0; a < fvc - 1; ++a ) + std::swap(neighbour[fsi + a], neighbour[fsi + a + 1]); + } + faceDone[farthestIndex] = true; + std::vector<size_t> todo; + todo.push_back(farthestIndex); + + // go over its neighbour faces recursively and adapt their winding order to match the farthest face + while( !todo.empty() ) + { + size_t tdf = todo.back(); + size_t vsi = faceStartIndices[tdf], vc = mVertcnt[tdf]; + todo.pop_back(); + + // check its neighbours + for( size_t a = 0; a < vc; ++a ) + { + // ignore neighbours if we already checked them + size_t nbi = neighbour[vsi + a]; + if( nbi == SIZE_MAX || faceDone[nbi] ) + continue; + + const IfcVector3& vp = mVerts[vsi + a]; + size_t nbvsi = faceStartIndices[nbi], nbvc = mVertcnt[nbi]; + std::vector<IfcVector3>::iterator it = std::find_if(mVerts.begin() + nbvsi, mVerts.begin() + nbvsi + nbvc, FindVector(vp)); + ai_assert(it != mVerts.begin() + nbvsi + nbvc); + size_t nb_vidx = std::distance(mVerts.begin() + nbvsi, it); + // two faces winded in the same direction should have a crossed edge, where one face has p0->p1 and the other + // has p1'->p0'. If the next point on the neighbouring face is also the next on the current face, we need + // to reverse the neighbour + nb_vidx = (nb_vidx + 1) % nbvc; + size_t oursideidx = (a + 1) % vc; + if (FuzzyVectorCompare(ai_epsilon)(mVerts[vsi + oursideidx], mVerts[nbvsi + nb_vidx])) { + std::reverse(mVerts.begin() + nbvsi, mVerts.begin() + nbvsi + nbvc); + std::reverse(neighbour.begin() + nbvsi, neighbour.begin() + nbvsi + nbvc); + for (size_t aa = 0; aa < nbvc - 1; ++aa) { + std::swap(neighbour[nbvsi + aa], neighbour[nbvsi + aa + 1]); + } + } + + // either way we're done with the neighbour. Mark it as done and continue checking from there recursively + faceDone[nbi] = true; + todo.push_back(nbi); + } + } + + // no more faces reachable from this part of the surface, start over with a disjunct part and its farthest face + } +} + +// ------------------------------------------------------------------------------------------------ +void TempMesh::RemoveAdjacentDuplicates() { + bool drop = false; + std::vector<IfcVector3>::iterator base = mVerts.begin(); + for(unsigned int& cnt : mVertcnt) { + if (cnt < 2){ + base += cnt; + continue; + } + + IfcVector3 vmin,vmax; + ArrayBounds(&*base, cnt ,vmin,vmax); + + + const IfcFloat epsilon = (vmax-vmin).SquareLength() / static_cast<IfcFloat>(1e9); + //const IfcFloat dotepsilon = 1e-9; + + //// look for vertices that lie directly on the line between their predecessor and their + //// successor and replace them with either of them. + + //for(size_t i = 0; i < cnt; ++i) { + // IfcVector3& v1 = *(base+i), &v0 = *(base+(i?i-1:cnt-1)), &v2 = *(base+(i+1)%cnt); + // const IfcVector3& d0 = (v1-v0), &d1 = (v2-v1); + // const IfcFloat l0 = d0.SquareLength(), l1 = d1.SquareLength(); + // if (!l0 || !l1) { + // continue; + // } + + // const IfcFloat d = (d0/std::sqrt(l0))*(d1/std::sqrt(l1)); + + // if ( d >= 1.f-dotepsilon ) { + // v1 = v0; + // } + // else if ( d < -1.f+dotepsilon ) { + // v2 = v1; + // continue; + // } + //} + + // drop any identical, adjacent vertices. this pass will collect the dropouts + // of the previous pass as a side-effect. + FuzzyVectorCompare fz(epsilon); + std::vector<IfcVector3>::iterator end = base+cnt, e = std::unique( base, end, fz ); + if (e != end) { + cnt -= static_cast<unsigned int>(std::distance(e, end)); + mVerts.erase(e,end); + drop = true; + } + + // check front and back vertices for this polygon + if (cnt > 1 && fz(*base,*(base+cnt-1))) { + mVerts.erase(base+ --cnt); + drop = true; + } + + // removing adjacent duplicates shouldn't erase everything :-) + ai_assert(cnt>0); + base += cnt; + } + if(drop) { + IFCImporter::LogVerboseDebug("removing