1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
|
/*
* Copyright © 2004 Carl Worth
* Copyright © 2006 Red Hat, Inc.
* Copyright © 2008 Chris Wilson
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is Carl Worth
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
* Chris Wilson <chris@chris-wilson.co.uk>
*/
/* Provide definitions for standalone compilation */
#include "cairoint.h"
#include "cairo-boxes-private.h"
#include "cairo-combsort-inline.h"
#include "cairo-error-private.h"
#include "cairo-traps-private.h"
typedef struct _cairo_bo_edge cairo_bo_edge_t;
typedef struct _cairo_bo_trap cairo_bo_trap_t;
/* A deferred trapezoid of an edge */
struct _cairo_bo_trap {
cairo_bo_edge_t *right;
int32_t top;
};
struct _cairo_bo_edge {
cairo_edge_t edge;
cairo_bo_edge_t *prev;
cairo_bo_edge_t *next;
cairo_bo_trap_t deferred_trap;
};
typedef enum {
CAIRO_BO_EVENT_TYPE_START,
CAIRO_BO_EVENT_TYPE_STOP
} cairo_bo_event_type_t;
typedef struct _cairo_bo_event {
cairo_bo_event_type_t type;
cairo_point_t point;
cairo_bo_edge_t *edge;
} cairo_bo_event_t;
typedef struct _cairo_bo_sweep_line {
cairo_bo_event_t **events;
cairo_bo_edge_t *head;
cairo_bo_edge_t *stopped;
int32_t current_y;
cairo_bo_edge_t *current_edge;
} cairo_bo_sweep_line_t;
static inline int
_cairo_point_compare (const cairo_point_t *a,
const cairo_point_t *b)
{
int cmp;
cmp = a->y - b->y;
if (likely (cmp))
return cmp;
return a->x - b->x;
}
static inline int
_cairo_bo_edge_compare (const cairo_bo_edge_t *a,
const cairo_bo_edge_t *b)
{
int cmp;
cmp = a->edge.line.p1.x - b->edge.line.p1.x;
if (likely (cmp))
return cmp;
return b->edge.bottom - a->edge.bottom;
}
static inline int
cairo_bo_event_compare (const cairo_bo_event_t *a,
const cairo_bo_event_t *b)
{
int cmp;
cmp = _cairo_point_compare (&a->point, &b->point);
if (likely (cmp))
return cmp;
cmp = a->type - b->type;
if (cmp)
return cmp;
return a - b;
}
static inline cairo_bo_event_t *
_cairo_bo_event_dequeue (cairo_bo_sweep_line_t *sweep_line)
{
return *sweep_line->events++;
}
CAIRO_COMBSORT_DECLARE (_cairo_bo_event_queue_sort,
cairo_bo_event_t *,
cairo_bo_event_compare)
static void
_cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line,
cairo_bo_event_t **events,
int num_events)
{
_cairo_bo_event_queue_sort (events, num_events);
events[num_events] = NULL;
sweep_line->events = events;
sweep_line->head = NULL;
sweep_line->current_y = INT32_MIN;
sweep_line->current_edge = NULL;
}
static void
_cairo_bo_sweep_line_insert (cairo_bo_sweep_line_t *sweep_line,
cairo_bo_edge_t *edge)
{
if (sweep_line->current_edge != NULL) {
cairo_bo_edge_t *prev, *next;
int cmp;
cmp = _cairo_bo_edge_compare (sweep_line->current_edge, edge);
if (cmp < 0) {
prev = sweep_line->current_edge;
next = prev->next;
while (next != NULL && _cairo_bo_edge_compare (next, edge) < 0)
prev = next, next = prev->next;
prev->next = edge;
edge->prev = prev;
edge->next = next;
if (next != NULL)
next->prev = edge;
} else if (cmp > 0) {
next = sweep_line->current_edge;
prev = next->prev;
while (prev != NULL && _cairo_bo_edge_compare (prev, edge) > 0)
next = prev, prev = next->prev;
