1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
#!/usr/bin/env python
# http://pyode.sourceforge.net/tutorials/tutorial3.html
# pyODE example 3: Collision detection
# Originally by Matthias Baas.
# Updated by Pierre Gay to work without pygame or cgkit.
import sys, os, random, time
from math import *
from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
import ode
# geometric utility functions
def scalp (vec, scal):
vec[0] *= scal
vec[1] *= scal
vec[2] *= scal
def length (vec):
return sqrt (vec[0]**2 + vec[1]**2 + vec[2]**2)
# prepare_GL
def prepare_GL():
"""Prepare drawing.
"""
# Viewport
glViewport(0,0,640,480)
# Initialize
glClearColor(0.8,0.8,0.9,0)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST)
glDisable(GL_LIGHTING)
glEnable(GL_LIGHTING)
glEnable(GL_NORMALIZE)
glShadeModel(GL_FLAT)
# Projection
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
gluPerspective (45,1.3333,0.2,20)
# Initialize ModelView matrix
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
# Light source
glLightfv(GL_LIGHT0,GL_POSITION,[0,0,1,0])
glLightfv(GL_LIGHT0,GL_DIFFUSE,[1,1,1,1])
glLightfv(GL_LIGHT0,GL_SPECULAR,[1,1,1,1])
glEnable(GL_LIGHT0)
# View transformation
gluLookAt (2.4, 3.6, 4.8, 0.5, 0.5, 0, 0, 1, 0)
# draw_body
def draw_body(body):
"""Draw an ODE body.
"""
x,y,z = body.getPosition()
R = body.getRotation()
rot = [R[0], R[3], R[6], 0.,
R[1], R[4], R[7], 0.,
R[2], R[5], R[8], 0.,
x, y, z, 1.0]
glPushMatrix()
glMultMatrixd(rot)
if body.shape=="box":
sx,sy,sz = body.boxsize
glScalef(sx, sy, sz)
glutSolidCube(1)
glPopMatrix()
# create_box
def create_box(world, space, density, lx, ly, lz):
"""Create a box body and its corresponding geom."""
# Create body
body = ode.Body(world)
M = ode.Mass()
M.setBox(density, lx, ly, lz)
body.setMass(M)
# Set parameters for drawing the body
body.shape = "box"
body.boxsize = (lx, ly, lz)
# Create a box geom for collision detection
geom = ode.GeomBox(space, lengths=body.boxsize)
geom.setBody(body)
return body, geom
# drop_object
def drop_object():
"""Drop an object into the scene."""
global bodies, geom, counter, objcount
body, geom = create_box(world, space, 1000, 1.0,0.2,0.2)
body.setPosition( (random.gauss(0,0.1),3.0,random.gauss(0,0.1)) )
theta = random.uniform(0,2*pi)
ct = cos (theta)
st = sin (theta)
body.setRotation([ct, 0., -st, 0., 1., 0., st, 0., ct])
bodies.append(body)
geoms.append(geom)
counter=0
objcount+=1
# explosion
def explosion():
"""Simulate an explosion.
Every object is pushed away from the origin.
The force is dependent on the objects distance from the origin.
"""
global bodies
for b in bodies:
l=b.getPosition ()
d = length (l)
a = max(0, 40000*(1.0-0.2*d*d))
l = [l[0] / 4, l[1], l[2] /4]
scalp (l, a / length (l))
b.addForce(l)
# pull
def pull():
"""Pull the objects back to the origin.
Every object will be pulled back to the origin.
Every couple of frames there'll be a thrust upwards so that
the objects won't stick to the ground all the time.
"""
global bodies, counter
for b in bodies:
l=list (b.getPosition ())
scalp (l, -1000 / length (l))
b.addForce(l)
if counter%60==0:
b.addForce((0,10000,0))
# Collision callback
def near_callback(args, geom1, geom2):
"""Callback function for the collide() method.
This function checks if the given geoms do collide and
creates contact joints if they do.
"""
# Check if the objects do collide
contacts = ode.collide(geom1, geom2)
# Create contact joints
world,contactgroup = args
for c in contacts:
c.setBounce(0.2)
c.setMu(5000)
j = ode.ContactJoint(world, contactgroup, c)
j.attach(geom1.getBody(), geom2.getBody())
######################################################################
# Initialize Glut
glutInit ([])
# Open a window
glutInitDisplayMode (GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE)
x = 0
y = 0
width = 640
height = 480
glutInitWindowPosition (x, y);
glutInitWindowSize (width, height);
glutCreateWindow ("testode")
# Create a world object
world = ode.World()
world.setGravity( (0,-9.81,0) )
world.setERP(0.8)
world.setCFM(1E-5)
# Create a space object
space = ode.Space()
# Create a plane geom which prevent the objects from falling forever
floor = ode.GeomPlane(space, (0,1,0), 0)
# A list with ODE bodies
bodies = []
# The geoms for each of the bodies
geoms = []
# A joint group for the contact joints that are generated whenever
# two bodies collide
contactgroup = ode.JointGroup()
# Some variables used inside the simulation loop
fps = 50
dt = 1.0/fps
running = True
state = 0
counter = 0
objcount = 0
lasttime = time.time()
# keyboard callback
def _keyfunc (c, x, y):
sys.exit (0)
glutKeyboardFunc (_keyfunc)
# draw callback
def _drawfunc ():
# Draw the scene
prepare_GL()
for b in bodies:
draw_body(b)
glutSwapBuffers ()
glutDisplayFunc (_drawfunc)
# idle callback
def _idlefunc ():
global counter, state, lasttime
t = dt - (time.time() - lasttime)
if (t > 0):
time.sleep(t)
counter += 1
if state==0:
if counter==20:
drop_object()
if objcount==30:
state=1
counter=0
# State 1: Explosion and pulling back the objects
elif state==1:
if counter==100:
explosion()
if counter>300:
pull()
if counter==500:
counter=20
glutPostRedisplay ()
# Simulate
n = 4
for i in range(n):
# Detect collisions and create contact joints
space.collide((world,contactgroup), near_callback)
# Simulation step
world.step(dt/n)
# Remove all contact joints
contactgroup.empty()
lasttime = time.time()
glutIdleFunc (_idlefunc)
glutMainLoop ()
|