1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
|
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2022, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/** @file IFCProfile.cpp
* @brief Read profile and curves entities from IFC files
*/
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
#include "IFCUtil.h"
namespace Assimp {
namespace IFC {
namespace {
// --------------------------------------------------------------------------------
// Conic is the base class for Circle and Ellipse
// --------------------------------------------------------------------------------
class Conic : public Curve {
public:
// --------------------------------------------------
Conic(const Schema_2x3::IfcConic& entity, ConversionData& conv)
: Curve(entity,conv) {
IfcMatrix4 trafo;
ConvertAxisPlacement(trafo,*entity.Position,conv);
// for convenience, extract the matrix rows
location = IfcVector3(trafo.a4,trafo.b4,trafo.c4);
p[0] = IfcVector3(trafo.a1,trafo.b1,trafo.c1);
p[1] = IfcVector3(trafo.a2,trafo.b2,trafo.c2);
p[2] = IfcVector3(trafo.a3,trafo.b3,trafo.c3);
}
// --------------------------------------------------
bool IsClosed() const {
return true;
}
// --------------------------------------------------
size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const {
ai_assert( InRange( a ) );
ai_assert( InRange( b ) );
a *= conv.angle_scale;
b *= conv.angle_scale;
a = std::fmod(a,static_cast<IfcFloat>( AI_MATH_TWO_PI ));
b = std::fmod(b,static_cast<IfcFloat>( AI_MATH_TWO_PI ));
const IfcFloat setting = static_cast<IfcFloat>( AI_MATH_PI * conv.settings.conicSamplingAngle / 180.0 );
return static_cast<size_t>( std::ceil(std::abs( b-a)) / setting);
}
// --------------------------------------------------
ParamRange GetParametricRange() const {
return std::make_pair(static_cast<IfcFloat>( 0. ), static_cast<IfcFloat>( AI_MATH_TWO_PI / conv.angle_scale ));
}
protected:
IfcVector3 location, p[3];
};
// --------------------------------------------------------------------------------
// Circle
// --------------------------------------------------------------------------------
class Circle : public Conic {
public:
// --------------------------------------------------
Circle(const Schema_2x3::IfcCircle& entity, ConversionData& conv)
: Conic(entity,conv)
, entity(entity)
{
}
// --------------------------------------------------
IfcVector3 Eval(IfcFloat u) const {
u = -conv.angle_scale * u;
return location + static_cast<IfcFloat>(entity.Radius)*(static_cast<IfcFloat>(std::cos(u))*p[0] +
static_cast<IfcFloat>(std::sin(u))*p[1]);
}
private:
const Schema_2x3::IfcCircle& entity;
};
// --------------------------------------------------------------------------------
// Ellipse
// --------------------------------------------------------------------------------
class Ellipse : public Conic {
public:
// --------------------------------------------------
Ellipse(const Schema_2x3::IfcEllipse& entity, ConversionData& conv)
: Conic(entity,conv)
, entity(entity) {
// empty
}
// --------------------------------------------------
IfcVector3 Eval(IfcFloat u) const {
u = -conv.angle_scale * u;
return location + static_cast<IfcFloat>(entity.SemiAxis1)*static_cast<IfcFloat>(std::cos(u))*p[0] +
static_cast<IfcFloat>(entity.SemiAxis2)*static_cast<IfcFloat>(std::sin(u))*p[1];
}
private:
const Schema_2x3::IfcEllipse& entity;
};
// --------------------------------------------------------------------------------
// Line