next->prev = edge;
edge->next = next;
edge->prev = prev;
if (prev != NULL)
prev->next = edge;
else
sweep_line->head = edge;
} else {
prev = sweep_line->current_edge;
edge->prev = prev;
edge->next = prev->next;
if (prev->next != NULL)
prev->next->prev = edge;
prev->next = edge;
}
} else {
sweep_line->head = edge;
}
sweep_line->current_edge = edge;
}
static void
_cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t *sweep_line,
cairo_bo_edge_t *edge)
{
if (edge->prev != NULL)
edge->prev->next = edge->next;
else
sweep_line->head = edge->next;
if (edge->next != NULL)
edge->next->prev = edge->prev;
if (sweep_line->current_edge == edge)
sweep_line->current_edge = edge->prev ? edge->prev : edge->next;
}
static inline cairo_bool_t
edges_collinear (const cairo_bo_edge_t *a, const cairo_bo_edge_t *b)
{
return a->edge.line.p1.x == b->edge.line.p1.x;
}
static cairo_status_t
_cairo_bo_edge_end_trap (cairo_bo_edge_t *left,
int32_t bot,
cairo_bool_t do_traps,
void *container)
{
cairo_bo_trap_t *trap = &left->deferred_trap;
cairo_status_t status = CAIRO_STATUS_SUCCESS;
/* Only emit (trivial) non-degenerate trapezoids with positive height. */
if (likely (trap->top < bot)) {
if (do_traps) {
_cairo_traps_add_trap (container,
trap->top, bot,
&left->edge.line, &trap->right->edge.line);
status = _cairo_traps_status ((cairo_traps_t *) container);
} else {
cairo_box_t box;
box.p1.x = left->edge.line.p1.x;
box.p1.y = trap->top;
box.p2.x = trap->right->edge.line.p1.x;
box.p2.y = bot;
status = _cairo_boxes_add (container, CAIRO_ANTIALIAS_DEFAULT, &box);
}
}
trap->right = NULL;
return status;
}
/* Start a new trapezoid at the given top y coordinate, whose edges
* are `edge' and `edge->next'. If `edge' already has a trapezoid,
* then either add it to the traps in `traps', if the trapezoid's
* right edge differs from `edge->next', or do nothing if the new
* trapezoid would be a continuation of the existing one. */
static inline cairo_status_t
_cairo_bo_edge_start_or_continue_trap (cairo_bo_edge_t *left,
cairo_bo_edge_t *right,
int top,
cairo_bool_t do_traps,
void *container)
{
cairo_status_t status;
if (left->deferred_trap.right == right)
return CAIRO_STATUS_SUCCESS;
if (left->deferred_trap.right != NULL) {
if (right != NULL && edges_collinear (left->deferred_trap.right, right))
{
/* continuation on right, so just swap edges */
left->deferred_trap.right = right;
return CAIRO_STATUS_SUCCESS;
}
status = _cairo_bo_edge_end_trap (left, top, do_traps, container);
if (unlikely (status))
return status;
}
if (right != NULL && ! edges_collinear (left, right)) {
left->deferred_trap.top = top;
left->deferred_trap.right = right;
}
return CAIRO_STATUS_SUCCESS;
}
static inline cairo_status_t
_active_edges_to_traps (cairo_bo_edge_t *left,
int32_t top,
cairo_fill_rule_t fill_rule,
cairo_bool_t do_traps,
void *container)
{
cairo_bo_edge_t *right;
cairo_status_t status;
if (fill_rule == CAIRO_FILL_RULE_WINDING) {
while (left != NULL) {
int in_out;
/* Greedily search for the closing edge, so that we generate the
* maximal span width with the minimal number of trapezoids.
