summaryrefslogtreecommitdiff
path: root/libs/ode-0.16.1/include/ode/objects.h
blob: 4796d56325760401f182a1fddc65c1ad5fef4d63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
/*************************************************************************
 *                                                                       *
 * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       *
 * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
 *                                                                       *
 * This library is free software; you can redistribute it and/or         *
 * modify it under the terms of EITHER:                                  *
 *   (1) The GNU Lesser General Public License as published by the Free  *
 *       Software Foundation; either version 2.1 of the License, or (at  *
 *       your option) any later version. The text of the GNU Lesser      *
 *       General Public License is included with this library in the     *
 *       file LICENSE.TXT.                                               *
 *   (2) The BSD-style license that is included with this library in     *
 *       the file LICENSE-BSD.TXT.                                       *
 *                                                                       *
 * This library is distributed in the hope that it will be useful,       *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
 * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
 *                                                                       *
 *************************************************************************/

#ifndef _ODE_OBJECTS_H_
#define _ODE_OBJECTS_H_

#include <ode/common.h>
#include <ode/mass.h>
#include <ode/contact.h>
#include <ode/threading.h>

#ifdef __cplusplus
extern "C" {
#endif

/**
 * @defgroup world World
 *
 * The world object is a container for rigid bodies and joints. Objects in
 * different worlds can not interact, for example rigid bodies from two
 * different worlds can not collide.
 *
 * All the objects in a world exist at the same point in time, thus one
 * reason to use separate worlds is to simulate systems at different rates.
 * Most applications will only need one world.
 */

/**
 * @brief Create a new, empty world and return its ID number.
 * @return an identifier
 * @ingroup world
 */
ODE_API dWorldID dWorldCreate(void);


/**
 * @brief Destroy a world and everything in it.
 *
 * This includes all bodies, and all joints that are not part of a joint
 * group. Joints that are part of a joint group will be deactivated, and
 * can be destroyed by calling, for example, dJointGroupEmpty().
 * @ingroup world
 * @param world the identifier for the world the be destroyed.
 */
ODE_API void dWorldDestroy (dWorldID world);


/**
 * @brief Set the user-data pointer
 * @param world the world to set the data on
 * @param data
 * @ingroup world
 */
ODE_API void dWorldSetData (dWorldID world, void* data);


/**
 * @brief Get the user-data pointer
 * @param world the world to set the data on
 * @param data
 * @ingroup world
 */
ODE_API void* dWorldGetData (dWorldID world);


/**
 * @brief Set the world's global gravity vector.
 *
 * The units are m/s^2, so Earth's gravity vector would be (0,0,-9.81),
 * assuming that +z is up. The default is no gravity, i.e. (0,0,0).
 *
 * @ingroup world
 */
ODE_API void dWorldSetGravity (dWorldID, dReal x, dReal y, dReal z);


/**
 * @brief Get the gravity vector for a given world.
 * @ingroup world
 */
ODE_API void dWorldGetGravity (dWorldID, dVector3 gravity);


/**
 * @brief Set the global ERP value, that controls how much error
 * correction is performed in each time step.
 * @ingroup world
 * @param dWorldID the identifier of the world.
 * @param erp Typical values are in the range 0.1--0.8. The default is 0.2.
 */
ODE_API void dWorldSetERP (dWorldID, dReal erp);

/**
 * @brief Get the error reduction parameter.
 * @ingroup world
 * @return ERP value
 */
ODE_API dReal dWorldGetERP (dWorldID);


/**
 * @brief Set the global CFM (constraint force mixing) value.
 * @ingroup world
 * @param cfm Typical values are in the range @m{10^{-9}} -- 1.
 * The default is 10^-5 if single precision is being used, or 10^-10
 * if double precision is being used.
 */
ODE_API void dWorldSetCFM (dWorldID, dReal cfm);

/**
 * @brief Get the constraint force mixing value.
 * @ingroup world
 * @return CFM value
 */
ODE_API dReal dWorldGetCFM (dWorldID);


#define dWORLDSTEP_THREADCOUNT_UNLIMITED	dTHREADING_THREAD_COUNT_UNLIMITED

/**
 * @brief Set maximum threads to be used for island stepping
 *
 * The actual number of threads that is going to be used will be the minimum
 * of this limit and number of threads in the threading pool. By default 
 * there is no limit (@c dWORLDSTEP_THREADCOUNT_UNLIMITED).
 *
 * @warning
 * WARNING! Running island stepping in multiple threads requires allocating 
 * individual stepping memory buffer for each of those threads. The size of buffers
 * allocated is the size needed to handle the largest island in the world.
 *
 * Note: Setting a limit for island stepping does not affect threading at lower
 * levels in stepper functions. The sub-calls scheduled from them can be executed
 * in as many threads as there are available in the pool.
 *
 * @param w The world affected
 * @param count Thread count limit value for island stepping
 * @ingroup world
 * @see dWorldGetStepIslandsProcessingMaxThreadCount
 */
ODE_API void dWorldSetStepIslandsProcessingMaxThreadCount(dWorldID w, unsigned count);
/**
 * @brief Get maximum threads that are allowed to be used for island stepping.
 *
 * Please read commentaries to @c dWorldSetStepIslandsProcessingMaxThreadCount for 
 * important information regarding the value returned.
 *
 * @param w The world queried
 * @returns Current thread count limit value for island stepping
 * @ingroup world
 * @see dWorldSetStepIslandsProcessingMaxThreadCount
 */
ODE_API unsigned dWorldGetStepIslandsProcessingMaxThreadCount(dWorldID w);

/**
 * @brief Set the world to use shared working memory along with another world.
 *
 * The worlds allocate working memory internally for simulation stepping. This
 * memory is cached among the calls to @c dWordStep and @c dWorldQuickStep. 
 * Similarly, several worlds can be set up to share this memory caches thus 
 * reducing overall memory usage by cost of making worlds inappropriate for 
 * simultaneous simulation in multiple threads.
 *
 * If null value is passed for @a from_world parameter the world is detached from 
 * sharing and returns to defaults for working memory, reservation policy and 
 * memory manager as if just created. This can also be used to enable use of shared 
 * memory for a world that has already had working memory allocated privately.
 * Normally using shared memory after a world has its private working memory allocated
 * is prohibited.
 *
 * Allocation policy used can only increase world's internal reserved memory size
 * and never decreases it. @c dWorldCleanupWorkingMemory can be used to release 
 * working memory for a world in case if number of objects/joint decreases 
 * significantly in it.
 *
 * With sharing working memory worlds also automatically share memory reservation 
 * policy and memory manager. Thus, these parameters need to be customized for
 * initial world to be used as sharing source only.
 *
 * If worlds share working memory they must also use compatible threading implementations
 * (i.e. it is illegal for one world to perform stepping with self-threaded implementation
 * when the other world is assigned a multi-threaded implementation). 
 * For more information read section about threading approaches in ODE.
 *
 * Failure result status means a memory allocation failure.
 *
 * @param w The world to use the shared memory with.
 * @param from_world Null or the world the shared memory is to be used from.
 * @returns 1 for success and 0 for failure.
 *
 * @ingroup world
 * @see dWorldCleanupWorkingMemory
 * @see dWorldSetStepMemoryReservationPolicy
 * @see dWorldSetStepMemoryManager
 */
ODE_API int dWorldUseSharedWorkingMemory(dWorldID w, dWorldID from_world/*=NULL*/);

/**
 * @brief Release internal working memory allocated for world
 *
 * The worlds allocate working memory internally for simulation stepping. This 
 * function can be used to free world's internal memory cache in case if number of
 * objects/joints in the world decreases significantly. By default, internal 
 * allocation policy is used to only increase cache size as necessary and never 
 * decrease it.
 *
 * If a world shares its working memory with other worlds the cache deletion 
 * affects all the linked worlds. However the shared status itself remains intact.
 *
 * The function call does affect neither memory reservation policy nor memory manager.
 *
 * @param w The world to release working memory for.
 *
 * @ingroup world
 * @see dWorldUseSharedWorkingMemory
 * @see dWorldSetStepMemoryReservationPolicy
 * @see dWorldSetStepMemoryManager
 */
ODE_API void dWorldCleanupWorkingMemory(dWorldID w);


#define dWORLDSTEP_RESERVEFACTOR_DEFAULT    1.2f
#define dWORLDSTEP_RESERVESIZE_DEFAULT      65536U

/**
 * @struct dWorldStepReserveInfo
 * @brief Memory reservation policy descriptor structure for world stepping functions.
 *
 * @c struct_size should be assigned the size of the structure.
 *
 * @c reserve_factor is a quotient that is multiplied by required memory size
 *  to allocate extra reserve whenever reallocation is needed.
 *
 * @c reserve_minimum is a minimum size that is checked against whenever reallocation 
 * is needed to allocate expected working memory minimum at once without extra 
 * reallocations as number of bodies/joints grows.
 *
 * @ingroup world
 * @see dWorldSetStepMemoryReservationPolicy
 */
typedef struct
{
  unsigned struct_size;
  float reserve_factor; /* Use float as precision does not matter here*/
  unsigned reserve_minimum;

} dWorldStepReserveInfo;

/**
 * @brief Set memory reservation policy for world to be used with simulation stepping functions
 *
 * The function allows to customize reservation policy to be used for internal
 * memory which is allocated to aid simulation for a world. By default, values
 * of @c dWORLDSTEP_RESERVEFACTOR_DEFAULT and @c dWORLDSTEP_RESERVESIZE_DEFAULT
 * are used.
 *
 * Passing @a policyinfo argument as NULL results in reservation policy being
 * reset to defaults as if the world has been just created. The content of 
 * @a policyinfo structure is copied internally and does not need to remain valid
 * after the call returns.
 *
 * If the world uses working memory sharing, changing memory reservation policy
 * affects all the worlds linked together.
 *
 * Failure result status means a memory allocation failure.
 *
 * @param w The world to change memory reservation policy for.
 * @param policyinfo Null or a pointer to policy descriptor structure.
 * @returns 1 for success and 0 for failure.
 *
 * @ingroup world
 * @see dWorldUseSharedWorkingMemory
 */
ODE_API int dWorldSetStepMemoryReservationPolicy(dWorldID w, const dWorldStepReserveInfo *policyinfo/*=NULL*/);

/**
* @struct dWorldStepMemoryFunctionsInfo
* @brief World stepping memory manager descriptor structure
*
* This structure is intended to define the functions of memory manager to be used
* with world stepping functions.
*
* @c struct_size should be assigned the size of the structure
*
* @c alloc_block is a function to allocate memory block of given size.
*
* @c shrink_block is a function to shrink existing memory block to a smaller size.
* It must preserve the contents of block head while shrinking. The new block size
* is guaranteed to be always less than the existing one.
*
* @c free_block is a function to delete existing memory block.
*
* @ingroup init
* @see dWorldSetStepMemoryManager
*/
typedef struct 
{
  unsigned struct_size;
  void *(*alloc_block)(dsizeint block_size);
  void *(*shrink_block)(void *block_pointer, dsizeint block_current_size, dsizeint block_smaller_size);
  void (*free_block)(void *block_pointer, dsizeint block_current_size);

} dWorldStepMemoryFunctionsInfo;

/**
* @brief Set memory manager for world to be used with simulation stepping functions
*
* The function allows to customize memory manager to be used for internal
* memory allocation during simulation for a world. By default, @c dAlloc/@c dRealloc/@c dFree
* based memory manager is used.
*
* Passing @a memfuncs argument as NULL results in memory manager being
* reset to default one as if the world has been just created. The content of 
* @a memfuncs structure is copied internally and does not need to remain valid
* after the call returns.
*
* If the world uses working memory sharing, changing memory manager
* affects all the worlds linked together. 
*
* Failure result status means a memory allocation failure.
*
* @param w The world to change memory reservation policy for.
* @param memfuncs Null or a pointer to memory manager descriptor structure.
* @returns 1 for success and 0 for failure.
*
* @ingroup world
* @see dWorldUseSharedWorkingMemory
*/
ODE_API int dWorldSetStepMemoryManager(dWorldID w, const dWorldStepMemoryFunctionsInfo *memfuncs);

/**
 * @brief Assign threading implementation to be used for [quick]stepping the world.
 *
 * @warning It is not recommended to assign the same threading implementation to
 * different worlds if they are going to be called in parallel. In particular this
 * makes resources preallocation for threaded calls to lose its sense. 
 * Built-in threading implementation is likely to crash if misused this way.
 * 
 * @param w The world to change threading implementation for.
 * @param functions_info Pointer to threading functions structure
 * @param threading_impl ID of threading implementation object
 * 
 * @ingroup world
 */
ODE_API void dWorldSetStepThreadingImplementation(dWorldID w, const dThreadingFunctionsInfo *functions_info, dThreadingImplementationID threading_impl);