// --------------------------------------------------------------------------------
class Line : public Curve {
public:
// --------------------------------------------------
Line(const Schema_2x3::IfcLine& entity, ConversionData& conv)
: Curve(entity,conv) {
ConvertCartesianPoint(p,entity.Pnt);
ConvertVector(v,entity.Dir);
}
// --------------------------------------------------
bool IsClosed() const {
return false;
}
// --------------------------------------------------
IfcVector3 Eval(IfcFloat u) const {
return p + u*v;
}
// --------------------------------------------------
size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const {
ai_assert( InRange( a ) );
ai_assert( InRange( b ) );
// two points are always sufficient for a line segment
return a==b ? 1 : 2;
}
// --------------------------------------------------
void SampleDiscrete(TempMesh& out,IfcFloat a, IfcFloat b) const {
ai_assert( InRange( a ) );
ai_assert( InRange( b ) );
if (a == b) {
out.mVerts.push_back(Eval(a));
return;
}
out.mVerts.reserve(out.mVerts.size()+2);
out.mVerts.push_back(Eval(a));
out.mVerts.push_back(Eval(b));
}
// --------------------------------------------------
ParamRange GetParametricRange() const {
const IfcFloat inf = std::numeric_limits<IfcFloat>::infinity();
return std::make_pair(-inf,+inf);
}
private:
IfcVector3 p,v;
};
// --------------------------------------------------------------------------------
// CompositeCurve joins multiple smaller, bounded curves
// --------------------------------------------------------------------------------
class CompositeCurve : public BoundedCurve {
typedef std::pair< std::shared_ptr< BoundedCurve >, bool > CurveEntry;
public:
// --------------------------------------------------
CompositeCurve(const Schema_2x3::IfcCompositeCurve& entity, ConversionData& conv)
: BoundedCurve(entity,conv)
, total() {
curves.reserve(entity.Segments.size());
for(const Schema_2x3::IfcCompositeCurveSegment& curveSegment :entity.Segments) {
// according to the specification, this must be a bounded curve
std::shared_ptr< Curve > cv(Curve::Convert(curveSegment.ParentCurve,conv));
std::shared_ptr< BoundedCurve > bc = std::dynamic_pointer_cast<BoundedCurve>(cv);
if (!bc) {
IFCImporter::LogError("expected segment of composite curve to be a bounded curve");
continue;
}
if ( (std::string)curveSegment.Transition != "CONTINUOUS" ) {
IFCImporter::LogVerboseDebug("ignoring transition code on composite curve segment, only continuous transitions are supported");
}
curves.push_back( CurveEntry(bc,IsTrue(curveSegment.SameSense)) );
total += bc->GetParametricRangeDelta();
}
if (curves.empty()) {
throw CurveError("empty composite curve");
}
}
// --------------------------------------------------
IfcVector3 Eval(IfcFloat u) const {
if (curves.empty()) {
return IfcVector3();
}
IfcFloat acc = 0;
for(const CurveEntry& entry : curves) {
const ParamRange& range = entry.first->GetParametricRange();
const IfcFloat delta = std::abs(range.second-range.first);
if (u < acc+delta) {
return entry.first->Eval( entry.second ? (u-acc) + range.first : range.second-(u-acc));
}
acc += delta;
}
// clamp to end
return curves.back().first->Eval(curves.back().first->GetParametricRange().second);
}
// --------------------------------------------------
size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const {
ai_assert( InRange( a ) );
ai_assert( InRange( b ) );
size_t cnt = 0;
IfcFloat acc = 0;
for(const CurveEntry& entry : curves) {
