summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/LWO/LWOAnimation.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/mesh/assimp-master/code/AssetLib/LWO/LWOAnimation.cpp')
-rw-r--r--src/mesh/assimp-master/code/AssetLib/LWO/LWOAnimation.cpp609
1 files changed, 609 insertions, 0 deletions
diff --git a/src/mesh/assimp-master/code/AssetLib/LWO/LWOAnimation.cpp b/src/mesh/assimp-master/code/AssetLib/LWO/LWOAnimation.cpp
new file mode 100644
index 0000000..c2ee2d9
--- /dev/null
+++ b/src/mesh/assimp-master/code/AssetLib/LWO/LWOAnimation.cpp
@@ -0,0 +1,609 @@
+/*
+Open Asset Import Library (assimp)
+----------------------------------------------------------------------
+
+Copyright (c) 2006-2022, assimp team
+
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the
+following conditions are met:
+
+* Redistributions of source code must retain the above
+ copyright notice, this list of conditions and the
+ following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the
+ following disclaimer in the documentation and/or other
+ materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+ contributors may be used to endorse or promote products
+ derived from this software without specific prior
+ written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+----------------------------------------------------------------------
+*/
+
+/** @file LWOAnimation.cpp
+ * @brief LWOAnimationResolver utility class
+ *
+ * It's a very generic implementation of LightWave's system of
+ * component-wise-animated stuff. The one and only fully free
+ * implementation of LightWave envelopes of which I know.
+*/
+
+#if (!defined ASSIMP_BUILD_NO_LWO_IMPORTER) && (!defined ASSIMP_BUILD_NO_LWS_IMPORTER)
+
+#include <functional>
+
+// internal headers
+#include "LWOFileData.h"
+#include <assimp/anim.h>
+
+using namespace Assimp;
+using namespace Assimp::LWO;
+
+// ------------------------------------------------------------------------------------------------
+// Construct an animation resolver from a given list of envelopes
+AnimResolver::AnimResolver(std::list<Envelope> &_envelopes, double tick) :
+ envelopes(_envelopes),
+ sample_rate(0.),
+ envl_x(),
+ envl_y(),
+ envl_z(),
+ end_x(),
+ end_y(),
+ end_z(),
+ flags(),
+ sample_delta() {
+ trans_x = trans_y = trans_z = nullptr;
+ rotat_x = rotat_y = rotat_z = nullptr;
+ scale_x = scale_y = scale_z = nullptr;
+
+ first = last = 150392.;
+
+ // find transformation envelopes
+ for (std::list<LWO::Envelope>::iterator it = envelopes.begin(); it != envelopes.end(); ++it) {
+
+ (*it).old_first = 0;
+ (*it).old_last = (*it).keys.size() - 1;
+
+ if ((*it).keys.empty()) {
+ continue;
+ }
+ if ((int)(*it).type < 1 || (int)(*it).type>EnvelopeType_Unknown) {
+ continue;
+ }
+ switch ((*it).type) {
+ // translation
+ case LWO::EnvelopeType_Position_X:
+ trans_x = &*it;
+ break;
+ case LWO::EnvelopeType_Position_Y:
+ trans_y = &*it;
+ break;
+ case LWO::EnvelopeType_Position_Z:
+ trans_z = &*it;
+ break;
+
+ // rotation
+ case LWO::EnvelopeType_Rotation_Heading:
+ rotat_x = &*it;
+ break;
+ case LWO::EnvelopeType_Rotation_Pitch:
+ rotat_y = &*it;
+ break;
+ case LWO::EnvelopeType_Rotation_Bank:
+ rotat_z = &*it;
+ break;
+
+ // scaling
+ case LWO::EnvelopeType_Scaling_X:
+ scale_x = &*it;
+ break;
+ case LWO::EnvelopeType_Scaling_Y:
+ scale_y = &*it;
+ break;
+ case LWO::EnvelopeType_Scaling_Z:
+ scale_z = &*it;
+ break;
+ default:
+ continue;
+ };
+
+ // convert from seconds to ticks
+ for (std::vector<LWO::Key>::iterator d = (*it).keys.begin(); d != (*it).keys.end(); ++d)
+ (*d).time *= tick;
+
+ // set default animation range (minimum and maximum time value for which we have a keyframe)
+ first = std::min(first, (*it).keys.front().time);
+ last = std::max(last, (*it).keys.back().time);
+ }
+
+ // deferred setup of animation range to increase performance.
+ // typically the application will want to specify its own.