duplicate vertices"); + } +} + +// ------------------------------------------------------------------------------------------------ +void TempMesh::Swap(TempMesh& other) +{ + mVertcnt.swap(other.mVertcnt); + mVerts.swap(other.mVerts); +} + +// ------------------------------------------------------------------------------------------------ +bool IsTrue(const ::Assimp::STEP::EXPRESS::BOOLEAN& in) +{ + return (std::string)in == "TRUE" || (std::string)in == "T"; +} + +// ------------------------------------------------------------------------------------------------ +IfcFloat ConvertSIPrefix(const std::string& prefix) +{ + if (prefix == "EXA") { + return 1e18f; + } + else if (prefix == "PETA") { + return 1e15f; + } + else if (prefix == "TERA") { + return 1e12f; + } + else if (prefix == "GIGA") { + return 1e9f; + } + else if (prefix == "MEGA") { + return 1e6f; + } + else if (prefix == "KILO") { + return 1e3f; + } + else if (prefix == "HECTO") { + return 1e2f; + } + else if (prefix == "DECA") { + return 1e-0f; + } + else if (prefix == "DECI") { + return 1e-1f; + } + else if (prefix == "CENTI") { + return 1e-2f; + } + else if (prefix == "MILLI") { + return 1e-3f; + } + else if (prefix == "MICRO") { + return 1e-6f; + } + else if (prefix == "NANO") { + return 1e-9f; + } + else if (prefix == "PICO") { + return 1e-12f; + } + else if (prefix == "FEMTO") { + return 1e-15f; + } + else if (prefix == "ATTO") { + return 1e-18f; + } + else { + IFCImporter::LogError("Unrecognized SI prefix: ", prefix); + return 1; + } +} + +// ------------------------------------------------------------------------------------------------ +void ConvertColor(aiColor4D& out, const Schema_2x3::IfcColourRgb& in) +{ + out.r = static_cast<float>( in.Red ); + out.g = static_cast<float>( in.Green ); + out.b = static_cast<float>( in.Blue ); + out.a = static_cast<float>( 1.f ); +} + +// ------------------------------------------------------------------------------------------------ +void ConvertColor(aiColor4D& out, const Schema_2x3::IfcColourOrFactor& in,ConversionData& conv,const aiColor4D* base) +{ + if (const ::Assimp::STEP::EXPRESS::REAL* const r = in.ToPtr<::Assimp::STEP::EXPRESS::REAL>()) { + out.r = out.g = out.b = static_cast<float>(*r); + if(base) { + out.r *= static_cast<float>( base->r ); + out.g *= static_cast<float>( base->g ); + out.b *= static_cast<float>( base->b ); + out.a = static_cast<float>( base->a ); + } + else out.a = 1.0; + } + else if (const Schema_2x3::IfcColourRgb* const rgb = in.ResolveSelectPtr<Schema_2x3::IfcColourRgb>(conv.db)) { + ConvertColor(out,*rgb); + } + else { + IFCImporter::LogWarn("skipping unknown IfcColourOrFactor entity"); + } +} + +// ------------------------------------------------------------------------------------------------ +void ConvertCartesianPoint(IfcVector3& out, const Schema_2x3::IfcCartesianPoint& in) +{ + out = IfcVector3(); + for(size_t i = 0; i < in.Coordinates.size(); ++i) { + out[static_cast<unsigned int>(i)] = in.Coordinates[i]; + } +} + +// ------------------------------------------------------------------------------------------------ +void ConvertVector(IfcVector3& out, const Schema_2x3::IfcVector& in) +{ + ConvertDirection(out,in.Orientation); + out *= in.Magnitude; +} + +// ------------------------------------------------------------------------------------------------ +void ConvertDirection(IfcVector3& out, const Schema_2x3::IfcDirection& in) +{ + out = IfcVector3(); + for(size_t i = 0; i < in.DirectionRatios.size(); ++i) { + out[static_cast<unsigned int>(i)] = in.DirectionRatios[i]; + } + const IfcFloat len = out.Length(); + if (len < ai_epsilon) { + IFCImporter::LogWarn("direction vector magnitude too small, normalization would result in a division by