*/
in_out = left->edge.dir;
/* Check if there is a co-linear edge with an existing trap */
right = left->next;
if (left->deferred_trap.right == NULL) {
while (right != NULL && right->deferred_trap.right == NULL)
right = right->next;
if (right != NULL && edges_collinear (left, right)) {
/* continuation on left */
left->deferred_trap = right->deferred_trap;
right->deferred_trap.right = NULL;
}
}
/* End all subsumed traps */
right = left->next;
while (right != NULL) {
if (right->deferred_trap.right != NULL) {
status = _cairo_bo_edge_end_trap (right, top, do_traps, container);
if (unlikely (status))
return status;
}
in_out += right->edge.dir;
if (in_out == 0) {
/* skip co-linear edges */
if (right->next == NULL ||
! edges_collinear (right, right->next))
{
break;
}
}
right = right->next;
}
status = _cairo_bo_edge_start_or_continue_trap (left, right, top,
do_traps, container);
if (unlikely (status))
return status;
left = right;
if (left != NULL)
left = left->next;
}
} else {
while (left != NULL) {
int in_out = 0;
right = left->next;
while (right != NULL) {
if (right->deferred_trap.right != NULL) {
status = _cairo_bo_edge_end_trap (right, top, do_traps, container);
if (unlikely (status))
return status;
}
if ((in_out++ & 1) == 0) {
cairo_bo_edge_t *next;
cairo_bool_t skip = FALSE;
/* skip co-linear edges */
next = right->next;
if (next != NULL)
skip = edges_collinear (right, next);
if (! skip)
break;
}
right = right->next;
}
status = _cairo_bo_edge_start_or_continue_trap (left, right, top,
do_traps, container);
if (unlikely (status))
return status;
left = right;
if (left != NULL)
left = left->next;
}
}
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_cairo_bentley_ottmann_tessellate_rectilinear (cairo_bo_event_t **start_events,
int num_events,
cairo_fill_rule_t fill_rule,
cairo_bool_t do_traps,
void *container)
{
cairo_bo_sweep_line_t sweep_line;
cairo_bo_event_t *event;
cairo_status_t status;
_cairo_bo_sweep_line_init (&sweep_line, start_events, num_events);
while ((event = _cairo_bo_event_dequeue (&sweep_line))) {
if (event->point.y != sweep_line.current_y) {
status = _active_edges_to_traps (sweep_line.head,
sweep_line.current_y,
fill_rule, do_traps, container);
if (unlikely (status))
return status;
sweep_line.current_y = event->point.y;
}
switch (event->type) {
case CAIRO_BO_EVENT_TYPE_START:
_cairo_bo_sweep_line_insert (&sweep_line, event->edge);
break;
case CAIRO_BO_EVENT_TYPE_STOP:
_cairo_bo_sweep_line_delete (&sweep_line, event->edge);
if (event->edge->deferred_trap.right != NULL) {
status = _cairo_bo_edge_end_trap (event->edge,
sweep_line.current_y,
do_traps, container);
if (unlikely (status))
return status;
}
break;
}
}
return CAIRO_STATUS_SUCCESS;
}
cairo_status_t
_cairo_bentley_ottmann_tessellate_rectilinear_polygon_to_boxes (const cairo_polygon_t *polygon,
cairo_fill_rule_t fill_rule,
cairo_boxes_t *boxes)
{
cairo_status_t status;
cairo_bo_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_event_t)];
cairo_bo_event_t *events;
cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
cairo_bo_event_t **event_ptrs;
cairo_bo_edge_t stack_edges[ARRAY_LENGTH (stack_events)];
cairo_bo_edge_t *edges;
int num_events;
int i, j;
if (unlikely (polygon->num_edges == 0))
return CAIRO_STATUS_SUCCESS;
num_events = 2 * polygon->num_edges;
events = stack_events;
event_ptrs = stack_event_ptrs;
edges = stack_edges;
if (num_events > ARRAY_LENGTH (stack_events)) {
events = _cairo_malloc_ab_plus_c (num_events,
sizeof (cairo_bo_event_t) +
sizeof (cairo_bo_edge_t) +