/**
 * @brief Step the world.
 *
 * This uses a "big matrix" method that takes time on the order of m^3
 * and memory on the order of m^2, where m is the total number of constraint
 * rows. For large systems this will use a lot of memory and can be very slow,
 * but this is currently the most accurate method.
 *
 * Failure result status means that the memory allocation has failed for operation.
 * In such a case all the objects remain in unchanged state and simulation can be
 * retried as soon as more memory is available.
 *
 * @param w The world to be stepped
 * @param stepsize The number of seconds that the simulation has to advance.
 * @returns 1 for success and 0 for failure
 *
 * @ingroup world
 */
ODE_API int dWorldStep (dWorldID w, dReal stepsize);

/**
 * @brief Quick-step the world.
 *
 * This uses an iterative method that takes time on the order of m*N
 * and memory on the order of m, where m is the total number of constraint
 * rows N is the number of iterations.
 * For large systems this is a lot faster than dWorldStep(),
 * but it is less accurate.
 *
 * QuickStep is great for stacks of objects especially when the
 * auto-disable feature is used as well.
 * However, it has poor accuracy for near-singular systems.
 * Near-singular systems can occur when using high-friction contacts, motors,
 * or certain articulated structures. For example, a robot with multiple legs
 * sitting on the ground may be near-singular.
 *
 * There are ways to help overcome QuickStep's inaccuracy problems:
 *
 * \li Increase CFM.
 * \li Reduce the number of contacts in your system (e.g. use the minimum
 *     number of contacts for the feet of a robot or creature).
 * \li Don't use excessive friction in the contacts.
 * \li Use contact slip if appropriate
 * \li Avoid kinematic loops (however, kinematic loops are inevitable in
 *     legged creatures).
 * \li Don't use excessive motor strength.
 * \liUse force-based motors instead of velocity-based motors.
 *
 * Increasing the number of QuickStep iterations may help a little bit, but
 * it is not going to help much if your system is really near singular.
 *
 * Failure result status means that the memory allocation has failed for operation.
 * In such a case all the objects remain in unchanged state and simulation can be
 * retried as soon as more memory is available.
 *
 * @param w The world to be stepped
 * @param stepsize The number of seconds that the simulation has to advance.
 * @returns 1 for success and 0 for failure
 *
 * @ingroup world
 */
ODE_API int dWorldQuickStep (dWorldID w, dReal stepsize);


/**
* @brief Converts an impulse to a force.
* @ingroup world
* @remarks
* If you want to apply a linear or angular impulse to a rigid body,
* instead of a force or a torque, then you can use this function to convert
* the desired impulse into a force/torque vector before calling the
* BodyAdd... function.
* The current algorithm simply scales the impulse by 1/stepsize,
* where stepsize is the step size for the next step that will be taken.
* This function is given a dWorldID because, in the future, the force
* computation may depend on integrator parameters that are set as
* properties of the world.
*/
ODE_API void dWorldImpulseToForce
(
 dWorldID, dReal stepsize,
 dReal ix, dReal iy, dReal iz, dVector3 force
 );


/**
 * @brief Set the number of iterations that the QuickStep method performs per
 *        step.
 * @ingroup world
 * @remarks
 * More iterations will give a more accurate solution, but will take
 * longer to compute.
 * @param num The default is 20 iterations.
 */
ODE_API void dWorldSetQuickStepNumIterations (dWorldID, int num);


/**
 * @brief Get the number of iterations that the QuickStep method performs per
 *        step.
 * @ingroup world
 * @return nr of iterations
 */
ODE_API int dWorldGetQuickStepNumIterations (dWorldID);

/**
 * @brief Set the SOR over-relaxation parameter
 * @ingroup world
 * @param over_relaxation value to use by SOR
 */
ODE_API void dWorldSetQuickStepW (dWorldID, dReal over_relaxation);

/**
 * @brief Get the SOR over-relaxation parameter
 * @ingroup world
 * @returns the over-relaxation setting
 */
ODE_API dReal dWorldGetQuickStepW (dWorldID);

/* World contact parameter functions */

/**
 * @brief Set the maximum correcting velocity that contacts are allowed
 * to generate.
 * @ingroup world
 * @param vel The default value is infinity (i.e. no limit).
 * @remarks
 * Reducing this value can help prevent "popping" of deeply embedded objects.
 */
ODE_API void dWorldSetContactMaxCorrectingVel (dWorldID, dReal vel);

/**
 * @brief Get the maximum correcting velocity that contacts are allowed
 * to generated.
 * @ingroup world
 */
ODE_API dReal dWorldGetContactMaxCorrectingVel (dWorldID);

/**
 * @brief Set the depth of the surface layer around all geometry objects.
 * @ingroup world
 * @remarks
 * Contacts are allowed to sink into the surface layer up to the given
 * depth before coming to rest.
 * @param depth The default value is zero.
 * @remarks
 * Increasing this to some small value (e.g. 0.001) can help prevent
 * jittering problems due to contacts being repeatedly made and broken.
 */
ODE_API void dWorldSetContactSurfaceLayer (dWorldID, dReal depth);

/**
 * @brief Get the depth of the surface layer around all geometry objects.
 * @ingroup world
 * @returns the depth
 */
ODE_API dReal dWorldGetContactSurfaceLayer (dWorldID);


/**
 * @defgroup disable Automatic Enabling and Disabling
 * @ingroup world bodies
 *
 * Every body can be enabled or disabled. Enabled bodies participate in the
 * simulation, while disabled bodies are turned off and do not get updated
 * during a simulation step. New bodies are always created in the enabled state.
 *
 * A disabled body that is connected through a joint to an enabled body will be
 * automatically re-enabled at the next simulation step.
 *
 * Disabled bodies do not consume CPU time, therefore to speed up the simulation
 * bodies should be disabled when they come to rest. This can be done automatically
 * with the auto-disable feature.
 *
 * If a body has its auto-disable flag turned on, it will automatically disable
 * itself when
 *   @li It has been idle for a given number of simulation steps.
 *   @li It has also been idle for a given amount of simulation time.
 *
 * A body is considered to be idle when the magnitudes of both its
 * linear average velocity and angular average velocity are below given thresholds.
 * The sample size for the average defaults to one and can be disabled by setting
 * to zero with 
 *
 * Thus, every body has six auto-disable parameters: an enabled flag, a idle step
 * count, an idle time, linear/angular average velocity thresholds, and the
 * average samples count.
 *
 * Newly created bodies get these parameters from world.
 */

/**
 * @brief Get auto disable linear average threshold for newly created bodies.
 * @ingroup disable
 * @return the threshold
 */
ODE_API dReal dWorldGetAutoDisableLinearThreshold (dWorldID);

/**
 * @brief Set auto disable linear average threshold for newly created bodies.
 * @param linear_average_threshold default is 0.01
 * @ingroup disable
 */
ODE_API void  dWorldSetAutoDisableLinearThreshold (dWorldID, dReal linear_average_threshold);

/**
 * @brief Get auto disable angular average threshold for newly created bodies.
 * @ingroup disable
 * @return the threshold
 */
ODE_API dReal dWorldGetAutoDisableAngularThreshold (dWorldID);

/**
 * @brief Set auto disable angular average threshold for newly created bodies.
 * @param linear_average_threshold default is 0.01
 * @ingroup disable
 */
ODE_API void dWorldSetAutoDisableAngularThreshold (dWorldID, dReal angular_average_threshold);

/**
 * @brief Get auto disable sample count for newly created bodies.
 * @ingroup disable
 * @return number of samples used
 */
ODE_API int dWorldGetAutoDisableAverageSamplesCount (dWorldID);

/**
 * @brief Set auto disable average sample count for newly created bodies.
 * @ingroup disable
 * @param average_samples_count Default is 1, meaning only instantaneous velocity is used.
 * Set to zero to disable sampling and thus prevent any body from auto-disabling.
 */
ODE_API void dWorldSetAutoDisableAverageSamplesCount (dWorldID, unsigned int average_samples_count );

/**
 * @brief Get auto disable steps for newly created bodies.
 * @ingroup disable
 * @return nr of steps
 */
ODE_API int dWorldGetAutoDisableSteps (dWorldID);

/**
 * @brief Set auto disable steps for newly created bodies.
 * @ingroup disable
 * @param steps default is 10
 */
ODE_API void dWorldSetAutoDisableSteps (dWorldID, int steps);

/**
 * @brief Get auto disable time for newly created bodies.
 * @ingroup disable
 * @return nr of seconds
 */
ODE_API dReal dWorldGetAutoDisableTime (dWorldID);

/**
 * @brief Set auto disable time for newly created bodies.
 * @ingroup disable
 * @param time default is 0 seconds
 */
ODE_API void dWorldSetAutoDisableTime (dWorldID, dReal time);

/**
 * @brief Get auto disable flag for newly created bodies.
 * @ingroup disable
 * @return 0 or 1
 */
ODE_API int dWorldGetAutoDisableFlag (dWorldID);

/**
 * @brief Set auto disable flag for newly created bodies.
 * @ingroup disable
 * @param do_auto_disable default is false.
 */
ODE_API void dWorldSetAutoDisableFlag (dWorldID, int do_auto_disable);


/**
 * @defgroup damping Damping
 * @ingroup bodies world
 *
 * Damping serves two purposes: reduce simulation instability, and to allow
 * the bodies to come to rest (and possibly auto-disabling them).
 *
 * Bodies are constructed using the world's current damping parameters. Setting
 * the scales to 0 disables the damping.
 *
 * Here is how it is done: after every time step linear and angular
 * velocities are tested against the corresponding thresholds. If they
 * are above, they are multiplied by (1 - scale). So a negative scale value
 * will actually increase the speed, and values greater than one will
 * make the object oscillate every step; both can make the simulation unstable.
 *
 * To disable damping just set the damping scale to zero.
 *
 * You can also limit the maximum angular velocity. In contrast to the damping
 * functions, the angular velocity is affected before the body is moved.
 * This means that it will introduce errors in joints that are forcing the body
 * to rotate too fast. Some bodies have naturally high angular velocities
 * (like cars' wheels), so you may want to give them a very high (like the default,
 * dInfinity) limit.
 *
 * @note The velocities are damped after the stepper function has moved the
 * object. Otherwise the damping could introduce errors in joints. First the
 * joint constraints are processed by the stepper (moving the body), then
 * the damping is applied.
 *
 * @note The damping happens right after the moved callback is called; this way 
 * it still possible use the exact velocities the body has acquired during the
 * step. You can even use the callback to create your own customized damping.
 */

/**
 * @brief Get the world's linear damping threshold.
 * @ingroup damping
 */
ODE_API dReal dWorldGetLinearDampingThreshold (dWorldID w);

/**
 * @brief Set the world's linear damping threshold.
 * @param threshold The damping won't be applied if the linear speed is
 *        below this threshold. Default is 0.01.
 * @ingroup damping
 */
ODE_API void dWorldSetLinearDampingThreshold(dWorldID w, dReal threshold);

/**
 * @brief Get the world's angular damping threshold.
 * @ingroup damping
 */
ODE_API dReal dWorldGetAngularDampingThreshold (dWorldID w);

/**
 * @brief Set the world's angular damping threshold.
 * @param threshold The damping won't be applied if the angular speed is
 *        below this threshold. Default is 0.01.
 * @ingroup damping
 */
ODE_API void dWorldSetAngularDampingThreshold(dWorldID w, dReal threshold);

/**
 * @brief Get the world's linear damping scale.
 * @ingroup damping
 */
ODE_API dReal dWorldGetLinearDamping (dWorldID w);

/**
 * @brief Set the world's linear damping scale.
 * @param scale The linear damping scale that is to be applied to bodies.
 * Default is 0 (no damping). Should be in the interval [0, 1].
 * @ingroup damping
 */
ODE_API void dWorldSetLinearDamping (dWorldID w, dReal scale);

/**
 * @brief Get the world's angular damping scale.
 * @ingroup damping
 */
ODE_API dReal dWorldGetAngularDamping (dWorldID w);

/**
 * @brief Set the world's angular damping scale.
 * @param scale The angular damping scale that is to be applied to bodies.
 * Default is 0 (no damping). Should be in the interval [0, 1].
 * @ingroup damping
 */
ODE_API void dWorldSetAngularDamping(dWorldID w, dReal scale);

/**
 * @brief Convenience function to set body linear and angular scales.
 * @param linear_scale The linear damping scale that is to be applied to bodies.
 * @param angular_scale The angular damping scale that is to be applied to bodies.
 * @ingroup damping
 */
ODE_API void dWorldSetDamping(dWorldID w,
                                dReal linear_scale,
                                dReal angular_scale);

/**
 * @brief Get the default maximum angular speed.
 * @ingroup damping
 * @sa dBodyGetMaxAngularSpeed()
 */
ODE_API dReal dWorldGetMaxAngularSpeed (dWorldID w);


/**
 * @brief Set the default maximum angular speed for new bodies.
 * @ingroup damping
 * @sa dBodySetMaxAngularSpeed()
 */
ODE_API void dWorldSetMaxAngularSpeed (dWorldID w, dReal max_speed);



