1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
/*
Assimp2Json
Copyright (c) 2011, Alexander C. Gessler
Licensed under a 3-clause BSD license. See the LICENSE file for more information.
*/
#include "mesh_splitter.h"
#include <assimp/scene.h>
// ----------------------------------------------------------------------------
// Note: this is largely based on assimp's SplitLargeMeshes_Vertex process.
// it is refactored and the coding style is slightly improved, though.
// ----------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void MeshSplitter::Execute( aiScene* pScene) {
std::vector<std::pair<aiMesh*, unsigned int> > source_mesh_map;
for( unsigned int a = 0; a < pScene->mNumMeshes; a++) {
SplitMesh(a, pScene->mMeshes[a],source_mesh_map);
}
const unsigned int size = static_cast<unsigned int>(source_mesh_map.size());
if (size != pScene->mNumMeshes) {
// it seems something has been split. rebuild the mesh list
delete[] pScene->mMeshes;
pScene->mNumMeshes = size;
pScene->mMeshes = new aiMesh*[size]();
for (unsigned int i = 0; i < size;++i) {
pScene->mMeshes[i] = source_mesh_map[i].first;
}
// now we need to update all nodes
UpdateNode(pScene->mRootNode,source_mesh_map);
}
}
// ------------------------------------------------------------------------------------------------
void MeshSplitter::UpdateNode(aiNode* pcNode, const std::vector<std::pair<aiMesh*, unsigned int> >& source_mesh_map) {
// TODO: should better use std::(multi)set for source_mesh_map.
// for every index in out list build a new entry
std::vector<unsigned int> aiEntries;
aiEntries.reserve(pcNode->mNumMeshes + 1);
for (unsigned int i = 0; i < pcNode->mNumMeshes;++i) {
for (unsigned int a = 0, end = static_cast<unsigned int>(source_mesh_map.size()); a < end;++a) {
if (source_mesh_map[a].second == pcNode->mMeshes[i]) {
aiEntries.push_back(a);
}
}
}
// now build the new list
delete pcNode->mMeshes;
pcNode->mNumMeshes = static_cast<unsigned int>(aiEntries.size());
pcNode->mMeshes = new unsigned int[pcNode->mNumMeshes];
for (unsigned int b = 0; b < pcNode->mNumMeshes;++b) {
pcNode->mMeshes[b] = aiEntries[b];
}
// recursively update children
for (unsigned int i = 0, end = pcNode->mNumChildren; i < end;++i) {
UpdateNode ( pcNode->mChildren[i], source_mesh_map );
}
}
static const unsigned int WAS_NOT_COPIED = 0xffffffff;
using PerVertexWeight = std::pair <unsigned int,float>;
using VertexWeightTable = std::vector <PerVertexWeight>;
// ------------------------------------------------------------------------------------------------
VertexWeightTable* ComputeVertexBoneWeightTable(const aiMesh* pMesh) {
if (!pMesh || !pMesh->mNumVertices || !pMesh->mNumBones) {
return nullptr;
}
VertexWeightTable* const avPerVertexWeights = new VertexWeightTable[pMesh->mNumVertices];
for (unsigned int i = 0; i < pMesh->mNumBones;++i) {
aiBone* bone = pMesh->mBones[i];
for (unsigned int a = 0; a < bone->mNumWeights;++a) {
const aiVertexWeight& weight = bone->mWeights[a];
avPerVertexWeights[weight.mVertexId].emplace_back(i,weight.mWeight);
}
}
return avPerVertexWeights;
}
// ------------------------------------------------------------------------------------------------
void MeshSplitter :: SplitMesh(unsigned int a, aiMesh* in_mesh, std::vector<std::pair<aiMesh*, unsigned int> >& source_mesh_map) {
// TODO: should better use std::(multi)set for source_mesh_map.
if (in_mesh->mNumVertices <= LIMIT) {
source_mesh_map.emplace_back(in_mesh,a);
return;
}
// build a per-vertex weight list if necessary
VertexWeightTable* avPerVertexWeights = ComputeVertexBoneWeightTable(in_mesh);
// we need to split this mesh into sub meshes. Estimate submesh size
const unsigned int sub_meshes = (in_mesh->mNumVertices / LIMIT) + 1;
// create a std::vector<unsigned int> to remember which vertices have already
// been copied and to which position (i.e. output index)
std::vector<unsigned int> was_copied_to;
was_copied_to.resize(in_mesh->mNumVertices,WAS_NOT_COPIED);
// Try to find a good estimate for the number of output faces
// per mesh. Add 12.5% as buffer
unsigned int size_estimated = in_mesh->mNumFaces / sub_meshes;
size_estimated += size_estimated / 8;
// now generate all submeshes
unsigned int base = 0;
while (true) {
const unsigned int out_vertex_index = LIMIT;
aiMesh* out_mesh = new aiMesh();
out_mesh->mNumVertices = 0;
out_mesh->mMaterialIndex = in_mesh->mMaterialIndex;
// the name carries the adjacency information between the meshes
out_mesh->mName = in_mesh->mName;
typedef std::vector<aiVertexWeight> BoneWeightList;
if (in_mesh->HasBones()) {
out_mesh->mBones = new aiBone*[in_mesh->mNumBones]();
}
// clear the temporary helper array
if (base) {
std::fill(was_copied_to.begin(), was_copied_to.end(), WAS_NOT_COPIED);
}
std::vector<aiFace> vFaces;
// reserve enough storage for most cases
if (in_mesh->HasPositions()) {
out_mesh->mVertices = new aiVector3D[out_vertex_index];
}
if (in_mesh->HasNormals()) {
out_mesh->mNormals = new aiVector3D[out_vertex_index];