+ need_to_setup = true;
+}
+
+// ------------------------------------------------------------------------------------------------
+// Reset all envelopes to their original contents
+void AnimResolver::ClearAnimRangeSetup() {
+ for (std::list<LWO::Envelope>::iterator it = envelopes.begin(); it != envelopes.end(); ++it) {
+
+ (*it).keys.erase((*it).keys.begin(), (*it).keys.begin() + (*it).old_first);
+ (*it).keys.erase((*it).keys.begin() + (*it).old_last + 1, (*it).keys.end());
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Insert additional keys to match LWO's pre& post behaviors.
+void AnimResolver::UpdateAnimRangeSetup() {
+ // XXX doesn't work yet (hangs if more than one envelope channels needs to be interpolated)
+
+ for (std::list<LWO::Envelope>::iterator it = envelopes.begin(); it != envelopes.end(); ++it) {
+ if ((*it).keys.empty()) continue;
+
+ const double my_first = (*it).keys.front().time;
+ const double my_last = (*it).keys.back().time;
+
+ const double delta = my_last - my_first;
+ const size_t old_size = (*it).keys.size();
+
+ const float value_delta = (*it).keys.back().value - (*it).keys.front().value;
+
+ // NOTE: We won't handle reset, linear and constant here.
+ // See DoInterpolation() for their implementation.
+
+ // process pre behavior
+ switch ((*it).pre) {
+ case LWO::PrePostBehaviour_OffsetRepeat:
+ case LWO::PrePostBehaviour_Repeat:
+ case LWO::PrePostBehaviour_Oscillate: {
+ const double start_time = delta - std::fmod(my_first - first, delta);
+ std::vector<LWO::Key>::iterator n = std::find_if((*it).keys.begin(), (*it).keys.end(),
+ [start_time](double t) { return start_time > t; }),
+ m;
+
+ size_t ofs = 0;
+ if (n != (*it).keys.end()) {
+ // copy from here - don't use iterators, insert() would invalidate them
+ ofs = (*it).keys.end() - n;
+ (*it).keys.insert((*it).keys.begin(), ofs, LWO::Key());
+
+ std::copy((*it).keys.end() - ofs, (*it).keys.end(), (*it).keys.begin());
+ }
+
+ // do full copies. again, no iterators
+ const unsigned int num = (unsigned int)((my_first - first) / delta);
+ (*it).keys.resize((*it).keys.size() + num * old_size);
+
+ n = (*it).keys.begin() + ofs;
+ bool reverse = false;
+ for (unsigned int i = 0; i < num; ++i) {
+ m = n + old_size * (i + 1);
+ std::copy(n, n + old_size, m);
+ const bool res = ((*it).pre == LWO::PrePostBehaviour_Oscillate);
+ reverse = !reverse;
+ if (res && reverse) {
+ std::reverse(m, m + old_size - 1);
+ }
+ }
+
+ // update time values
+ n = (*it).keys.end() - (old_size + 1);
+ double cur_minus = delta;
+ unsigned int tt = 1;
+ for (const double tmp = delta * (num + 1); cur_minus <= tmp; cur_minus += delta, ++tt) {
+ m = (delta == tmp ? (*it).keys.begin() : n - (old_size + 1));
+ for (; m != n; --n) {
+ (*n).time -= cur_minus;
+
+ // offset repeat? add delta offset to key value
+ if ((*it).pre == LWO::PrePostBehaviour_OffsetRepeat) {
+ (*n).value += tt * value_delta;
+ }
+ }
+ }
+ break;
+ }
+ default:
+ // silence compiler warning
+ break;
+ }
+
+ // process post behavior
+ switch ((*it).post) {
+
+ case LWO::PrePostBehaviour_OffsetRepeat:
+ case LWO::PrePostBehaviour_Repeat:
+ case LWO::PrePostBehaviour_Oscillate:
+
+ break;
+
+ default:
+ // silence compiler warning
+ break;
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Extract bind pose matrix
+void AnimResolver::ExtractBindPose(aiMatrix4x4 &out) {
+ // If we have no envelopes, return identity
+ if (envelopes.empty()) {
+ out = aiMatrix4x4();
+ return;
+ }
+ aiVector3D angles, scaling(1.f, 1.f, 1.f), translation;
+