/**
 * @defgroup bodies Rigid Bodies
 *
 * A rigid body has various properties from the point of view of the
 * simulation. Some properties change over time:
 *
 *  @li Position vector (x,y,z) of the body's point of reference.
 *      Currently the point of reference must correspond to the body's center of mass.
 *  @li Linear velocity of the point of reference, a vector (vx,vy,vz).
 *  @li Orientation of a body, represented by a quaternion (qs,qx,qy,qz) or
 *      a 3x3 rotation matrix.
 *  @li Angular velocity vector (wx,wy,wz) which describes how the orientation
 *      changes over time.
 *
 * Other body properties are usually constant over time:
 *
 *  @li Mass of the body.
 *  @li Position of the center of mass with respect to the point of reference.
 *      In the current implementation the center of mass and the point of
 *      reference must coincide.
 *  @li Inertia matrix. This is a 3x3 matrix that describes how the body's mass
 *      is distributed around the center of mass. Conceptually each body has an
 *      x-y-z coordinate frame embedded in it that moves and rotates with the body.
 *
 * The origin of this coordinate frame is the body's point of reference. Some values
 * in ODE (vectors, matrices etc) are relative to the body coordinate frame, and others
 * are relative to the global coordinate frame.
 *
 * Note that the shape of a rigid body is not a dynamical property (except insofar as
 * it influences the various mass properties). It is only collision detection that cares
 * about the detailed shape of the body.
 */


/**
 * @brief Get auto disable linear average threshold.
 * @ingroup bodies disable
 * @return the threshold
 */
ODE_API dReal dBodyGetAutoDisableLinearThreshold (dBodyID);

/**
 * @brief Set auto disable linear average threshold.
 * @ingroup bodies disable
 * @return the threshold
 */
ODE_API void  dBodySetAutoDisableLinearThreshold (dBodyID, dReal linear_average_threshold);

/**
 * @brief Get auto disable angular average threshold.
 * @ingroup bodies disable
 * @return the threshold
 */
ODE_API dReal dBodyGetAutoDisableAngularThreshold (dBodyID);

/**
 * @brief Set auto disable angular average threshold.
 * @ingroup bodies disable
 * @return the threshold
 */
ODE_API void  dBodySetAutoDisableAngularThreshold (dBodyID, dReal angular_average_threshold);

/**
 * @brief Get auto disable average size (samples count).
 * @ingroup bodies disable
 * @return the nr of steps/size.
 */
ODE_API int dBodyGetAutoDisableAverageSamplesCount (dBodyID);

/**
 * @brief Set auto disable average buffer size (average steps).
 * @ingroup bodies disable
 * @param average_samples_count the nr of samples to review.
 */
ODE_API void dBodySetAutoDisableAverageSamplesCount (dBodyID, unsigned int average_samples_count);


/**
 * @brief Get auto steps a body must be thought of as idle to disable
 * @ingroup bodies disable
 * @return the nr of steps
 */
ODE_API int dBodyGetAutoDisableSteps (dBodyID);

/**
 * @brief Set auto disable steps.
 * @ingroup bodies disable
 * @param steps the nr of steps.
 */
ODE_API void dBodySetAutoDisableSteps (dBodyID, int steps);

/**
 * @brief Get auto disable time.
 * @ingroup bodies disable
 * @return nr of seconds
 */
ODE_API dReal dBodyGetAutoDisableTime (dBodyID);

/**
 * @brief Set auto disable time.
 * @ingroup bodies disable
 * @param time nr of seconds.
 */
ODE_API void  dBodySetAutoDisableTime (dBodyID, dReal time);

/**
 * @brief Get auto disable flag.
 * @ingroup bodies disable
 * @return 0 or 1
 */
ODE_API int dBodyGetAutoDisableFlag (dBodyID);

/**
 * @brief Set auto disable flag.
 * @ingroup bodies disable
 * @param do_auto_disable 0 or 1
 */
ODE_API void dBodySetAutoDisableFlag (dBodyID, int do_auto_disable);

/**
 * @brief Set auto disable defaults.
 * @remarks
 * Set the values for the body to those set as default for the world.
 * @ingroup bodies disable
 */
ODE_API void  dBodySetAutoDisableDefaults (dBodyID);


/**
 * @brief Retrieves the world attached to te given body.
 * @remarks
 * 
 * @ingroup bodies
 */
ODE_API dWorldID dBodyGetWorld (dBodyID);

/**
 * @brief Create a body in given world.
 * @remarks
 * Default mass parameters are at position (0,0,0).
 * @ingroup bodies
 */
ODE_API dBodyID dBodyCreate (dWorldID);

/**
 * @brief Destroy a body.
 * @remarks
 * All joints that are attached to this body will be put into limbo:
 * i.e. unattached and not affecting the simulation, but they will NOT be
 * deleted.
 * @ingroup bodies
 */
ODE_API void dBodyDestroy (dBodyID);

/**
 * @brief Set the body's user-data pointer.
 * @ingroup bodies
 * @param data arbitraty pointer
 */
ODE_API void  dBodySetData (dBodyID, void *data);

/**
 * @brief Get the body's user-data pointer.
 * @ingroup bodies
 * @return a pointer to the user's data.
 */
ODE_API void *dBodyGetData (dBodyID);

/**
 * @brief Set position of a body.
 * @remarks
 * After setting, the outcome of the simulation is undefined
 * if the new configuration is inconsistent with the joints/constraints
 * that are present.
 * @ingroup bodies
 */
ODE_API void dBodySetPosition   (dBodyID, dReal x, dReal y, dReal z);

/**
 * @brief Set the orientation of a body.
 * @ingroup bodies
 * @remarks
 * After setting, the outcome of the simulation is undefined
 * if the new configuration is inconsistent with the joints/constraints
 * that are present.
 */
ODE_API void dBodySetRotation   (dBodyID, const dMatrix3 R);

/**
 * @brief Set the orientation of a body.
 * @ingroup bodies
 * @remarks
 * After setting, the outcome of the simulation is undefined
 * if the new configuration is inconsistent with the joints/constraints
 * that are present.
 */
ODE_API void dBodySetQuaternion (dBodyID, const dQuaternion q);

/**
 * @brief Set the linear velocity of a body.
 * @ingroup bodies
 */
ODE_API void dBodySetLinearVel  (dBodyID, dReal x, dReal y, dReal z);

/**
 * @brief Set the angular velocity of a body.
 * @ingroup bodies
 */
ODE_API void dBodySetAngularVel (dBodyID, dReal x, dReal y, dReal z);

/**
 * @brief Get the position of a body.
 * @ingroup bodies
 * @remarks
 * When getting, the returned values are pointers to internal data structures,
 * so the vectors are valid until any changes are made to the rigid body
 * system structure.
 * @sa dBodyCopyPosition
 */
ODE_API const dReal * dBodyGetPosition (dBodyID);


/**
 * @brief Copy the position of a body into a vector.
 * @ingroup bodies
 * @param body  the body to query
 * @param pos   a copy of the body position
 * @sa dBodyGetPosition
 */
ODE_API void dBodyCopyPosition (dBodyID body, dVector3 pos);


/**
 * @brief Get the rotation of a body.
 * @ingroup bodies
 * @return pointer to a 4x3 rotation matrix.
 */
ODE_API const dReal * dBodyGetRotation (dBodyID);


/**
 * @brief Copy the rotation of a body.
 * @ingroup bodies
 * @param body   the body to query
 * @param R      a copy of the rotation matrix
 * @sa dBodyGetRotation
 */
ODE_API void dBodyCopyRotation (dBodyID, dMatrix3 R);


/**
 * @brief Get the rotation of a body.
 * @ingroup bodies
 * @return pointer to 4 scalars that represent the quaternion.
 */
ODE_API const dReal * dBodyGetQuaternion (dBodyID);


/**
 * @brief Copy the orientation of a body into a quaternion.
 * @ingroup bodies
 * @param body  the body to query
 * @param quat  a copy of the orientation quaternion
 * @sa dBodyGetQuaternion
 */
ODE_API void dBodyCopyQuaternion(dBodyID body, dQuaternion quat);


/**
 * @brief Get the linear velocity of a body.
 * @ingroup bodies
 */
ODE_API const dReal * dBodyGetLinearVel (dBodyID);

/**
 * @brief Get the angular velocity of a body.
 * @ingroup bodies
 */
ODE_API const dReal * dBodyGetAngularVel (dBodyID);

/**
 * @brief Set the mass of a body.
 * @ingroup bodies
 */
ODE_API void dBodySetMass (dBodyID, const dMass *mass);

/**
 * @brief Get the mass of a body.
 * @ingroup bodies
 */
ODE_API void dBodyGetMass (dBodyID, dMass *mass);

/**
 * @brief Add force at centre of mass of body in absolute coordinates.
 * @ingroup bodies
 */
ODE_API void dBodyAddForce            (dBodyID, dReal fx, dReal fy, dReal fz);

/**
 * @brief Add torque at centre of mass of body in absolute coordinates.
 * @ingroup bodies
 */
ODE_API void dBodyAddTorque           (dBodyID, dReal fx, dReal fy, dReal fz);

/**
 * @brief Add force at centre of mass of body in coordinates relative to body.
 * @ingroup bodies
 */
ODE_API void dBodyAddRelForce         (dBodyID, dReal fx, dReal fy, dReal fz);

/**
 * @brief Add torque at centre of mass of body in coordinates relative to body.
 * @ingroup bodies
 */
ODE_API void dBodyAddRelTorque        (dBodyID, dReal fx, dReal fy, dReal fz);

/**
 * @brief Add force at specified point in body in global coordinates.
 * @ingroup bodies
 */
ODE_API void dBodyAddForceAtPos       (dBodyID, dReal fx, dReal fy, dReal fz,
			                dReal px, dReal py, dReal pz);
/**
 * @brief Add force at specified point in body in local coordinates.
 * @ingroup bodies
 */
ODE_API void dBodyAddForceAtRelPos    (dBodyID, dReal fx, dReal fy, dReal fz,
			                dReal px, dReal py, dReal pz);
/**
 * @brief Add force at specified point in body in global coordinates.
 * @ingroup bodies
 */
ODE_API void dBodyAddRelForceAtPos    (dBodyID, dReal fx, dReal fy, dReal fz,
			                dReal px, dReal py, dReal pz);
/**
 * @brief Add force at specified point in body in local coordinates.
 * @ingroup bodies
 */
ODE_API void dBodyAddRelForceAtRelPos (dBodyID, dReal fx, dReal fy, dReal fz,
			                dReal px, dReal py, dReal pz);

/**
 * @brief Return the current accumulated force vector.
 * @return points to an array of 3 reals.
 * @remarks
 * The returned values are pointers to internal data structures, so
 * the vectors are only valid until any changes are made to the rigid
 * body system.
 * @ingroup bodies
 */
ODE_API const dReal * dBodyGetForce (dBodyID);

/**
 * @brief Return the current accumulated torque vector.
 * @return points to an array of 3 reals.
 * @remarks
 * The returned values are pointers to internal data structures, so
 * the vectors are only valid until any changes are made to the rigid
 * body system.
 * @ingroup bodies
 */
ODE_API const dReal * dBodyGetTorque (dBodyID);

/**
 * @brief Set the body force accumulation vector.
 * @remarks
 * This is mostly useful to zero the force and torque for deactivated bodies
 * before they are reactivated, in the case where the force-adding functions
 * were called on them while they were deactivated.
 * @ingroup bodies
 */
ODE_API void dBodySetForce  (dBodyID b, dReal x, dReal y, dReal z);

/**
 * @brief Set the body torque accumulation vector.
 * @remarks
 * This is mostly useful to zero the force and torque for deactivated bodies
 * before they are reactivated, in the case where the force-adding functions
 * were called on them while they were deactivated.
 * @ingroup bodies
 */
ODE_API void dBodySetTorque (dBodyID b, dReal x, dReal y, dReal z);

/**
 * @brief Get world position of a relative point on body.
 * @ingroup bodies
 * @param result will contain the result.
 */
ODE_API void dBodyGetRelPointPos
(
  dBodyID, dReal px, dReal py, dReal pz,
  dVector3 result
);

/**
 * @brief Get velocity vector in global coords of a relative point on body.
 * @ingroup bodies
 * @param result will contain the result.
 */
ODE_API void dBodyGetRelPointVel
(
  dBodyID, dReal px, dReal py, dReal pz,
  dVector3 result
);

/**
 * @brief Get velocity vector in global coords of a globally
 * specified point on a body.
 * @ingroup bodies
 * @param result will contain the result.
 */
ODE_API void dBodyGetPointVel
(
  dBodyID, dReal px, dReal py, dReal pz,
  dVector3 result
);

/**
 * @brief takes a point in global coordinates and returns
 * the point's position in body-relative coordinates.
 * @remarks
 * This is the inverse of dBodyGetRelPointPos()
 * @ingroup bodies
 * @param result will contain the result.
 */
ODE_API void dBodyGetPosRelPoint
(
  dBodyID, dReal px, dReal py, dReal pz,
  dVector3 result
);

/**
 * @brief Convert from local to world coordinates.
 * @ingroup bodies
 * @param result will contain the result.
 */
ODE_API void dBodyVectorToWorld
(
  dBodyID, dReal px, dReal py, dReal pz,
  dVector3 result
);

/**
 * @brief Convert from world to local coordinates.
 * @ingroup bodies
 * @param result will contain the result.
 */
ODE_API void dBodyVectorFromWorld
(
  dBodyID, dReal px, dReal py, dReal pz,
  dVector3 result
);