zero"); + return; + } + out /= len; +} + +// ------------------------------------------------------------------------------------------------ +void AssignMatrixAxes(IfcMatrix4& out, const IfcVector3& x, const IfcVector3& y, const IfcVector3& z) +{ + out.a1 = x.x; + out.b1 = x.y; + out.c1 = x.z; + + out.a2 = y.x; + out.b2 = y.y; + out.c2 = y.z; + + out.a3 = z.x; + out.b3 = z.y; + out.c3 = z.z; +} + +// ------------------------------------------------------------------------------------------------ +void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement3D& in) +{ + IfcVector3 loc; + ConvertCartesianPoint(loc,in.Location); + + IfcVector3 z(0.f,0.f,1.f),r(1.f,0.f,0.f),x; + + if (in.Axis) { + ConvertDirection(z,*in.Axis.Get()); + } + if (in.RefDirection) { + ConvertDirection(r,*in.RefDirection.Get()); + } + + IfcVector3 v = r.Normalize(); + IfcVector3 tmpx = z * (v*z); + + x = (v-tmpx).Normalize(); + IfcVector3 y = (z^x); + + IfcMatrix4::Translation(loc,out); + AssignMatrixAxes(out,x,y,z); +} + +// ------------------------------------------------------------------------------------------------ +void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement2D& in) +{ + IfcVector3 loc; + ConvertCartesianPoint(loc,in.Location); + + IfcVector3 x(1.f,0.f,0.f); + if (in.RefDirection) { + ConvertDirection(x,*in.RefDirection.Get()); + } + + const IfcVector3 y = IfcVector3(x.y,-x.x,0.f); + + IfcMatrix4::Translation(loc,out); + AssignMatrixAxes(out,x,y,IfcVector3(0.f,0.f,1.f)); +} + +// ------------------------------------------------------------------------------------------------ +void ConvertAxisPlacement(IfcVector3& axis, IfcVector3& pos, const Schema_2x3::IfcAxis1Placement& in) +{ + ConvertCartesianPoint(pos,in.Location); + if (in.Axis) { + ConvertDirection(axis,in.Axis.Get()); + } + else { + axis = IfcVector3(0.f,0.f,1.f); + } +} + +// ------------------------------------------------------------------------------------------------ +void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement& in, ConversionData& conv) +{ + if(const Schema_2x3::IfcAxis2Placement3D* pl3 = in.ResolveSelectPtr<Schema_2x3::IfcAxis2Placement3D>(conv.db)) { + ConvertAxisPlacement(out,*pl3); + } + else if(const Schema_2x3::IfcAxis2Placement2D* pl2 = in.ResolveSelectPtr<Schema_2x3::IfcAxis2Placement2D>(conv.db)) { + ConvertAxisPlacement(out,*pl2); + } + else { + IFCImporter::LogWarn("skipping unknown IfcAxis2Placement entity"); + } +} + +// ------------------------------------------------------------------------------------------------ +void ConvertTransformOperator(IfcMatrix4& out, const Schema_2x3::IfcCartesianTransformationOperator& op) +{ + IfcVector3 loc; + ConvertCartesianPoint(loc,op.LocalOrigin); + + IfcVector3 x(1.f,0.f,0.f),y(0.f,1.f,0.f),z(0.f,0.f,1.f); + if (op.Axis1) { + ConvertDirection(x,*op.Axis1.Get()); + } + if (op.Axis2) { + ConvertDirection(y,*op.Axis2.Get()); + } + if (const Schema_2x3::IfcCartesianTransformationOperator3D* op2 = op.ToPtr<Schema_2x3::IfcCartesianTransformationOperator3D>()) { + if(op2->Axis3) { + ConvertDirection(z,*op2->Axis3.Get()); + } + } + + IfcMatrix4 locm; + IfcMatrix4::Translation(loc,locm); + AssignMatrixAxes(out,x,y,z); + + + IfcVector3 vscale; + if (const Schema_2x3::IfcCartesianTransformationOperator3DnonUniform* nuni = op.ToPtr<Schema_2x3::IfcCartesianTransformationOperator3DnonUniform>()) { + vscale.x = nuni->Scale?op.Scale.Get():1.f; + vscale.y = nuni->Scale2?nuni->Scale2.Get():1.f; + vscale.z = nuni->Scale3?nuni->Scale3.Get():1.f; + } + else { + const IfcFloat sc = op.Scale?op.Scale.Get():1.f; + vscale = IfcVector3(sc,sc,sc); + } + + IfcMatrix4 s; + IfcMatrix4::Scaling(vscale,s); + + out = locm * out * s; +} + + +} // ! IFC +} // ! Assimp + +#endif |