+ if (trans_x) translation.x = trans_x->keys[0].value;
+ if (trans_y) translation.y = trans_y->keys[0].value;
+ if (trans_z) translation.z = trans_z->keys[0].value;
+
+ if (rotat_x) angles.x = rotat_x->keys[0].value;
+ if (rotat_y) angles.y = rotat_y->keys[0].value;
+ if (rotat_z) angles.z = rotat_z->keys[0].value;
+
+ if (scale_x) scaling.x = scale_x->keys[0].value;
+ if (scale_y) scaling.y = scale_y->keys[0].value;
+ if (scale_z) scaling.z = scale_z->keys[0].value;
+
+ // build the final matrix
+ aiMatrix4x4 s, rx, ry, rz, t;
+ aiMatrix4x4::RotationZ(angles.z, rz);
+ aiMatrix4x4::RotationX(angles.y, rx);
+ aiMatrix4x4::RotationY(angles.x, ry);
+ aiMatrix4x4::Translation(translation, t);
+ aiMatrix4x4::Scaling(scaling, s);
+ out = t * ry * rx * rz * s;
+}
+
+// ------------------------------------------------------------------------------------------------
+// Do a single interpolation on a channel
+void AnimResolver::DoInterpolation(std::vector<LWO::Key>::const_iterator cur,
+ LWO::Envelope *envl, double time, float &fill) {
+ if (envl->keys.size() == 1) {
+ fill = envl->keys[0].value;
+ return;
+ }
+
+ // check whether we're at the beginning of the animation track
+ if (cur == envl->keys.begin()) {
+
+ // ok ... this depends on pre behaviour now
+ // we don't need to handle repeat&offset repeat&oszillate here, see UpdateAnimRangeSetup()
+ switch (envl->pre) {
+ case LWO::PrePostBehaviour_Linear:
+ DoInterpolation2(cur, cur + 1, time, fill);
+ return;
+
+ case LWO::PrePostBehaviour_Reset:
+ fill = 0.f;
+ return;
+
+ default: //case LWO::PrePostBehaviour_Constant:
+ fill = (*cur).value;
+ return;
+ }
+ }
+ // check whether we're at the end of the animation track
+ else if (cur == envl->keys.end() - 1 && time > envl->keys.rbegin()->time) {
+ // ok ... this depends on post behaviour now
+ switch (envl->post) {
+ case LWO::PrePostBehaviour_Linear:
+ DoInterpolation2(cur, cur - 1, time, fill);
+ return;
+
+ case LWO::PrePostBehaviour_Reset:
+ fill = 0.f;
+ return;
+
+ default: //case LWO::PrePostBehaviour_Constant:
+ fill = (*cur).value;
+ return;
+ }
+ }
+
+ // Otherwise do a simple interpolation
+ DoInterpolation2(cur - 1, cur, time, fill);
+}
+
+// ------------------------------------------------------------------------------------------------
+// Almost the same, except we won't handle pre/post conditions here
+void AnimResolver::DoInterpolation2(std::vector<LWO::Key>::const_iterator beg,
+ std::vector<LWO::Key>::const_iterator end, double time, float &fill) {
+ switch ((*end).inter) {
+
+ case LWO::IT_STEP:
+ // no interpolation at all - take the value of the last key
+ fill = (*beg).value;
+ return;
+ default:
+
+ // silence compiler warning
+ break;
+ }
+ // linear interpolation - default
+ double duration = (*end).time - (*beg).time;
+ if (duration > 0.0) {
+ fill = (*beg).value + ((*end).value - (*beg).value) * (float)(((time - (*beg).time) / duration));
+ } else {
+ fill = (*beg).value;
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Subsample animation track by given key values
+void AnimResolver::SubsampleAnimTrack(std::vector<aiVectorKey> & /*out*/,
+ double /*time*/, double /*sample_delta*/) {
+ //ai_assert(out.empty() && sample_delta);
+
+ //const double time_start = out.back().mTime;
+ // for ()
+}
+
+// ------------------------------------------------------------------------------------------------
+// Track interpolation
+void AnimResolver::InterpolateTrack(std::vector<aiVectorKey> &out, aiVectorKey &fill, double time) {
+ // subsample animation track?