const ParamRange& range = entry.first->GetParametricRange();
const IfcFloat delta = std::abs(range.second-range.first);
if (a <= acc+delta && b >= acc) {
const IfcFloat at = std::max(static_cast<IfcFloat>( 0. ),a-acc), bt = std::min(delta,b-acc);
cnt += entry.first->EstimateSampleCount( entry.second ? at + range.first : range.second - bt, entry.second ? bt + range.first : range.second - at );
}
acc += delta;
}
return cnt;
}
// --------------------------------------------------
void SampleDiscrete(TempMesh& out,IfcFloat a, IfcFloat b) const {
ai_assert( InRange( a ) );
ai_assert( InRange( b ) );
const size_t cnt = EstimateSampleCount(a,b);
out.mVerts.reserve(out.mVerts.size() + cnt);
for(const CurveEntry& entry : curves) {
const size_t curCnt = out.mVerts.size();
entry.first->SampleDiscrete(out);
if (!entry.second && curCnt != out.mVerts.size()) {
std::reverse(out.mVerts.begin() + curCnt, out.mVerts.end());
}
}
}
// --------------------------------------------------
ParamRange GetParametricRange() const {
return std::make_pair(static_cast<IfcFloat>( 0. ),total);
}
private:
std::vector< CurveEntry > curves;
IfcFloat total;
};
// --------------------------------------------------------------------------------
// TrimmedCurve can be used to trim an unbounded curve to a bounded range
// --------------------------------------------------------------------------------
class TrimmedCurve : public BoundedCurve {
public:
// --------------------------------------------------
TrimmedCurve(const Schema_2x3::IfcTrimmedCurve& entity, ConversionData& conv)
: BoundedCurve(entity,conv),
base(std::shared_ptr<const Curve>(Curve::Convert(entity.BasisCurve,conv)))
{
typedef std::shared_ptr<const STEP::EXPRESS::DataType> Entry;
// for some reason, trimmed curves can either specify a parametric value
// or a point on the curve, or both. And they can even specify which of the
// two representations they prefer, even though an information invariant
// claims that they must be identical if both are present.
// oh well.
bool have_param = false, have_point = false;
IfcVector3 point;
for(const Entry& sel :entity.Trim1) {
if (const ::Assimp::STEP::EXPRESS::REAL* const r = sel->ToPtr<::Assimp::STEP::EXPRESS::REAL>()) {
range.first = *r;
have_param = true;
break;
}
else if (const Schema_2x3::IfcCartesianPoint* const curR = sel->ResolveSelectPtr<Schema_2x3::IfcCartesianPoint>(conv.db)) {
ConvertCartesianPoint(point, *curR);
have_point = true;
}
}
if (!have_param) {
if (!have_point || !base->ReverseEval(point,range.first)) {
throw CurveError("IfcTrimmedCurve: failed to read first trim parameter, ignoring curve");
}
}
have_param = false, have_point = false;
for(const Entry& sel :entity.Trim2) {
if (const ::Assimp::STEP::EXPRESS::REAL* const r = sel->ToPtr<::Assimp::STEP::EXPRESS::REAL>()) {
range.second = *r;
have_param = true;
break;
}
else if (const Schema_2x3::IfcCartesianPoint* const curR = sel->ResolveSelectPtr<Schema_2x3::IfcCartesianPoint>(conv.db)) {
ConvertCartesianPoint(point, *curR);
have_point = true;
}
}
if (!have_param) {
if (!have_point || !base->ReverseEval(point,range.second)) {
throw CurveError("IfcTrimmedCurve: failed to read second trim parameter, ignoring curve");
}
}
agree_sense = IsTrue(entity.SenseAgreement);
if( !agree_sense ) {
std::swap(range.first,range.second);
}
// "NOTE In case of a closed curve, it may be necessary to increment t1 or t2
// by the parametric length for consistency with the sense flag."