/**
 * @brief controls the way a body's orientation is updated at each timestep.
 * @ingroup bodies
 * @param mode can be 0 or 1:
 * \li 0: An ``infinitesimal'' orientation update is used.
 * This is fast to compute, but it can occasionally cause inaccuracies
 * for bodies that are rotating at high speed, especially when those
 * bodies are joined to other bodies.
 * This is the default for every new body that is created.
 * \li 1: A ``finite'' orientation update is used.
 * This is more costly to compute, but will be more accurate for high
 * speed rotations.
 * @remarks
 * Note however that high speed rotations can result in many types of
 * error in a simulation, and the finite mode will only fix one of those
 * sources of error.
 */
ODE_API void dBodySetFiniteRotationMode (dBodyID, int mode);

/**
 * @brief sets the finite rotation axis for a body.
 * @ingroup bodies
 * @remarks
 * This is axis only has meaning when the finite rotation mode is set
 * If this axis is zero (0,0,0), full finite rotations are performed on
 * the body.
 * If this axis is nonzero, the body is rotated by performing a partial finite
 * rotation along the axis direction followed by an infinitesimal rotation
 * along an orthogonal direction.
 * @remarks
 * This can be useful to alleviate certain sources of error caused by quickly
 * spinning bodies. For example, if a car wheel is rotating at high speed
 * you can call this function with the wheel's hinge axis as the argument to
 * try and improve its behavior.
 */
ODE_API void dBodySetFiniteRotationAxis (dBodyID, dReal x, dReal y, dReal z);

/**
 * @brief Get the way a body's orientation is updated each timestep.
 * @ingroup bodies
 * @return the mode 0 (infitesimal) or 1 (finite).
 */
ODE_API int dBodyGetFiniteRotationMode (dBodyID);

/**
 * @brief Get the finite rotation axis.
 * @param result will contain the axis.
 * @ingroup bodies
 */
ODE_API void dBodyGetFiniteRotationAxis (dBodyID, dVector3 result);

/**
 * @brief Get the number of joints that are attached to this body.
 * @ingroup bodies
 * @return nr of joints
 */
ODE_API int dBodyGetNumJoints (dBodyID b);

/**
 * @brief Return a joint attached to this body, given by index.
 * @ingroup bodies
 * @param index valid range is  0 to n-1 where n is the value returned by
 * dBodyGetNumJoints().
 */
ODE_API dJointID dBodyGetJoint (dBodyID, int index);




/**
 * @brief Set rigid body to dynamic state (default).
 * @param dBodyID identification of body.
 * @ingroup bodies
 */
ODE_API void dBodySetDynamic (dBodyID);

/**
 * @brief Set rigid body to kinematic state.
 * When in kinematic state the body isn't simulated as a dynamic
 * body (it's "unstoppable", doesn't respond to forces),
 * but can still affect dynamic bodies (e.g. in joints).
 * Kinematic bodies can be controlled by position and velocity.
 * @note A kinematic body has infinite mass. If you set its mass
 * to something else, it loses the kinematic state and behaves
 * as a normal dynamic body.
 * @param dBodyID identification of body.
 * @ingroup bodies
 */
ODE_API void dBodySetKinematic (dBodyID);

/**
 * @brief Check wether a body is in kinematic state.
 * @ingroup bodies
 * @return 1 if a body is kinematic or 0 if it is dynamic.
 */
ODE_API int dBodyIsKinematic (dBodyID);

/**
 * @brief Manually enable a body.
 * @param dBodyID identification of body.
 * @ingroup bodies
 */
ODE_API void dBodyEnable (dBodyID);

/**
 * @brief Manually disable a body.
 * @ingroup bodies
 * @remarks
 * A disabled body that is connected through a joint to an enabled body will
 * be automatically re-enabled at the next simulation step.
 */
ODE_API void dBodyDisable (dBodyID);

/**
 * @brief Check wether a body is enabled.
 * @ingroup bodies
 * @return 1 if a body is currently enabled or 0 if it is disabled.
 */
ODE_API int dBodyIsEnabled (dBodyID);

/**
 * @brief Set whether the body is influenced by the world's gravity or not.
 * @ingroup bodies
 * @param mode when nonzero gravity affects this body.
 * @remarks
 * Newly created bodies are always influenced by the world's gravity.
 */
ODE_API void dBodySetGravityMode (dBodyID b, int mode);

/**
 * @brief Get whether the body is influenced by the world's gravity or not.
 * @ingroup bodies
 * @return nonzero means gravity affects this body.
 */
ODE_API int dBodyGetGravityMode (dBodyID b);

/**
 * @brief Set the 'moved' callback of a body.
 *
 * Whenever a body has its position or rotation changed during the
 * timestep, the callback will be called (with body as the argument).
 * Use it to know which body may need an update in an external
 * structure (like a 3D engine).
 *
 * @param b the body that needs to be watched.
 * @param callback the callback to be invoked when the body moves. Set to zero
 * to disable.
 * @ingroup bodies
 */
ODE_API void dBodySetMovedCallback(dBodyID b, void (*callback)(dBodyID));


/**
 * @brief Return the first geom associated with the body.
 * 
 * You can traverse through the geoms by repeatedly calling
 * dBodyGetNextGeom().
 *
 * @return the first geom attached to this body, or 0.
 * @ingroup bodies
 */
ODE_API dGeomID dBodyGetFirstGeom (dBodyID b);


/**
 * @brief returns the next geom associated with the same body.
 * @param g a geom attached to some body.
 * @return the next geom attached to the same body, or 0.
 * @sa dBodyGetFirstGeom
 * @ingroup bodies
 */
ODE_API dGeomID dBodyGetNextGeom (dGeomID g);


/**
 * @brief Resets the damping settings to the current world's settings.
 * @ingroup bodies damping
 */
ODE_API void dBodySetDampingDefaults(dBodyID b);

/**
 * @brief Get the body's linear damping scale.
 * @ingroup bodies damping
 */
ODE_API dReal dBodyGetLinearDamping (dBodyID b);

/**
 * @brief Set the body's linear damping scale.
 * @param scale The linear damping scale. Should be in the interval [0, 1].
 * @ingroup bodies damping
 * @remarks From now on the body will not use the world's linear damping
 * scale until dBodySetDampingDefaults() is called.
 * @sa dBodySetDampingDefaults()
 */
ODE_API void dBodySetLinearDamping(dBodyID b, dReal scale);

/**
 * @brief Get the body's angular damping scale.
 * @ingroup bodies damping
 * @remarks If the body's angular damping scale was not set, this function
 * returns the world's angular damping scale.
 */
ODE_API dReal dBodyGetAngularDamping (dBodyID b);

/**
 * @brief Set the body's angular damping scale.
 * @param scale The angular damping scale. Should be in the interval [0, 1].
 * @ingroup bodies damping
 * @remarks From now on the body will not use the world's angular damping
 * scale until dBodyResetAngularDamping() is called.
 * @sa dBodyResetAngularDamping()
 */
ODE_API void dBodySetAngularDamping(dBodyID b, dReal scale);

/**
 * @brief Convenience function to set linear and angular scales at once.
 * @param linear_scale The linear damping scale. Should be in the interval [0, 1].
 * @param angular_scale The angular damping scale. Should be in the interval [0, 1].
 * @ingroup bodies damping
 * @sa dBodySetLinearDamping() dBodySetAngularDamping()
 */
ODE_API void dBodySetDamping(dBodyID b, dReal linear_scale, dReal angular_scale);

/**
 * @brief Get the body's linear damping threshold.
 * @ingroup bodies damping
 */
ODE_API dReal dBodyGetLinearDampingThreshold (dBodyID b);

/**
 * @brief Set the body's linear damping threshold.
 * @param threshold The linear threshold to be used. Damping
 *      is only applied if the linear speed is above this limit.
 * @ingroup bodies damping
 */
ODE_API void dBodySetLinearDampingThreshold(dBodyID b, dReal threshold);

/**
 * @brief Get the body's angular damping threshold.
 * @ingroup bodies damping
 */
ODE_API dReal dBodyGetAngularDampingThreshold (dBodyID b);

/**
 * @brief Set the body's angular damping threshold.
 * @param threshold The angular threshold to be used. Damping is
 *      only used if the angular speed is above this limit.
 * @ingroup bodies damping
 */
ODE_API void dBodySetAngularDampingThreshold(dBodyID b, dReal threshold);

/**
 * @brief Get the body's maximum angular speed.
 * @ingroup damping bodies
 * @sa dWorldGetMaxAngularSpeed()
 */
ODE_API dReal dBodyGetMaxAngularSpeed (dBodyID b);

/**
 * @brief Set the body's maximum angular speed.
 * @ingroup damping bodies
 * @sa dWorldSetMaxAngularSpeed() dBodyResetMaxAngularSpeed()
 * The default value is dInfinity, but it's a good idea to limit
 * it at less than 500 if the body has the gyroscopic term
 * enabled.
 */
ODE_API void dBodySetMaxAngularSpeed(dBodyID b, dReal max_speed);



/**
 * @brief Get the body's gyroscopic state.
 *
 * @return nonzero if gyroscopic term computation is enabled (default),
 * zero otherwise.
 * @ingroup bodies
 */
ODE_API int dBodyGetGyroscopicMode(dBodyID b);


/**
 * @brief Enable/disable the body's gyroscopic term.
 *
 * Disabling the gyroscopic term of a body usually improves
 * stability. It also helps turning spining objects, like cars'
 * wheels.
 *
 * @param enabled   nonzero (default) to enable gyroscopic term, 0
 * to disable.
 * @ingroup bodies
 */
ODE_API void dBodySetGyroscopicMode(dBodyID b, int enabled);




/**
 * @defgroup joints Joints
 *
 * In real life a joint is something like a hinge, that is used to connect two
 * objects.
 * In ODE a joint is very similar: It is a relationship that is enforced between
 * two bodies so that they can only have certain positions and orientations
 * relative to each other.
 * This relationship is called a constraint -- the words joint and
 * constraint are often used interchangeably.
 *
 * A joint has a set of parameters that can be set. These include:
 *
 *
 * \li  dParamLoStop Low stop angle or position. Setting this to
 *	-dInfinity (the default value) turns off the low stop.
 *	For rotational joints, this stop must be greater than -pi to be
 *	effective.
 * \li  dParamHiStop High stop angle or position. Setting this to
 *	dInfinity (the default value) turns off the high stop.
 *	For rotational joints, this stop must be less than pi to be
 *	effective.
 *	If the high stop is less than the low stop then both stops will
 *	be ineffective.
 * \li  dParamVel Desired motor velocity (this will be an angular or
 *	linear velocity).
 * \li  dParamFMax The maximum force or torque that the motor will use to
 *	achieve the desired velocity.
 *	This must always be greater than or equal to zero.
 *	Setting this to zero (the default value) turns off the motor.
 * \li  dParamFudgeFactor The current joint stop/motor implementation has
 *	a small problem:
 *	when the joint is at one stop and the motor is set to move it away
 *	from the stop, too much force may be applied for one time step,
 *	causing a ``jumping'' motion.
 *	This fudge factor is used to scale this excess force.
 *	It should have a value between zero and one (the default value).
 *	If the jumping motion is too visible in a joint, the value can be
 *	reduced.
 *	Making this value too small can prevent the motor from being able to
 *	move the joint away from a stop.
 * \li  dParamBounce The bouncyness of the stops.
 *	This is a restitution parameter in the range 0..1.
 *	0 means the stops are not bouncy at all, 1 means maximum bouncyness.
 * \li  dParamCFM The constraint force mixing (CFM) value used when not
 *	at a stop.
 * \li  dParamStopERP The error reduction parameter (ERP) used by the
 *	stops.
 * \li  dParamStopCFM The constraint force mixing (CFM) value used by the
 *	stops. Together with the ERP value this can be used to get spongy or
 *	soft stops.
 *	Note that this is intended for unpowered joints, it does not really
 *	work as expected when a powered joint reaches its limit.
 * \li  dParamSuspensionERP Suspension error reduction parameter (ERP).
 *	Currently this is only implemented on the hinge-2 joint.
 * \li  dParamSuspensionCFM Suspension constraint force mixing (CFM) value.
 *	Currently this is only implemented on the hinge-2 joint.
 *
 * If a particular parameter is not implemented by a given joint, setting it
 * will have no effect.
 * These parameter names can be optionally followed by a digit (2 or 3)
 * to indicate the second or third set of parameters, e.g. for the second axis
 * in a hinge-2 joint, or the third axis in an AMotor joint.
 */


/**
 * @brief Create a new joint of the ball type.
 * @ingroup joints
 * @remarks
 * The joint is initially in "limbo" (i.e. it has no effect on the simulation)
 * because it does not connect to any bodies.
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateBall (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the hinge type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateHinge (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the slider type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateSlider (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the contact type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateContact (dWorldID, dJointGroupID, const dContact *);