+ if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) {
+ SubsampleAnimTrack(out, time, sample_delta);
+ }
+
+ fill.mTime = time;
+
+ // get x
+ if ((*cur_x).time == time) {
+ fill.mValue.x = (*cur_x).value;
+
+ if (cur_x != envl_x->keys.end() - 1) /* increment x */
+ ++cur_x;
+ else
+ end_x = true;
+ } else
+ DoInterpolation(cur_x, envl_x, time, (float &)fill.mValue.x);
+
+ // get y
+ if ((*cur_y).time == time) {
+ fill.mValue.y = (*cur_y).value;
+
+ if (cur_y != envl_y->keys.end() - 1) /* increment y */
+ ++cur_y;
+ else
+ end_y = true;
+ } else
+ DoInterpolation(cur_y, envl_y, time, (float &)fill.mValue.y);
+
+ // get z
+ if ((*cur_z).time == time) {
+ fill.mValue.z = (*cur_z).value;
+
+ if (cur_z != envl_z->keys.end() - 1) /* increment z */
+ ++cur_z;
+ else
+ end_x = true;
+ } else
+ DoInterpolation(cur_z, envl_z, time, (float &)fill.mValue.z);
+}
+
+// ------------------------------------------------------------------------------------------------
+// Build linearly subsampled keys from three single envelopes, one for each component (x,y,z)
+void AnimResolver::GetKeys(std::vector<aiVectorKey> &out,
+ LWO::Envelope *_envl_x,
+ LWO::Envelope *_envl_y,
+ LWO::Envelope *_envl_z,
+ unsigned int _flags) {
+ envl_x = _envl_x;
+ envl_y = _envl_y;
+ envl_z = _envl_z;
+ flags = _flags;
+
+ // generate default channels if none are given
+ LWO::Envelope def_x, def_y, def_z;
+ LWO::Key key_dummy;
+ key_dummy.time = 0.f;
+ if ((envl_x && envl_x->type == LWO::EnvelopeType_Scaling_X) ||
+ (envl_y && envl_y->type == LWO::EnvelopeType_Scaling_Y) ||
+ (envl_z && envl_z->type == LWO::EnvelopeType_Scaling_Z)) {
+ key_dummy.value = 1.f;
+ } else
+ key_dummy.value = 0.f;
+
+ if (!envl_x) {
+ envl_x = &def_x;
+ envl_x->keys.push_back(key_dummy);
+ }
+ if (!envl_y) {
+ envl_y = &def_y;
+ envl_y->keys.push_back(key_dummy);
+ }
+ if (!envl_z) {
+ envl_z = &def_z;
+ envl_z->keys.push_back(key_dummy);
+ }
+
+ // guess how many keys we'll get
+ size_t reserve;
+ double sr = 1.;
+ if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) {
+ if (!sample_rate)
+ sr = 100.f;
+ else
+ sr = sample_rate;
+ sample_delta = 1.f / sr;
+
+ reserve = (size_t)(
+ std::max(envl_x->keys.rbegin()->time,
+ std::max(envl_y->keys.rbegin()->time, envl_z->keys.rbegin()->time)) *
+ sr);
+ } else
+ reserve = std::max(envl_x->keys.size(), std::max(envl_x->keys.size(), envl_z->keys.size()));
+ out.reserve(reserve + (reserve >> 1));
+
+ // Iterate through all three arrays at once - it's tricky, but
+ // rather interesting to implement.
+ cur_x = envl_x->keys.begin();
+ cur_y = envl_y->keys.begin();
+ cur_z = envl_z->keys.begin();
+
+ end_x = end_y = end_z = false;
+ while (1) {
+
+ aiVectorKey fill;
+
+ if ((*cur_x).time == (*cur_y).time && (*cur_x).time == (*cur_z).time) {
+
+ // we have a keyframe for all of them defined .. this means
+ // we don't need to interpolate here.
+ fill.mTime = (*cur_x).time;
+
+ fill.mValue.x = (*cur_x).value;
+ fill.mValue.y = (*cur_y).value;
+ fill.mValue.z = (*cur_z).value;
+
+ // subsample animation track
+ if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) {
+ //SubsampleAnimTrack(out,cur_x, cur_y, cur_z, d, sample_delta);
+ }
+ }
+
+ // Find key with lowest time value
+ else if ((*cur_x).time <= (*cur_y).time && !end_x) {
+
+ if ((*cur_z).time <= (*cur_x).time && !end_z) {
+ InterpolateTrack(out, fill, (*cur_z).time);
+ } else {
+ InterpolateTrack(out, fill, (*cur_x).time);
+ }
+ } else if ((*cur_z).time <= (*cur_y).time && !end_y) {
+ InterpolateTrack(out, fill, (*cur_y).time);
+ } else if (!end_y) {
+ // welcome on the server, y
+ InterpolateTrack(out, fill, (*cur_y).time);
+ } else {
+ // we have reached the end of at least 2 channels,
+ // only one is remaining. Extrapolate the 2.