if (base->IsClosed()) {
if( range.first > range.second ) {
range.second += base->GetParametricRangeDelta();
}
}
maxval = range.second-range.first;
ai_assert(maxval >= 0);
}
// --------------------------------------------------
IfcVector3 Eval(IfcFloat p) const {
ai_assert(InRange(p));
return base->Eval( TrimParam(p) );
}
// --------------------------------------------------
size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const {
ai_assert( InRange( a ) );
ai_assert( InRange( b ) );
return base->EstimateSampleCount(TrimParam(a),TrimParam(b));
}
// --------------------------------------------------
void SampleDiscrete(TempMesh& out,IfcFloat a,IfcFloat b) const {
ai_assert(InRange(a));
ai_assert(InRange(b));
return base->SampleDiscrete(out,TrimParam(a),TrimParam(b));
}
// --------------------------------------------------
ParamRange GetParametricRange() const {
return std::make_pair(static_cast<IfcFloat>( 0. ),maxval);
}
private:
// --------------------------------------------------
IfcFloat TrimParam(IfcFloat f) const {
return agree_sense ? f + range.first : range.second - f;
}
private:
ParamRange range;
IfcFloat maxval;
bool agree_sense;
std::shared_ptr<const Curve> base;
};
// --------------------------------------------------------------------------------
// PolyLine is a 'curve' defined by linear interpolation over a set of discrete points
// --------------------------------------------------------------------------------
class PolyLine : public BoundedCurve {
public:
// --------------------------------------------------
PolyLine(const Schema_2x3::IfcPolyline& entity, ConversionData& conv)
: BoundedCurve(entity,conv)
{
points.reserve(entity.Points.size());
IfcVector3 t;
for(const Schema_2x3::IfcCartesianPoint& cp : entity.Points) {
ConvertCartesianPoint(t,cp);
points.push_back(t);
}
}
// --------------------------------------------------
IfcVector3 Eval(IfcFloat p) const {
ai_assert(InRange(p));
const size_t b = static_cast<size_t>(std::floor(p));
if (b == points.size()-1) {
return points.back();
}
const IfcFloat d = p-static_cast<IfcFloat>(b);
return points[b+1] * d + points[b] * (static_cast<IfcFloat>( 1. )-d);
}
// --------------------------------------------------
size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const {
ai_assert(InRange(a));
ai_assert(InRange(b));
return static_cast<size_t>( std::ceil(b) - std::floor(a) );
}
// --------------------------------------------------
ParamRange GetParametricRange() const {
return std::make_pair(static_cast<IfcFloat>( 0. ),static_cast<IfcFloat>(points.size()-1));
}
private:
std::vector<IfcVector3> points;
};
} // anon
// ------------------------------------------------------------------------------------------------
Curve* Curve::Convert(const IFC::Schema_2x3::IfcCurve& curve,ConversionData& conv) {
if(curve.ToPtr<Schema_2x3::IfcBoundedCurve>()) {
if(const Schema_2x3::IfcPolyline* c = curve.ToPtr<Schema_2x3::IfcPolyline>()) {
return new PolyLine(*c,conv);
}
if(const Schema_2x3::IfcTrimmedCurve* c = curve.ToPtr<Schema_2x3::IfcTrimmedCurve>()) {
return new TrimmedCurve(*c,conv);
}
if(const Schema_2x3::IfcCompositeCurve* c = curve.ToPtr<Schema_2x3::IfcCompositeCurve>()) {
return new CompositeCurve(*c,conv);
}
}
if(curve.ToPtr<Schema_2x3::IfcConic>()) {
if(const Schema_2x3::IfcCircle* c = curve.ToPtr<Schema_2x3::IfcCircle>()) {
return new Circle(*c,conv);
}
if(const Schema_2x3::IfcEllipse* c = curve.ToPtr<Schema_2x3::IfcEllipse>()) {
return new Ellipse(*c,conv);
}
}
if(const Schema_2x3::IfcLine* c = curve.ToPtr<Schema_2x3::IfcLine>()) {
return new Line(*c,conv);
}
// XXX OffsetCurve2D, OffsetCurve3D not currently supported
return nullptr;
}
#ifdef ASSIMP_BUILD_DEBUG
// ------------------------------------------------------------------------------------------------
bool Curve::InRange(IfcFloat u) const {
const ParamRange range = GetParametricRange();
if (IsClosed()) {
return true;
}
const IfcFloat epsilon = Math::getEpsilon<float>();