/**
 * @brief Create a new joint of the hinge2 type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateHinge2 (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the universal type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateUniversal (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the PR (Prismatic and Rotoide) type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreatePR (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the PU (Prismatic and Universal) type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreatePU (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the Piston type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 *                      If it is nonzero the joint is allocated in the given
 *                      joint group.
 */
ODE_API dJointID dJointCreatePiston (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the fixed type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateFixed (dWorldID, dJointGroupID);

ODE_API dJointID dJointCreateNull (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the A-motor type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateAMotor (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the L-motor type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateLMotor (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the plane-2d type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreatePlane2D (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the double ball type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateDBall (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the double hinge type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateDHinge (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the Transmission type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateTransmission (dWorldID, dJointGroupID);


/**
 * @brief Destroy a joint.
 * @ingroup joints
 *
 * disconnects it from its attached bodies and removing it from the world.
 * However, if the joint is a member of a group then this function has no
 * effect - to destroy that joint the group must be emptied or destroyed.
 */
ODE_API void dJointDestroy (dJointID);


/**
 * @brief Create a joint group
 * @ingroup joints
 * @param max_size deprecated. Set to 0.
 */
ODE_API dJointGroupID dJointGroupCreate (int max_size);

/**
 * @brief Destroy a joint group.
 * @ingroup joints
 *
 * All joints in the joint group will be destroyed.
 */
ODE_API void dJointGroupDestroy (dJointGroupID);

/**
 * @brief Empty a joint group.
 * @ingroup joints
 *
 * All joints in the joint group will be destroyed,
 * but the joint group itself will not be destroyed.
 */
ODE_API void dJointGroupEmpty (dJointGroupID);

/**
 * @brief Return the number of bodies attached to the joint
 * @ingroup joints
 */
ODE_API int dJointGetNumBodies(dJointID);

/**
 * @brief Attach the joint to some new bodies.
 * @ingroup joints
 *
 * If the joint is already attached, it will be detached from the old bodies
 * first.
 * To attach this joint to only one body, set body1 or body2 to zero - a zero
 * body refers to the static environment.
 * Setting both bodies to zero puts the joint into "limbo", i.e. it will
 * have no effect on the simulation.
 * @remarks
 * Some joints, like hinge-2 need to be attached to two bodies to work.
 */
ODE_API void dJointAttach (dJointID, dBodyID body1, dBodyID body2);

/**
 * @brief Manually enable a joint.
 * @param dJointID identification of joint.
 * @ingroup joints
 */
ODE_API void dJointEnable (dJointID);

/**
 * @brief Manually disable a joint.
 * @ingroup joints
 * @remarks
 * A disabled joint will not affect the simulation, but will maintain the anchors and
 * axes so it can be enabled later.
 */
ODE_API void dJointDisable (dJointID);

/**
 * @brief Check wether a joint is enabled.
 * @ingroup joints
 * @return 1 if a joint is currently enabled or 0 if it is disabled.
 */
ODE_API int dJointIsEnabled (dJointID);

/**
 * @brief Set the user-data pointer
 * @ingroup joints
 */
ODE_API void dJointSetData (dJointID, void *data);

/**
 * @brief Get the user-data pointer
 * @ingroup joints
 */
ODE_API void *dJointGetData (dJointID);

/**
 * @brief Get the type of the joint
 * @ingroup joints
 * @return the type, being one of these:
 * \li dJointTypeBall
 * \li dJointTypeHinge
 * \li dJointTypeSlider
 * \li dJointTypeContact
 * \li dJointTypeUniversal
 * \li dJointTypeHinge2
 * \li dJointTypeFixed
 * \li dJointTypeNull
 * \li dJointTypeAMotor
 * \li dJointTypeLMotor
 * \li dJointTypePlane2D
 * \li dJointTypePR
 * \li dJointTypePU
 * \li dJointTypePiston
 */
ODE_API dJointType dJointGetType (dJointID);

/**
 * @brief Return the bodies that this joint connects.
 * @ingroup joints
 * @param index return the first (0) or second (1) body.
 * @remarks
 * If one of these returned body IDs is zero, the joint connects the other body
 * to the static environment.
 * If both body IDs are zero, the joint is in ``limbo'' and has no effect on
 * the simulation.
 */
ODE_API dBodyID dJointGetBody (dJointID, int index);

/**
 * @brief Sets the datastructure that is to receive the feedback.
 *
 * The feedback can be used by the user, so that it is known how
 * much force an individual joint exerts.
 * @ingroup joints
 */
ODE_API void dJointSetFeedback (dJointID, dJointFeedback *);

/**
 * @brief Gets the datastructure that is to receive the feedback.
 * @ingroup joints
 */
ODE_API dJointFeedback *dJointGetFeedback (dJointID);

/**
 * @brief Set the joint anchor point.
 * @ingroup joints
 *
 * The joint will try to keep this point on each body
 * together. The input is specified in world coordinates.
 */
ODE_API void dJointSetBallAnchor (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief Set the joint anchor point.
 * @ingroup joints
 */
ODE_API void dJointSetBallAnchor2 (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief Param setting for Ball joints
 * @ingroup joints
 */
ODE_API void dJointSetBallParam (dJointID, int parameter, dReal value);

/**
 * @brief Set hinge anchor parameter.
 * @ingroup joints
 */
ODE_API void dJointSetHingeAnchor (dJointID, dReal x, dReal y, dReal z);

ODE_API void dJointSetHingeAnchorDelta (dJointID, dReal x, dReal y, dReal z, dReal ax, dReal ay, dReal az);

/**
 * @brief Set hinge axis.
 * @ingroup joints
 */
ODE_API void dJointSetHingeAxis (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief Set the Hinge axis as if the 2 bodies were already at angle appart.
 * @ingroup joints
 *
 * This function initialize the Axis and the relative orientation of each body
 * as if body1 was rotated around the axis by the angle value. \br
 * Ex:
 * <PRE>
 * dJointSetHingeAxis(jId, 1, 0, 0);
 * // If you request the position you will have: dJointGetHingeAngle(jId) == 0
 * dJointSetHingeAxisDelta(jId, 1, 0, 0, 0.23);
 * // If you request the position you will have: dJointGetHingeAngle(jId) == 0.23
 * </PRE>

 * @param j The Hinge joint ID for which the axis will be set
 * @param x The X component of the axis in world frame
 * @param y The Y component of the axis in world frame
 * @param z The Z component of the axis in world frame
 * @param angle The angle for the offset of the relative orientation.
 *              As if body1 was rotated by angle when the Axis was set (see below).
 *              The rotation is around the new Hinge axis.
 *
 * @note Usually the function dJointSetHingeAxis set the current position of body1
 *       and body2 as the zero angle position. This function set the current position
 *       as the if the 2 bodies where \b angle appart.
 * @warning Calling dJointSetHingeAnchor or dJointSetHingeAxis will reset the "zero"
 *          angle position.
 */
ODE_API void dJointSetHingeAxisOffset (dJointID j, dReal x, dReal y, dReal z, dReal angle);

/**
 * @brief set joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetHingeParam (dJointID, int parameter, dReal value);

/**
 * @brief Applies the torque about the hinge axis.
 *
 * That is, it applies a torque with specified magnitude in the direction
 * of the hinge axis, to body 1, and with the same magnitude but in opposite
 * direction to body 2. This function is just a wrapper for dBodyAddTorque()}
 * @ingroup joints
 */
ODE_API void dJointAddHingeTorque(dJointID joint, dReal torque);

/**
 * @brief set the joint axis
 * @ingroup joints
 */
ODE_API void dJointSetSliderAxis (dJointID, dReal x, dReal y, dReal z);

/**
 * @ingroup joints
 */
ODE_API void dJointSetSliderAxisDelta (dJointID, dReal x, dReal y, dReal z, dReal ax, dReal ay, dReal az);

/**
 * @brief set joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetSliderParam (dJointID, int parameter, dReal value);

/**
 * @brief Applies the given force in the slider's direction.
 *
 * That is, it applies a force with specified magnitude, in the direction of
 * slider's axis, to body1, and with the same magnitude but opposite
 * direction to body2.  This function is just a wrapper for dBodyAddForce().
 * @ingroup joints
 */
ODE_API void dJointAddSliderForce(dJointID joint, dReal force);

/**
 * @brief set anchor
 * @ingroup joints
 */
ODE_API void dJointSetHinge2Anchor (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set both axes (optionally)
 *
 * This can change both axes at once avoiding transitions via invalid states
 * while changing axes one by one and having the first changed axis coincide 
 * with the other axis existing direction.
 *
 * At least one of the axes must be not NULL. If NULL is passed, the corresponding 
 * axis retains its existing value.
 * 
 * @ingroup joints
 */
ODE_API void dJointSetHinge2Axes (dJointID j, const dReal *axis1/*=[dSA__MAX],=NULL*/, const dReal *axis2/*=[dSA__MAX],=NULL*/);

/**
 * @brief set axis
 *
 * Deprecated. Use @fn dJointSetHinge2Axes instead.
 * 
 * @ingroup joints
 * @see dJointSetHinge2Axes
 */
ODE_API_DEPRECATED ODE_API void dJointSetHinge2Axis1 (dJointID j, dReal x, dReal y, dReal z);

/**
 * @brief set axis
 *
 * Deprecated. Use @fn dJointSetHinge2Axes instead.
 * 
 * @ingroup joints
 * @see dJointSetHinge2Axes
 */
ODE_API_DEPRECATED ODE_API void dJointSetHinge2Axis2 (dJointID j, dReal x, dReal y, dReal z);

/**
 * @brief set joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetHinge2Param (dJointID, int parameter, dReal value);

/**
 * @brief Applies torque1 about the hinge2's axis 1, torque2 about the
 * hinge2's axis 2.
 * @remarks  This function is just a wrapper for dBodyAddTorque().
 * @ingroup joints
 */
ODE_API void dJointAddHinge2Torques(dJointID joint, dReal torque1, dReal torque2);

/**
 * @brief set anchor
 * @ingroup joints
 */
ODE_API void dJointSetUniversalAnchor (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set axis
 * @ingroup joints
 */
ODE_API void dJointSetUniversalAxis1 (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief Set the Universal axis1 as if the 2 bodies were already at 
 *        offset1 and offset2 appart with respect to axis1 and axis2.
 * @ingroup joints
 *
 * This function initialize the axis1 and the relative orientation of 
 * each body as if body1 was rotated around the new axis1 by the offset1 
 * value and as if body2 was rotated around the axis2 by offset2. \br
 * Ex:
* <PRE>
 * dJointSetHuniversalAxis1(jId, 1, 0, 0);
 * // If you request the position you will have: dJointGetUniversalAngle1(jId) == 0
 * // If you request the position you will have: dJointGetUniversalAngle2(jId) == 0
 * dJointSetHuniversalAxis1Offset(jId, 1, 0, 0, 0.2, 0.17);
 * // If you request the position you will have: dJointGetUniversalAngle1(jId) == 0.2
 * // If you request the position you will have: dJointGetUniversalAngle2(jId) == 0.17
 * </PRE>
 *
 * @param j The Hinge joint ID for which the axis will be set
 * @param x The X component of the axis in world frame
 * @param y The Y component of the axis in world frame
 * @param z The Z component of the axis in world frame
 * @param angle The angle for the offset of the relative orientation.
 *              As if body1 was rotated by angle when the Axis was set (see below).
 *              The rotation is around the new Hinge axis.
 *
 * @note Usually the function dJointSetHingeAxis set the current position of body1
 *       and body2 as the zero angle position. This function set the current position
 *       as the if the 2 bodies where \b offsets appart.
 *
 * @note Any previous offsets are erased.
 *
 * @warning Calling dJointSetUniversalAnchor, dJointSetUnivesalAxis1, 
 *          dJointSetUniversalAxis2, dJointSetUniversalAxis2Offset 
 *          will reset the "zero" angle position.
 */
ODE_API void dJointSetUniversalAxis1Offset (dJointID, dReal x, dReal y, dReal z,
                                            dReal offset1, dReal offset2);

/**
 * @brief set axis
 * @ingroup joints
 */
ODE_API void dJointSetUniversalAxis2 (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief Set the Universal axis2 as if the 2 bodies were already at 
 *        offset1 and offset2 appart with respect to axis1 and axis2.
 * @ingroup joints
 *
 * This function initialize the axis2 and the relative orientation of 
 * each body as if body1 was rotated around the axis1 by the offset1 
 * value and as if body2 was rotated around the new axis2 by offset2. \br
 * Ex:
 * <PRE>
 * dJointSetHuniversalAxis2(jId, 0, 1, 0);
 * // If you request the position you will have: dJointGetUniversalAngle1(jId) == 0
 * // If you request the position you will have: dJointGetUniversalAngle2(jId) == 0
 * dJointSetHuniversalAxis2Offset(jId, 0, 1, 0, 0.2, 0.17);
 * // If you request the position you will have: dJointGetUniversalAngle1(jId) == 0.2
 * // If you request the position you will have: dJointGetUniversalAngle2(jId) == 0.17
 * </PRE>