+ if (end_y) {
+ InterpolateTrack(out, fill, (end_x ? (*cur_z) : (*cur_x)).time);
+ } else if (end_x) {
+ InterpolateTrack(out, fill, (end_z ? (*cur_y) : (*cur_z)).time);
+ } else { // if (end_z)
+ InterpolateTrack(out, fill, (end_y ? (*cur_x) : (*cur_y)).time);
+ }
+ }
+ double lasttime = fill.mTime;
+ out.push_back(fill);
+
+ if (lasttime >= (*cur_x).time) {
+ if (cur_x != envl_x->keys.end() - 1)
+ ++cur_x;
+ else
+ end_x = true;
+ }
+ if (lasttime >= (*cur_y).time) {
+ if (cur_y != envl_y->keys.end() - 1)
+ ++cur_y;
+ else
+ end_y = true;
+ }
+ if (lasttime >= (*cur_z).time) {
+ if (cur_z != envl_z->keys.end() - 1)
+ ++cur_z;
+ else
+ end_z = true;
+ }
+
+ if (end_x && end_y && end_z) /* finished? */
+ break;
+ }
+
+ if (flags & AI_LWO_ANIM_FLAG_START_AT_ZERO) {
+ for (std::vector<aiVectorKey>::iterator it = out.begin(); it != out.end(); ++it)
+ (*it).mTime -= first;
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Extract animation channel
+void AnimResolver::ExtractAnimChannel(aiNodeAnim **out, unsigned int /*= 0*/) {
+ *out = nullptr;
+
+ //FIXME: crashes if more than one component is animated at different timings, to be resolved.
+
+ // If we have no envelopes, return nullptr
+ if (envelopes.empty()) {
+ return;
+ }
+
+ // We won't spawn an animation channel if we don't have at least one envelope with more than one keyframe defined.
+ const bool trans = ((trans_x && trans_x->keys.size() > 1) || (trans_y && trans_y->keys.size() > 1) || (trans_z && trans_z->keys.size() > 1));
+ const bool rotat = ((rotat_x && rotat_x->keys.size() > 1) || (rotat_y && rotat_y->keys.size() > 1) || (rotat_z && rotat_z->keys.size() > 1));
+ const bool scale = ((scale_x && scale_x->keys.size() > 1) || (scale_y && scale_y->keys.size() > 1) || (scale_z && scale_z->keys.size() > 1));
+ if (!trans && !rotat && !scale)
+ return;
+
+ // Allocate the output animation
+ aiNodeAnim *anim = *out = new aiNodeAnim();
+
+ // Setup default animation setup if necessary
+ if (need_to_setup) {
+ UpdateAnimRangeSetup();
+ need_to_setup = false;
+ }
+
+ // copy translation keys
+ if (trans) {
+ std::vector<aiVectorKey> keys;
+ GetKeys(keys, trans_x, trans_y, trans_z, flags);
+
+ anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys = static_cast<unsigned int>(keys.size())];
+ std::copy(keys.begin(), keys.end(), anim->mPositionKeys);
+ }
+
+ // copy rotation keys
+ if (rotat) {
+ std::vector<aiVectorKey> keys;
+ GetKeys(keys, rotat_x, rotat_y, rotat_z, flags);
+
+ anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys = static_cast<unsigned int>(keys.size())];
+
+ // convert heading, pitch, bank to quaternion
+ // mValue.x=Heading=Rot(Y), mValue.y=Pitch=Rot(X), mValue.z=Bank=Rot(Z)
+ // Lightwave's rotation order is ZXY
+ aiVector3D X(1.0, 0.0, 0.0);
+ aiVector3D Y(0.0, 1.0, 0.0);
+ aiVector3D Z(0.0, 0.0, 1.0);
+ for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) {
+ aiQuatKey &qk = anim->mRotationKeys[i];
+ qk.mTime = keys[i].mTime;
+ qk.mValue = aiQuaternion(Y, keys[i].mValue.x) * aiQuaternion(X, keys[i].mValue.y) * aiQuaternion(Z, keys[i].mValue.z);
+ }
+ }
+
+ // copy scaling keys
+ if (scale) {
+ std::vector<aiVectorKey> keys;
+ GetKeys(keys, scale_x, scale_y, scale_z, flags);
+
+ anim->mScalingKeys = new aiVectorKey[anim->mNumScalingKeys = static_cast<unsigned int>(keys.size())];
+ std::copy(keys.begin(), keys.end(), anim->mScalingKeys);
+ }
+}
+
+#endif // no lwo or no lws