return u - range.first > -epsilon && range.second - u > -epsilon;
}
#endif
// ------------------------------------------------------------------------------------------------
IfcFloat Curve::GetParametricRangeDelta() const {
const ParamRange& range = GetParametricRange();
return std::abs(range.second - range.first);
}
// ------------------------------------------------------------------------------------------------
size_t Curve::EstimateSampleCount(IfcFloat a, IfcFloat b) const {
(void)(a); (void)(b);
ai_assert( InRange( a ) );
ai_assert( InRange( b ) );
// arbitrary default value, deriving classes should supply better suited values
return 16;
}
// ------------------------------------------------------------------------------------------------
IfcFloat RecursiveSearch(const Curve* cv, const IfcVector3& val, IfcFloat a, IfcFloat b,
unsigned int samples, IfcFloat threshold, unsigned int recurse = 0, unsigned int max_recurse = 15) {
ai_assert(samples>1);
const IfcFloat delta = (b-a)/samples, inf = std::numeric_limits<IfcFloat>::infinity();
IfcFloat min_point[2] = {a,b}, min_diff[2] = {inf,inf};
IfcFloat runner = a;
for (unsigned int i = 0; i < samples; ++i, runner += delta) {
const IfcFloat diff = (cv->Eval(runner)-val).SquareLength();
if (diff < min_diff[0]) {
min_diff[1] = min_diff[0];
min_point[1] = min_point[0];
min_diff[0] = diff;
min_point[0] = runner;
}
else if (diff < min_diff[1]) {
min_diff[1] = diff;
min_point[1] = runner;
}
}
ai_assert( min_diff[ 0 ] != inf );
ai_assert( min_diff[ 1 ] != inf );
if ( std::fabs(a-min_point[0]) < threshold || recurse >= max_recurse) {
return min_point[0];
}
// fix for closed curves to take their wrap-over into account
if (cv->IsClosed() && std::fabs(min_point[0]-min_point[1]) > cv->GetParametricRangeDelta()*0.5 ) {
const Curve::ParamRange& range = cv->GetParametricRange();
const IfcFloat wrapdiff = (cv->Eval(range.first)-val).SquareLength();
if (wrapdiff < min_diff[0]) {
const IfcFloat t = min_point[0];
min_point[0] = min_point[1] > min_point[0] ? range.first : range.second;
min_point[1] = t;
}
}
return RecursiveSearch(cv,val,min_point[0],min_point[1],samples,threshold,recurse+1,max_recurse);
}
// ------------------------------------------------------------------------------------------------
bool Curve::ReverseEval(const IfcVector3& val, IfcFloat& paramOut) const
{
// note: the following algorithm is not guaranteed to find the 'right' parameter value
// in all possible cases, but it will always return at least some value so this function
// will never fail in the default implementation.
// XXX derive threshold from curve topology
static const IfcFloat threshold = 1e-4f;
static const unsigned int samples = 16;
const ParamRange& range = GetParametricRange();
paramOut = RecursiveSearch(this,val,range.first,range.second,samples,threshold);
return true;
}
// ------------------------------------------------------------------------------------------------
void Curve::SampleDiscrete(TempMesh& out,IfcFloat a, IfcFloat b) const {
ai_assert( InRange( a ) );
ai_assert( InRange( b ) );
const size_t cnt = std::max(static_cast<size_t>(0),EstimateSampleCount(a,b));
out.mVerts.reserve( out.mVerts.size() + cnt + 1);
IfcFloat p = a, delta = (b-a)/cnt;
for(size_t i = 0; i <= cnt; ++i, p += delta) {
out.mVerts.push_back(Eval(p));
}
}
// ------------------------------------------------------------------------------------------------
bool BoundedCurve::IsClosed() const {
return false;
}
// ------------------------------------------------------------------------------------------------
void BoundedCurve::SampleDiscrete(TempMesh& out) const {
const ParamRange& range = GetParametricRange();
ai_assert( range.first != std::numeric_limits<IfcFloat>::infinity() );
ai_assert( range.second != std::numeric_limits<IfcFloat>::infinity() );
return SampleDiscrete(out,range.first,range.second);
}
} // IFC
} // Assimp
#endif // ASSIMP_BUILD_NO_IFC_IMPORTER
|