}
if (in_mesh->HasTangentsAndBitangents()) {
out_mesh->mTangents = new aiVector3D[out_vertex_index];
out_mesh->mBitangents = new aiVector3D[out_vertex_index];
}
for (unsigned int c = 0; in_mesh->HasVertexColors(c);++c) {
out_mesh->mColors[c] = new aiColor4D[out_vertex_index];
}
for (unsigned int c = 0; in_mesh->HasTextureCoords(c);++c) {
out_mesh->mNumUVComponents[c] = in_mesh->mNumUVComponents[c];
out_mesh->mTextureCoords[c] = new aiVector3D[out_vertex_index];
}
vFaces.reserve(size_estimated);
// (we will also need to copy the array of indices)
while (base < in_mesh->mNumFaces) {
const unsigned int iNumIndices = in_mesh->mFaces[base].mNumIndices;
// doesn't catch degenerates but is quite fast
unsigned int iNeed = 0;
for (unsigned int v = 0; v < iNumIndices;++v) {
unsigned int index = in_mesh->mFaces[base].mIndices[v];
// check whether we do already have this vertex
if (WAS_NOT_COPIED == was_copied_to[index]) {
iNeed++;
}
}
if (out_mesh->mNumVertices + iNeed > out_vertex_index) {
// don't use this face
break;
}
vFaces.emplace_back();
aiFace& rFace = vFaces.back();
// setup face type and number of indices
rFace.mNumIndices = iNumIndices;
rFace.mIndices = new unsigned int[iNumIndices];
// need to update the output primitive types
switch (rFace.mNumIndices)
{
case 1:
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
break;
case 2:
out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
break;
case 3:
out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
break;
default:
out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
}
// and copy the contents of the old array, offset them by current base
for (unsigned int v = 0; v < iNumIndices;++v) {
const unsigned int index = in_mesh->mFaces[base].mIndices[v];
// check whether we do already have this vertex
if (WAS_NOT_COPIED != was_copied_to[index]) {
rFace.mIndices[v] = was_copied_to[index];
continue;
}
// copy positions
out_mesh->mVertices[out_mesh->mNumVertices] = (in_mesh->mVertices[index]);
// copy normals
if (in_mesh->HasNormals()) {
out_mesh->mNormals[out_mesh->mNumVertices] = (in_mesh->mNormals[index]);
}
// copy tangents/bi-tangents
if (in_mesh->HasTangentsAndBitangents()) {
out_mesh->mTangents[out_mesh->mNumVertices] = (in_mesh->mTangents[index]);
out_mesh->mBitangents[out_mesh->mNumVertices] = (in_mesh->mBitangents[index]);
}
// texture coordinates
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) {
if (in_mesh->HasTextureCoords( c)) {
out_mesh->mTextureCoords[c][out_mesh->mNumVertices] = in_mesh->mTextureCoords[c][index];
}
}
// vertex colors
for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_COLOR_SETS;++c) {
if (in_mesh->HasVertexColors( c)) {
out_mesh->mColors[c][out_mesh->mNumVertices] = in_mesh->mColors[c][index];
}
}
// check whether we have bone weights assigned to this vertex
rFace.mIndices[v] = out_mesh->mNumVertices;
if (avPerVertexWeights) {
VertexWeightTable& table = avPerVertexWeights[ out_mesh->mNumVertices ];
for (VertexWeightTable::const_iterator iter = table.begin(), end = table.end(); iter != end;++iter) {
// allocate the bone weight array if necessary and store it in the mBones field (HACK!)
BoneWeightList* weight_list = reinterpret_cast<BoneWeightList*>(out_mesh->mBones[(*iter).first]);
if (!weight_list) {
weight_list = new BoneWeightList();
out_mesh->mBones[(*iter).first] = reinterpret_cast<aiBone*>(weight_list);
}
weight_list->push_back(aiVertexWeight(out_mesh->mNumVertices,(*iter).second));
}
}
was_copied_to[index] = out_mesh->mNumVertices;
out_mesh->mNumVertices++;
}
base++;
if(out_mesh->mNumVertices == out_vertex_index) {
// break here. The face is only added if it was complete
break;
}
}
// check which bones we'll need to create for this submesh
if (in_mesh->HasBones()) {
aiBone** ppCurrent = out_mesh->mBones;
for (unsigned int k = 0; k < in_mesh->mNumBones;++k) {
// check whether the bone exists
BoneWeightList* const weight_list = reinterpret_cast<BoneWeightList*>(out_mesh->mBones[k]);
if (weight_list) {
const aiBone* const bone_in = in_mesh->mBones[k];
aiBone* const bone_out = new aiBone();
*ppCurrent++ = bone_out;
bone_out->mName = aiString(bone_in->mName);
bone_out->mOffsetMatrix =bone_in->mOffsetMatrix;
bone_out->mNumWeights = (unsigned int)weight_list->size();
bone_out->mWeights = new aiVertexWeight[bone_out->mNumWeights];
// copy the vertex weights
::memcpy(bone_out->mWeights, &(*weight_list)[0],bone_out->mNumWeights * sizeof(aiVertexWeight));
delete weight_list;
out_mesh->mNumBones++;
}
}
}
// copy the face list to the mesh
out_mesh->mFaces = new aiFace[vFaces.size()];
out_mesh->mNumFaces = (unsigned int)vFaces.size();
for (unsigned int p = 0; p < out_mesh->mNumFaces;++p) {
out_mesh->mFaces[p] = vFaces[p];
}
// add the newly created mesh to the list
source_mesh_map.push_back(std::make_pair(out_mesh,a));
if (base == in_mesh->mNumFaces) {
break;
}
}
// delete the per-vertex weight list again
delete[] avPerVertexWeights;
// now delete the old mesh data
delete in_mesh;
}
|