 * @param j The Hinge joint ID for which the axis will be set
 * @param x The X component of the axis in world frame
 * @param y The Y component of the axis in world frame
 * @param z The Z component of the axis in world frame
 * @param angle The angle for the offset of the relative orientation.
 *              As if body1 was rotated by angle when the Axis was set (see below).
 *              The rotation is around the new Hinge axis.
 *
 * @note Usually the function dJointSetHingeAxis set the current position of body1
 *       and body2 as the zero angle position. This function set the current position
 *       as the if the 2 bodies where \b offsets appart.
 *
 * @note Any previous offsets are erased.
 *
 * @warning Calling dJointSetUniversalAnchor, dJointSetUnivesalAxis1, 
 *          dJointSetUniversalAxis2, dJointSetUniversalAxis2Offset 
 *          will reset the "zero" angle position.
 */


ODE_API void dJointSetUniversalAxis2Offset (dJointID, dReal x, dReal y, dReal z,
                                            dReal offset1, dReal offset2);

/**
 * @brief set joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetUniversalParam (dJointID, int parameter, dReal value);

/**
 * @brief Applies torque1 about the universal's axis 1, torque2 about the
 * universal's axis 2.
 * @remarks This function is just a wrapper for dBodyAddTorque().
 * @ingroup joints
 */
ODE_API void dJointAddUniversalTorques(dJointID joint, dReal torque1, dReal torque2);


/**
 * @brief set anchor
 * @ingroup joints
 */
ODE_API void dJointSetPRAnchor (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set the axis for the prismatic articulation
 * @ingroup joints
 */
ODE_API void dJointSetPRAxis1 (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set the axis for the rotoide articulation
 * @ingroup joints
 */
ODE_API void dJointSetPRAxis2 (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set joint parameter
 * @ingroup joints
 *
 * @note parameterX where X equal 2 refer to parameter for the rotoide articulation
 */
ODE_API void dJointSetPRParam (dJointID, int parameter, dReal value);

/**
 * @brief Applies the torque about the rotoide axis of the PR joint
 *
 * That is, it applies a torque with specified magnitude in the direction 
 * of the rotoide axis, to body 1, and with the same magnitude but in opposite
 * direction to body 2. This function is just a wrapper for dBodyAddTorque()}
 * @ingroup joints
 */
ODE_API void dJointAddPRTorque (dJointID j, dReal torque);


/**
* @brief set anchor
* @ingroup joints
*/
ODE_API void dJointSetPUAnchor (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set anchor
 * @ingroup joints
 */
ODE_API_DEPRECATED ODE_API void dJointSetPUAnchorDelta (dJointID, dReal x, dReal y, dReal z,
                                                        dReal dx, dReal dy, dReal dz);

/**
 * @brief Set the PU anchor as if the 2 bodies were already at [dx, dy, dz] appart.
 * @ingroup joints
 *
 * This function initialize the anchor and the relative position of each body
 * as if the position between body1 and body2 was already the projection of [dx, dy, dz]
 * along the Piston axis. (i.e as if the body1 was at its current position - [dx,dy,dy] when the
 * axis is set).
 * Ex:
 * <PRE>
 * dReal offset = 3;
 * dVector3 axis;
 * dJointGetPUAxis(jId, axis);
 * dJointSetPUAnchor(jId, 0, 0, 0);
 * // If you request the position you will have: dJointGetPUPosition(jId) == 0
 * dJointSetPUAnchorOffset(jId, 0, 0, 0, axis[X]*offset, axis[Y]*offset, axis[Z]*offset);
 * // If you request the position you will have: dJointGetPUPosition(jId) == offset
 * </PRE>
 * @param j The PU joint for which the anchor point will be set
 * @param x The X position of the anchor point in world frame
 * @param y The Y position of the anchor point in world frame
 * @param z The Z position of the anchor point in world frame
 * @param dx A delta to be substracted to the X position as if the anchor was set
 *           when body1 was at current_position[X] - dx
 * @param dx A delta to be substracted to the Y position as if the anchor was set
 *           when body1 was at current_position[Y] - dy
 * @param dx A delta to be substracted to the Z position as if the anchor was set
 *           when body1 was at current_position[Z] - dz
 */
ODE_API void dJointSetPUAnchorOffset (dJointID, dReal x, dReal y, dReal z,
                                     dReal dx, dReal dy, dReal dz);

/**
 * @brief set the axis for the first axis or the universal articulation
 * @ingroup joints
 */
ODE_API void dJointSetPUAxis1 (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set the axis for the second axis or the universal articulation
 * @ingroup joints
 */
ODE_API void dJointSetPUAxis2 (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set the axis for the prismatic articulation
 * @ingroup joints
 */
ODE_API void dJointSetPUAxis3 (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set the axis for the prismatic articulation
 * @ingroup joints
 * @note This function was added for convenience it is the same as
 *       dJointSetPUAxis3
 */
ODE_API void dJointSetPUAxisP (dJointID id, dReal x, dReal y, dReal z);



/**
 * @brief set joint parameter
 * @ingroup joints
 *
 * @note parameterX where X equal 2 refer to parameter for second axis of the
 *       universal articulation
 * @note parameterX where X equal 3 refer to parameter for prismatic
 *       articulation
 */
ODE_API void dJointSetPUParam (dJointID, int parameter, dReal value);

/**
 * @brief Applies the torque about the rotoide axis of the PU joint
 *
 * That is, it applies a torque with specified magnitude in the direction
 * of the rotoide axis, to body 1, and with the same magnitude but in opposite
 * direction to body 2. This function is just a wrapper for dBodyAddTorque()}
 * @ingroup joints
 */
ODE_API void dJointAddPUTorque (dJointID j, dReal torque);




/**
 * @brief set the joint anchor
 * @ingroup joints
 */
ODE_API void dJointSetPistonAnchor (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief Set the Piston anchor as if the 2 bodies were already at [dx,dy, dz] appart.
 * @ingroup joints
 *
 * This function initialize the anchor and the relative position of each body
 * as if the position between body1 and body2 was already the projection of [dx, dy, dz]
 * along the Piston axis. (i.e as if the body1 was at its current position - [dx,dy,dy] when the
 * axis is set).
 * Ex:
 * <PRE>
 * dReal offset = 3;
 * dVector3 axis;
 * dJointGetPistonAxis(jId, axis);
 * dJointSetPistonAnchor(jId, 0, 0, 0);
 * // If you request the position you will have: dJointGetPistonPosition(jId) == 0
 * dJointSetPistonAnchorOffset(jId, 0, 0, 0, axis[X]*offset, axis[Y]*offset, axis[Z]*offset);
 * // If you request the position you will have: dJointGetPistonPosition(jId) == offset
 * </PRE>
 * @param j The Piston joint for which the anchor point will be set
 * @param x The X position of the anchor point in world frame
 * @param y The Y position of the anchor point in world frame
 * @param z The Z position of the anchor point in world frame
 * @param dx A delta to be substracted to the X position as if the anchor was set
 *           when body1 was at current_position[X] - dx
 * @param dx A delta to be substracted to the Y position as if the anchor was set
 *           when body1 was at current_position[Y] - dy
 * @param dx A delta to be substracted to the Z position as if the anchor was set
 *           when body1 was at current_position[Z] - dz
 */
ODE_API void dJointSetPistonAnchorOffset(dJointID j, dReal x, dReal y, dReal z,
                                         dReal dx, dReal dy, dReal dz);

  /**
   * @brief set the joint axis
 * @ingroup joints
 */
ODE_API void dJointSetPistonAxis (dJointID, dReal x, dReal y, dReal z);

/**
 * This function set prismatic axis of the joint and also set the position
 * of the joint.
 *
 * @ingroup joints
 * @param j The joint affected by this function
 * @param x The x component of the axis
 * @param y The y component of the axis
 * @param z The z component of the axis
 * @param dx The Initial position of the prismatic join in the x direction
 * @param dy The Initial position of the prismatic join in the y direction
 * @param dz The Initial position of the prismatic join in the z direction
 */
ODE_API_DEPRECATED ODE_API void dJointSetPistonAxisDelta (dJointID j, dReal x, dReal y, dReal z, dReal ax, dReal ay, dReal az);

/**
 * @brief set joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetPistonParam (dJointID, int parameter, dReal value);

/**
 * @brief Applies the given force in the slider's direction.
 *
 * That is, it applies a force with specified magnitude, in the direction of
 * prismatic's axis, to body1, and with the same magnitude but opposite
 * direction to body2.  This function is just a wrapper for dBodyAddForce().
 * @ingroup joints
 */
ODE_API void dJointAddPistonForce (dJointID joint, dReal force);


/**
 * @brief Call this on the fixed joint after it has been attached to
 * remember the current desired relative offset and desired relative
 * rotation between the bodies.
 * @ingroup joints
 */
ODE_API void dJointSetFixed (dJointID);

/*
 * @brief Sets joint parameter
 *
 * @ingroup joints
 */
ODE_API void dJointSetFixedParam (dJointID, int parameter, dReal value);

/**
 * @brief set the nr of axes
 * @param num 0..3
 * @ingroup joints
 */
ODE_API void dJointSetAMotorNumAxes (dJointID, int num);

/**
 * @brief set axis
 * @ingroup joints
 */
ODE_API void dJointSetAMotorAxis (dJointID, int anum, int rel,
			  dReal x, dReal y, dReal z);

/**
 * @brief Tell the AMotor what the current angle is along axis anum.
 *
 * This function should only be called in dAMotorUser mode, because in this
 * mode the AMotor has no other way of knowing the joint angles.
 * The angle information is needed if stops have been set along the axis,
 * but it is not needed for axis motors.
 * @ingroup joints
 */
ODE_API void dJointSetAMotorAngle (dJointID, int anum, dReal angle);

/**
 * @brief set joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetAMotorParam (dJointID, int parameter, dReal value);

/**
 * @brief set mode
 * @ingroup joints
 */
ODE_API void dJointSetAMotorMode (dJointID, int mode);

/**
 * @brief Applies torque0 about the AMotor's axis 0, torque1 about the
 * AMotor's axis 1, and torque2 about the AMotor's axis 2.
 * @remarks
 * If the motor has fewer than three axes, the higher torques are ignored.
 * This function is just a wrapper for dBodyAddTorque().
 * @ingroup joints
 */
ODE_API void dJointAddAMotorTorques (dJointID, dReal torque1, dReal torque2, dReal torque3);

/**
 * @brief Set the number of axes that will be controlled by the LMotor.
 * @param num can range from 0 (which effectively deactivates the joint) to 3.
 * @ingroup joints
 */
ODE_API void dJointSetLMotorNumAxes (dJointID, int num);

/**
 * @brief Set the AMotor axes.
 * @param anum selects the axis to change (0,1 or 2).
 * @param rel Each axis can have one of three ``relative orientation'' modes
 * \li 0: The axis is anchored to the global frame.
 * \li 1: The axis is anchored to the first body.
 * \li 2: The axis is anchored to the second body.
 * @remarks The axis vector is always specified in global coordinates
 * regardless of the setting of rel.
 * @ingroup joints
 */
ODE_API void dJointSetLMotorAxis (dJointID, int anum, int rel, dReal x, dReal y, dReal z);

/**
 * @brief set joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetLMotorParam (dJointID, int parameter, dReal value);

/**
 * @ingroup joints
 */
ODE_API void dJointSetPlane2DXParam (dJointID, int parameter, dReal value);

/**
 * @ingroup joints
 */

ODE_API void dJointSetPlane2DYParam (dJointID, int parameter, dReal value);

/**
 * @ingroup joints
 */
ODE_API void dJointSetPlane2DAngleParam (dJointID, int parameter, dReal value);

/**
 * @brief Get the joint anchor point, in world coordinates.
 *
 * This returns the point on body 1. If the joint is perfectly satisfied,
 * this will be the same as the point on body 2.
 */
ODE_API void dJointGetBallAnchor (dJointID, dVector3 result);

/**
 * @brief Get the joint anchor point, in world coordinates.
 *
 * This returns the point on body 2. You can think of a ball and socket
 * joint as trying to keep the result of dJointGetBallAnchor() and
 * dJointGetBallAnchor2() the same.  If the joint is perfectly satisfied,
 * this function will return the same value as dJointGetBallAnchor() to
 * within roundoff errors. dJointGetBallAnchor2() can be used, along with
 * dJointGetBallAnchor(), to see how far the joint has come apart.
 */
ODE_API void dJointGetBallAnchor2 (dJointID, dVector3 result);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetBallParam (dJointID, int parameter);

/**
 * @brief Get the hinge anchor point, in world coordinates.
 *
 * This returns the point on body 1. If the joint is perfectly satisfied,
 * this will be the same as the point on body 2.
 * @ingroup joints
 */
ODE_API void dJointGetHingeAnchor (dJointID, dVector3 result);

/**
 * @brief Get the joint anchor point, in world coordinates.
 * @return The point on body 2. If the joint is perfectly satisfied,
 * this will return the same value as dJointGetHingeAnchor().
 * If not, this value will be slightly different.
 * This can be used, for example, to see how far the joint has come apart.
 * @ingroup joints
 */
ODE_API void dJointGetHingeAnchor2 (dJointID, dVector3 result);

/**
 * @brief get axis
 * @ingroup joints
 */
ODE_API void dJointGetHingeAxis (dJointID, dVector3 result);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetHingeParam (dJointID, int parameter);

/**
 * @brief Get the hinge angle.
 *
 * The angle is measured between the two bodies, or between the body and
 * the static environment.
 * The angle will be between -pi..pi.
 * Give the relative rotation with respect to the Hinge axis of Body 1 with
 * respect to Body 2.
 * When the hinge anchor or axis is set, the current position of the attached
 * bodies is examined and that position will be the zero angle.
 * @ingroup joints
 */
ODE_API dReal dJointGetHingeAngle (dJointID);

/**
 * @brief Get the hinge angle time derivative.
 * @ingroup joints
 */
ODE_API dReal dJointGetHingeAngleRate (dJointID);

/**
 * @brief Get the slider linear position (i.e. the slider's extension)
 *
 * When the axis is set, the current position of the attached bodies is
 * examined and that position will be the zero position.