sizeof (cairo_bo_event_t *),
sizeof (cairo_bo_event_t *));
if (unlikely (events == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
event_ptrs = (cairo_bo_event_t **) (events + num_events);
edges = (cairo_bo_edge_t *) (event_ptrs + num_events + 1);
}
for (i = j = 0; i < polygon->num_edges; i++) {
edges[i].edge = polygon->edges[i];
edges[i].deferred_trap.right = NULL;
edges[i].prev = NULL;
edges[i].next = NULL;
event_ptrs[j] = &events[j];
events[j].type = CAIRO_BO_EVENT_TYPE_START;
events[j].point.y = polygon->edges[i].top;
events[j].point.x = polygon->edges[i].line.p1.x;
events[j].edge = &edges[i];
j++;
event_ptrs[j] = &events[j];
events[j].type = CAIRO_BO_EVENT_TYPE_STOP;
events[j].point.y = polygon->edges[i].bottom;
events[j].point.x = polygon->edges[i].line.p1.x;
events[j].edge = &edges[i];
j++;
}
status = _cairo_bentley_ottmann_tessellate_rectilinear (event_ptrs, j,
fill_rule,
FALSE, boxes);
if (events != stack_events)
free (events);
return status;
}
cairo_status_t
_cairo_bentley_ottmann_tessellate_rectilinear_traps (cairo_traps_t *traps,
cairo_fill_rule_t fill_rule)
{
cairo_bo_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_event_t)];
cairo_bo_event_t *events;
cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
cairo_bo_event_t **event_ptrs;
cairo_bo_edge_t stack_edges[ARRAY_LENGTH (stack_events)];
cairo_bo_edge_t *edges;
cairo_status_t status;
int i, j, k;
if (unlikely (traps->num_traps == 0))
return CAIRO_STATUS_SUCCESS;
assert (traps->is_rectilinear);
i = 4 * traps->num_traps;
events = stack_events;
event_ptrs = stack_event_ptrs;
edges = stack_edges;
if (i > ARRAY_LENGTH (stack_events)) {
events = _cairo_malloc_ab_plus_c (i,
sizeof (cairo_bo_event_t) +
sizeof (cairo_bo_edge_t) +
sizeof (cairo_bo_event_t *),
sizeof (cairo_bo_event_t *));
if (unlikely (events == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
event_ptrs = (cairo_bo_event_t **) (events + i);
edges = (cairo_bo_edge_t *) (event_ptrs + i + 1);
}
for (i = j = k = 0; i < traps->num_traps; i++) {
edges[k].edge.top = traps->traps[i].top;
edges[k].edge.bottom = traps->traps[i].bottom;
edges[k].edge.line = traps->traps[i].left;
edges[k].edge.dir = 1;
edges[k].deferred_trap.right = NULL;
edges[k].prev = NULL;
edges[k].next = NULL;
event_ptrs[j] = &events[j];
events[j].type = CAIRO_BO_EVENT_TYPE_START;
events[j].point.y = traps->traps[i].top;
events[j].point.x = traps->traps[i].left.p1.x;
events[j].edge = &edges[k];
j++;
event_ptrs[j] = &events[j];
events[j].type = CAIRO_BO_EVENT_TYPE_STOP;
events[j].point.y = traps->traps[i].bottom;
events[j].point.x = traps->traps[i].left.p1.x;
events[j].edge = &edges[k];
j++;
k++;
edges[k].edge.top = traps->traps[i].top;
edges[k].edge.bottom = traps->traps[i].bottom;
edges[k].edge.line = traps->traps[i].right;
edges[k].edge.dir = -1;
edges[k].deferred_trap.right = NULL;
edges[k].prev = NULL;
edges[k].next = NULL;
event_ptrs[j] = &events[j];
events[j].type = CAIRO_BO_EVENT_TYPE_START;
events[j].point.y = traps->traps[i].top;
events[j].point.x = traps->traps[i].right.p1.x;
events[j].edge = &edges[k];
j++;
event_ptrs[j] = &events[j];
events[j].type = CAIRO_BO_EVENT_TYPE_STOP;
events[j].point.y = traps->traps[i].bottom;
events[j].point.x = traps->traps[i].right.p1.x;
events[j].edge = &edges[k];
j++;
k++;
}
_cairo_traps_clear (traps);
status = _cairo_bentley_ottmann_tessellate_rectilinear (event_ptrs, j,
fill_rule,
TRUE, traps);
traps->is_rectilinear = TRUE;
if (events != stack_events)
free (events);
return status;
}
|