 * The position is the distance, with respect to the zero position,
 * along the slider axis of body 1 with respect to
 * body 2. (A NULL body is replaced by the world).
 * @ingroup joints
 */
ODE_API dReal dJointGetSliderPosition (dJointID);

/**
 * @brief Get the slider linear position's time derivative.
 * @ingroup joints
 */
ODE_API dReal dJointGetSliderPositionRate (dJointID);

/**
 * @brief Get the slider axis
 * @ingroup joints
 */
ODE_API void dJointGetSliderAxis (dJointID, dVector3 result);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetSliderParam (dJointID, int parameter);

/**
 * @brief Get the joint anchor point, in world coordinates.
 * @return the point on body 1.  If the joint is perfectly satisfied,
 * this will be the same as the point on body 2.
 * @ingroup joints
 */
ODE_API void dJointGetHinge2Anchor (dJointID, dVector3 result);

/**
 * @brief Get the joint anchor point, in world coordinates.
 * This returns the point on body 2. If the joint is perfectly satisfied,
 * this will return the same value as dJointGetHinge2Anchor.
 * If not, this value will be slightly different.
 * This can be used, for example, to see how far the joint has come apart.
 * @ingroup joints
 */
ODE_API void dJointGetHinge2Anchor2 (dJointID, dVector3 result);

/**
 * @brief Get joint axis
 * @ingroup joints
 */
ODE_API void dJointGetHinge2Axis1 (dJointID, dVector3 result);

/**
 * @brief Get joint axis
 * @ingroup joints
 */
ODE_API void dJointGetHinge2Axis2 (dJointID, dVector3 result);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetHinge2Param (dJointID, int parameter);

/**
 * @brief Get angle
 * @ingroup joints
 */
ODE_API dReal dJointGetHinge2Angle1 (dJointID);

/**
 * @brief Get angle
 * @ingroup joints
 */
ODE_API dReal dJointGetHinge2Angle2 (dJointID);

/**
 * @brief Get time derivative of angle
 * @ingroup joints
 */
ODE_API dReal dJointGetHinge2Angle1Rate (dJointID);

/**
 * @brief Get time derivative of angle
 * @ingroup joints
 */
ODE_API dReal dJointGetHinge2Angle2Rate (dJointID);

/**
 * @brief Get the joint anchor point, in world coordinates.
 * @return the point on body 1. If the joint is perfectly satisfied,
 * this will be the same as the point on body 2.
 * @ingroup joints
 */
ODE_API void dJointGetUniversalAnchor (dJointID, dVector3 result);

/**
 * @brief Get the joint anchor point, in world coordinates.
 * @return This returns the point on body 2.
 * @remarks
 * You can think of the ball and socket part of a universal joint as
 * trying to keep the result of dJointGetBallAnchor() and
 * dJointGetBallAnchor2() the same. If the joint is
 * perfectly satisfied, this function will return the same value
 * as dJointGetUniversalAnchor() to within roundoff errors.
 * dJointGetUniversalAnchor2() can be used, along with
 * dJointGetUniversalAnchor(), to see how far the joint has come apart.
 * @ingroup joints
 */
ODE_API void dJointGetUniversalAnchor2 (dJointID, dVector3 result);

/**
 * @brief Get axis
 * @ingroup joints
 */
ODE_API void dJointGetUniversalAxis1 (dJointID, dVector3 result);

/**
 * @brief Get axis
 * @ingroup joints
 */
ODE_API void dJointGetUniversalAxis2 (dJointID, dVector3 result);


/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetUniversalParam (dJointID, int parameter);

/**
 * @brief Get both angles at the same time.
 * @ingroup joints
 *
 * @param joint   The universal joint for which we want to calculate the angles
 * @param angle1  The angle between the body1 and the axis 1
 * @param angle2  The angle between the body2 and the axis 2
 *
 * @note This function combine getUniversalAngle1 and getUniversalAngle2 together
 *       and try to avoid redundant calculation
 */
ODE_API void dJointGetUniversalAngles (dJointID, dReal *angle1, dReal *angle2);

/**
 * @brief Get angle
 * @ingroup joints
 */
ODE_API dReal dJointGetUniversalAngle1 (dJointID);

/**
 * @brief Get angle
 * @ingroup joints
 */
ODE_API dReal dJointGetUniversalAngle2 (dJointID);

/**
 * @brief Get time derivative of angle
 * @ingroup joints
 */
ODE_API dReal dJointGetUniversalAngle1Rate (dJointID);

/**
 * @brief Get time derivative of angle
 * @ingroup joints
 */
ODE_API dReal dJointGetUniversalAngle2Rate (dJointID);



/**
 * @brief Get the joint anchor point, in world coordinates.
 * @return the point on body 1. If the joint is perfectly satisfied, 
 * this will be the same as the point on body 2.
 * @ingroup joints
 */
ODE_API void dJointGetPRAnchor (dJointID, dVector3 result);

/**
 * @brief Get the PR linear position (i.e. the prismatic's extension)
 *
 * When the axis is set, the current position of the attached bodies is
 * examined and that position will be the zero position.
 *
 * The position is the "oriented" length between the
 * position = (Prismatic axis) dot_product [(body1 + offset) - (body2 + anchor2)]
 *
 * @ingroup joints
 */
ODE_API dReal dJointGetPRPosition (dJointID);

/**
 * @brief Get the PR linear position's time derivative
 *
 * @ingroup joints
 */
ODE_API dReal dJointGetPRPositionRate (dJointID);


/**
 * @brief Get the PR angular position (i.e. the  twist between the 2 bodies)
 *
 * When the axis is set, the current position of the attached bodies is
 * examined and that position will be the zero position.
 * @ingroup joints
 */
ODE_API dReal dJointGetPRAngle (dJointID);

/**
 * @brief Get the PR angular position's time derivative
 *
 * @ingroup joints
 */
ODE_API dReal dJointGetPRAngleRate (dJointID);


/**
 * @brief Get the prismatic axis
 * @ingroup joints
 */
ODE_API void dJointGetPRAxis1 (dJointID, dVector3 result);

/**
 * @brief Get the Rotoide axis
 * @ingroup joints
 */
ODE_API void dJointGetPRAxis2 (dJointID, dVector3 result);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetPRParam (dJointID, int parameter);

    
    
/**
 * @brief Get the joint anchor point, in world coordinates.
 * @return the point on body 1. If the joint is perfectly satisfied,
 * this will be the same as the point on body 2.
 * @ingroup joints
 */
ODE_API void dJointGetPUAnchor (dJointID, dVector3 result);

/**
 * @brief Get the PU linear position (i.e. the prismatic's extension)
 *
 * When the axis is set, the current position of the attached bodies is
 * examined and that position will be the zero position.
 *
 * The position is the "oriented" length between the
 * position = (Prismatic axis) dot_product [(body1 + offset) - (body2 + anchor2)]
 *
 * @ingroup joints
 */
ODE_API dReal dJointGetPUPosition (dJointID);

/**
 * @brief Get the PR linear position's time derivative
 *
 * @ingroup joints
 */
ODE_API dReal dJointGetPUPositionRate (dJointID);

/**
 * @brief Get the first axis of the universal component of the joint
 * @ingroup joints
 */
ODE_API void dJointGetPUAxis1 (dJointID, dVector3 result);

/**
 * @brief Get the second axis of the Universal component of the joint
 * @ingroup joints
 */
ODE_API void dJointGetPUAxis2 (dJointID, dVector3 result);

/**
 * @brief Get the prismatic axis
 * @ingroup joints
 */
ODE_API void dJointGetPUAxis3 (dJointID, dVector3 result);

/**
 * @brief Get the prismatic axis
 * @ingroup joints
 *
 * @note This function was added for convenience it is the same as
 *       dJointGetPUAxis3
 */
ODE_API void dJointGetPUAxisP (dJointID id, dVector3 result);




/**
 * @brief Get both angles at the same time.
 * @ingroup joints
 *
 * @param joint   The Prismatic universal joint for which we want to calculate the angles
 * @param angle1  The angle between the body1 and the axis 1
 * @param angle2  The angle between the body2 and the axis 2
 *
 * @note This function combine dJointGetPUAngle1 and dJointGetPUAngle2 together
 *       and try to avoid redundant calculation
 */
ODE_API void dJointGetPUAngles (dJointID, dReal *angle1, dReal *angle2);

/**
 * @brief Get angle
 * @ingroup joints
 */
ODE_API dReal dJointGetPUAngle1 (dJointID);

/**
 * @brief * @brief Get time derivative of angle1
 *
 * @ingroup joints
 */
ODE_API dReal dJointGetPUAngle1Rate (dJointID);


/**
 * @brief Get angle
 * @ingroup joints
 */
ODE_API dReal dJointGetPUAngle2 (dJointID);

/**
 * @brief * @brief Get time derivative of angle2
 *
 * @ingroup joints
 */
ODE_API dReal dJointGetPUAngle2Rate (dJointID);

  /**
   * @brief get joint parameter
   * @ingroup joints
   */
ODE_API dReal dJointGetPUParam (dJointID, int parameter);





/**
 * @brief Get the Piston linear position (i.e. the piston's extension)
 *
 * When the axis is set, the current position of the attached bodies is
 * examined and that position will be the zero position.
 * @ingroup joints
 */
ODE_API dReal dJointGetPistonPosition (dJointID);

/**
 * @brief Get the piston linear position's time derivative.
 * @ingroup joints
 */
ODE_API dReal dJointGetPistonPositionRate (dJointID);

/**
 * @brief Get the Piston angular position (i.e. the  twist between the 2 bodies)
 *
 * When the axis is set, the current position of the attached bodies is
 * examined and that position will be the zero position.
 * @ingroup joints
 */
ODE_API dReal dJointGetPistonAngle (dJointID);

/**
 * @brief Get the piston angular position's time derivative.
 * @ingroup joints
 */
ODE_API dReal dJointGetPistonAngleRate (dJointID);


/**
 * @brief Get the joint anchor
 *
 * This returns the point on body 1. If the joint is perfectly satisfied,
 * this will be the same as the point on body 2 in direction perpendicular
 * to the prismatic axis.
 *
 * @ingroup joints
 */
ODE_API void dJointGetPistonAnchor (dJointID, dVector3 result);

/**
 * @brief Get the joint anchor w.r.t. body 2
 *
 * This returns the point on body 2. You can think of a Piston
 * joint as trying to keep the result of dJointGetPistonAnchor() and
 * dJointGetPistonAnchor2() the same in the direction perpendicular to the
 * pirsmatic axis. If the joint is perfectly satisfied,
 * this function will return the same value as dJointGetPistonAnchor() to
 * within roundoff errors. dJointGetPistonAnchor2() can be used, along with
 * dJointGetPistonAnchor(), to see how far the joint has come apart.
 *
 * @ingroup joints
 */
ODE_API void dJointGetPistonAnchor2 (dJointID, dVector3 result);

/**
 * @brief Get the prismatic axis (This is also the rotoide axis.
 * @ingroup joints
 */
ODE_API void dJointGetPistonAxis (dJointID, dVector3 result);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetPistonParam (dJointID, int parameter);


/**
 * @brief Get the number of angular axes that will be controlled by the
 * AMotor.
 * @param num can range from 0 (which effectively deactivates the
 * joint) to 3.
 * This is automatically set to 3 in dAMotorEuler mode.
 * @ingroup joints
 */
ODE_API int dJointGetAMotorNumAxes (dJointID);

/**
 * @brief Get the AMotor axes.
 * @param anum selects the axis to change (0,1 or 2).
 * @param rel Each axis can have one of three ``relative orientation'' modes.
 * \li 0: The axis is anchored to the global frame.
 * \li 1: The axis is anchored to the first body.
 * \li 2: The axis is anchored to the second body.
 * @ingroup joints
 */
ODE_API void dJointGetAMotorAxis (dJointID, int anum, dVector3 result);

/**
 * @brief Get axis
 * @remarks
 * The axis vector is always specified in global coordinates regardless
 * of the setting of rel.
 * There are two GetAMotorAxis functions, one to return the axis and one to
 * return the relative mode.
 *
 * For dAMotorEuler mode:
 * \li	Only axes 0 and 2 need to be set. Axis 1 will be determined
	automatically at each time step.
 * \li	Axes 0 and 2 must be perpendicular to each other.
 * \li	Axis 0 must be anchored to the first body, axis 2 must be anchored
	to the second body.
 * @ingroup joints
 */
ODE_API int dJointGetAMotorAxisRel (dJointID, int anum);

/**
 * @brief Get the current angle for axis.
 * @remarks
 * In dAMotorUser mode this is simply the value that was set with
 * dJointSetAMotorAngle().
 * In dAMotorEuler mode this is the corresponding euler angle.
 * @ingroup joints
 */
ODE_API dReal dJointGetAMotorAngle (dJointID, int anum);

/**
 * @brief Get the current angle rate for axis anum.
 * @remarks
 * In dAMotorUser mode this is always zero, as not enough information is
 * available.
 * In dAMotorEuler mode this is the corresponding euler angle rate.
 * @ingroup joints
 */
ODE_API dReal dJointGetAMotorAngleRate (dJointID, int anum);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetAMotorParam (dJointID, int parameter);

/**
 * @brief Get the angular motor mode.
 * @param mode must be one of the following constants:
 * \li dAMotorUser The AMotor axes and joint angle settings are entirely
 * controlled by the user.  This is the default mode.
 * \li dAMotorEuler Euler angles are automatically computed.
 * The axis a1 is also automatically computed.
 * The AMotor axes must be set correctly when in this mode,
 * as described below.
 * When this mode is initially set the current relative orientations
 * of the bodies will correspond to all euler angles at zero.
 * @ingroup joints
 */
ODE_API int dJointGetAMotorMode (dJointID);

/**
 * @brief Get nr of axes.
 * @ingroup joints
 */
ODE_API int dJointGetLMotorNumAxes (dJointID);

/**
 * @brief Get axis.
 * @ingroup joints
 */
ODE_API void dJointGetLMotorAxis (dJointID, int anum, dVector3 result);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetLMotorParam (dJointID, int parameter);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetFixedParam (dJointID, int parameter);


/**
 * @brief get the contact point of the first wheel of the Transmission joint.
 * @ingroup joints
 */
ODE_API void dJointGetTransmissionContactPoint1(dJointID, dVector3 result);

/**
 * @brief get contact point of the second wheel of the Transmission joint.
 * @ingroup joints
 */
ODE_API void dJointGetTransmissionContactPoint2(dJointID, dVector3 result);
 
/**
 * @brief set the first axis for the Transmission joint
 * @remarks This is the axis around which the first body is allowed to
 * revolve and is attached to it.  It is given in global coordinates
 * and can only be set explicitly in intersecting-axes mode.  For the
 * parallel-axes and chain modes which share one common axis of
 * revolution for both gears dJointSetTransmissionAxis should be used.
 * @ingroup joints
 */
ODE_API void dJointSetTransmissionAxis1(dJointID, dReal x, dReal y, dReal z);

/**
 * @brief get first axis for the Transmission joint
 * @remarks In parallel-axes and chain mode the common axis with
 * respect to the first body is returned.  If the joint constraint is
 * satisfied it should be the same as the axis return with
 * dJointGetTransmissionAxis2 or dJointGetTransmissionAxis.
 * @ingroup joints
 */
ODE_API void dJointGetTransmissionAxis1(dJointID, dVector3 result);
 
/**
 * @brief set second axis for the Transmission joint
 * @remarks This is the axis around which the second body is allowed
 * to revolve and is attached to it.  It is given in global
 * coordinates and can only be set explicitly in intersecting-axes
 * mode.  For the parallel-axes and chain modes which share one common
 * axis of revolution for both gears dJointSetTransmissionAxis should
 * be used.
 * @ingroup joints
 */
ODE_API void dJointSetTransmissionAxis2(dJointID, dReal x, dReal y, dReal z);

/**
 * @brief get second axis for the Transmission joint
 * @remarks In parallel-axes and chain mode the common axis with
 * respect to the second body is returned.  If the joint constraint is
 * satisfied it should be the same as the axis return with
 * dJointGetTransmissionAxis1 or dJointGetTransmissionAxis.
 * @ingroup joints
 */
ODE_API void dJointGetTransmissionAxis2(dJointID, dVector3 result);
 
/**
 * @brief set the first anchor for the Transmission joint
 * @remarks This is the point of attachment of the wheel on the
 * first body.  It is given in global coordinates.
 * @ingroup joints
 */
ODE_API void dJointSetTransmissionAnchor1(dJointID, dReal x, dReal y, dReal z);

/**
 * @brief get the first anchor of the Transmission joint
 * @ingroup joints
 */
ODE_API void dJointGetTransmissionAnchor1(dJointID, dVector3 result);
 
/**
 * @brief set the second anchor for the Transmission joint
 * @remarks This is the point of attachment of the wheel on the
 * second body.  It is given in global coordinates.
 * @ingroup joints
 */
ODE_API void dJointSetTransmissionAnchor2(dJointID, dReal x, dReal y, dReal z);

/**
 * @brief get the second anchor for the Transmission joint
 * @ingroup joints
 */
ODE_API void dJointGetTransmissionAnchor2(dJointID, dVector3 result);

/**
 * @brief set a Transmission joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetTransmissionParam(dJointID, int parameter, dReal value);

/**
 * @brief get a Transmission joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetTransmissionParam(dJointID, int parameter);

/**
 * @brief set the Transmission joint mode
 * @remarks The mode can be one of dTransmissionParallelAxes,
 * dTransmissionIntersectingAxes and dTransmissionChainDrive simulating a
 * set of parallel-axes gears, intersecting-axes beveled gears or
 * chain and sprockets respectively.
 * @ingroup joints
 */
ODE_API void dJointSetTransmissionMode( dJointID j, int mode );

/**
 * @brief get the Transmission joint mode
 * @ingroup joints
 */
ODE_API int dJointGetTransmissionMode( dJointID j );

/**
 * @brief set the Transmission ratio
 * @remarks This is the ratio of the angular speed of the first gear
 * to that of the second gear.  It can only be set explicitly in
 * parallel-axes mode.  In intersecting-axes mode the ratio is defined
 * implicitly by the initial configuration of the wheels and in chain
 * mode it is defined implicitly be the wheel radii.
 * @ingroup joints
 */
ODE_API void dJointSetTransmissionRatio( dJointID j, dReal ratio );

/**
 * @brief get the Transmission joint ratio
 * @ingroup joints
 */
ODE_API dReal dJointGetTransmissionRatio( dJointID j );

/**
 * @brief set the common axis for both wheels of the Transmission joint
 * @remarks This sets the common axis of revolution for both wheels
 * and should only be used in parallel-axes or chain mode.  For
 * intersecting-axes mode where each wheel axis needs to be specified
 * individually dJointSetTransmissionAxis1 and
 * dJointSetTransmissionAxis2 should be used.  The axis is given in
 * global coordinates
 * @ingroup joints
 */
ODE_API void dJointSetTransmissionAxis( dJointID j, dReal x, dReal y, dReal z );

/**
 * @brief get the common axis for both wheels of the Transmission joint
 * @ingroup joints
 */
ODE_API void dJointGetTransmissionAxis( dJointID j, dVector3 result );

/**
 * @brief get the phase, that is the traversed angle for the first
 * wheel of the Transmission joint
 * @ingroup joints
 */
ODE_API dReal dJointGetTransmissionAngle1( dJointID j );

/**
 * @brief get the phase, that is the traversed angle for the second
 * wheel of the Transmission joint
 * @ingroup joints
 */
ODE_API dReal dJointGetTransmissionAngle2( dJointID j );

/**
 * @brief get the radius of the first wheel of the Transmission joint
 * @ingroup joints
 */
ODE_API dReal dJointGetTransmissionRadius1( dJointID j );

/**
 * @brief get the radius of the second wheel of the Transmission joint
 * @ingroup joints
 */
ODE_API dReal dJointGetTransmissionRadius2( dJointID j );

/**
 * @brief set the radius of the first wheel of the Transmission joint
 * @remarks The wheel radii can only be set explicitly in chain mode.
 * In the other modes they're defined implicitly by the initial
 * configuration and ratio of the wheels.
 * @ingroup joints
 */
ODE_API void dJointSetTransmissionRadius1( dJointID j, dReal radius );

/**
 * @brief set the radius of the second wheel of the Transmission joint
 * @remarks The wheel radii can only be set explicitly in chain mode.
 * In the other modes they're defined implicitly by the initial
 * configuration and ratio of the wheels.
 * @ingroup joints
 */
ODE_API void dJointSetTransmissionRadius2( dJointID j, dReal radius );

/**
 * @brief get the backlash of the Transmission joint
 * @ingroup joints
 */
ODE_API dReal dJointGetTransmissionBacklash( dJointID j );

/**
 * @brief set the backlash of the Transmission joint
 * @remarks Backlash is the clearance in the mesh of the wheels of the
 * transmission and is defined as the maximum distance that the
 * geometric contact point can travel without any actual contact or
 * transfer of power between the wheels.  This can be converted in
 * degrees of revolution for each wheel by dividing by the wheel's
 * radius.  To further illustrate this consider the situation where a
 * wheel of radius r_1 is driving another wheel of radius r_2 and
 * there is an amount of backlash equal to b in their mesh.  If the
 * driving wheel were to instantaneously stop there would be no
 * contact and hence the driven wheel would continue to turn for
 * another b / r_2 radians until all the backlash in the mesh was take
 * up and contact restored with the relationship of driving and driven
 * wheel reversed.  The backlash is therefore given in untis of
 * length.
  * @ingroup joints
 */
ODE_API void dJointSetTransmissionBacklash( dJointID j, dReal backlash );

/**
 * @brief set anchor1 for double ball joint
 * @ingroup joints
 */
ODE_API void dJointSetDBallAnchor1(dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set anchor2 for double ball joint
 * @ingroup joints
 */
ODE_API void dJointSetDBallAnchor2(dJointID, dReal x, dReal y, dReal z);

/**
 * @brief get anchor1 from double ball joint
 * @ingroup joints
 */
ODE_API void dJointGetDBallAnchor1(dJointID, dVector3 result);

/**
 * @brief get anchor2 from double ball joint
 * @ingroup joints
 */
ODE_API void dJointGetDBallAnchor2(dJointID, dVector3 result);

/**
 * @brief get the target distance from double ball joint
 * @ingroup joints
 */
ODE_API dReal dJointGetDBallDistance(dJointID);

/**
 * @brief set the target distance for the double ball joint
 * @ingroup joints
 */
ODE_API void dJointSetDBallDistance(dJointID, dReal dist);

/**
 * @brief set double ball joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetDBallParam(dJointID, int parameter, dReal value);

/**
 * @brief get double ball joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetDBallParam(dJointID, int parameter);

/**
 * @brief set axis for double hinge joint
 * @ingroup joints
 */
ODE_API void dJointSetDHingeAxis(dJointID, dReal x, dReal y, dReal z);

/**
 * @brief get axis for double hinge joint
 * @ingroup joints
 */
ODE_API void dJointGetDHingeAxis(dJointID, dVector3 result);

/**
 * @brief set anchor1 for double hinge joint
 * @ingroup joints
 */
ODE_API void dJointSetDHingeAnchor1(dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set anchor2 for double hinge joint
 * @ingroup joints
 */
ODE_API void dJointSetDHingeAnchor2(dJointID, dReal x, dReal y, dReal z);

/**
 * @brief get anchor1 from double hinge joint
 * @ingroup joints
 */
ODE_API void dJointGetDHingeAnchor1(dJointID, dVector3 result);

/**
 * @brief get anchor2 from double hinge joint
 * @ingroup joints
 */
ODE_API void dJointGetDHingeAnchor2(dJointID, dVector3 result);

/**
 * @brief get the set distance from double hinge joint
 * @ingroup joints
 */
ODE_API dReal dJointGetDHingeDistance(dJointID);

/**
 * @brief set double hinge joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetDHingeParam(dJointID, int parameter, dReal value);

/**
 * @brief get double hinge joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetDHingeParam(dJointID, int parameter);




/**
 * @ingroup joints
 */
ODE_API dJointID dConnectingJoint (dBodyID, dBodyID);

/**
 * @ingroup joints
 */
ODE_API int dConnectingJointList (dBodyID, dBodyID, dJointID*);

/**
 * @brief Utility function
 * @return 1 if the two bodies are connected together by
 * a joint, otherwise return 0.
 * @ingroup joints
 */
ODE_API int dAreConnected (dBodyID, dBodyID);

/**
 * @brief Utility function
 * @return 1 if the two bodies are connected together by
 * a joint that does not have type @arg{joint_type}, otherwise return 0.
 * @param body1 A body to check.
 * @param body2 A body to check.
 * @param joint_type is a dJointTypeXXX constant.
 * This is useful for deciding whether to add contact joints between two bodies:
 * if they are already connected by non-contact joints then it may not be
 * appropriate to add contacts, however it is okay to add more contact between-
 * bodies that already have contacts.
 * @ingroup joints
 */
ODE_API int dAreConnectedExcluding (dBodyID body1, dBodyID body2, int joint_type);


#ifdef __cplusplus
}
#endif

#endif