1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
/*
* Cylinder-Plane collider by Christoph Beyer ( boernerb@web.de )
*
* This testing basically comes down to testing the intersection
* of the cylinder caps (discs) with the plane.
*
*/
#include <ode/collision.h>
#include <ode/rotation.h>
#include <ode/objects.h>
#include "config.h"
#include "matrix.h"
#include "odemath.h"
#include "collision_kernel.h" // for dxGeom
#include "collision_util.h"
int dCollideCylinderPlane(dxGeom *Cylinder, dxGeom *Plane, int flags, dContactGeom *contact, int skip)
{
dIASSERT (skip >= (int)sizeof(dContactGeom));
dIASSERT (Cylinder->type == dCylinderClass);
dIASSERT (Plane->type == dPlaneClass);
dIASSERT ((flags & NUMC_MASK) >= 1);
int GeomCount = 0; // count of used contactgeoms
#ifdef dSINGLE
const dReal toleranz = REAL(0.0001);
#endif
#ifdef dDOUBLE
const dReal toleranz = REAL(0.0000001);
#endif
// Get the properties of the cylinder (length+radius)
dReal radius, length;
dGeomCylinderGetParams(Cylinder, &radius, &length);
dVector3 &cylpos = Cylinder->final_posr->pos;
// and the plane
dVector4 planevec;
dGeomPlaneGetParams(Plane, planevec);
dVector3 PlaneNormal = {planevec[0],planevec[1],planevec[2]};
//dVector3 PlanePos = {planevec[0] * planevec[3],planevec[1] * planevec[3],planevec[2] * planevec[3]};
dVector3 G1Pos1, G1Pos2, vDir1;
vDir1[0] = Cylinder->final_posr->R[2];
vDir1[1] = Cylinder->final_posr->R[6];
vDir1[2] = Cylinder->final_posr->R[10];
dReal s;
s = length * REAL(0.5);
G1Pos2[0] = vDir1[0] * s + cylpos[0];
G1Pos2[1] = vDir1[1] * s + cylpos[1];
G1Pos2[2] = vDir1[2] * s + cylpos[2];
G1Pos1[0] = vDir1[0] * -s + cylpos[0];
G1Pos1[1] = vDir1[1] * -s + cylpos[1];
G1Pos1[2] = vDir1[2] * -s + cylpos[2];
dVector3 C;
// parallel-check
s = vDir1[0] * PlaneNormal[0] + vDir1[1] * PlaneNormal[1] + vDir1[2] * PlaneNormal[2];
if(s < 0)
s += REAL(1.0); // is ca. 0, if vDir1 and PlaneNormal are parallel
else
s -= REAL(1.0); // is ca. 0, if vDir1 and PlaneNormal are parallel
if(s < toleranz && s > (-toleranz))
{
// discs are parallel to the plane
// 1.compute if, and where contacts are
dVector3 P;
s = planevec[3] - dVector3Dot(planevec, G1Pos1);
dReal t;
t = planevec[3] - dVector3Dot(planevec, G1Pos2);
if(s >= t) // s == t does never happen,
{
if(s >= 0)
{
// 1. Disc
dVector3Copy(G1Pos1, P);
}
else
return GeomCount; // no contacts
}
else
{
if(t >= 0)
{
// 2. Disc
dVector3Copy(G1Pos2, P);
}
else
return GeomCount; // no contacts
}
// 2. generate a coordinate-system on the disc
dVector3 V1, V2;
if(vDir1[0] < toleranz && vDir1[0] > (-toleranz))
{
// not x-axis
V1[0] = vDir1[0] + REAL(1.0); // random value
V1[1] = vDir1[1];
V1[2] = vDir1[2];
}
else
{
// maybe x-axis
V1[0] = vDir1[0];
V1[1] = vDir1[1] + REAL(1.0); // random value
V1[2] = vDir1[2];
}
// V1 is now another direction than vDir1
// Cross-product
dVector3Cross(V1, vDir1, V2);
// make unit V2
t = dVector3Length(V2);
t = radius / t;
dVector3Scale(V2, t);
// cross again
dVector3Cross(V2, vDir1, V1);
// |V2| is 'radius' and vDir1 unit, so |V1| is 'radius'
// V1 = first axis
// V2 = second axis
// 3. generate contactpoints
// Potential contact 1
dVector3Add(P, V1, contact->pos);
contact->depth = planevec[3] - dVector3Dot(planevec, contact->pos);
if(contact->depth > 0)
{
dVector3Copy(PlaneNormal, contact->normal);
contact->g1 = Cylinder;
contact->g2 = Plane;
contact->side1 = -1;
contact->side2 = -1;
GeomCount++;
if( GeomCount >= (flags & NUMC_MASK))
return GeomCount; // enough contactgeoms
contact = (dContactGeom *)((char *)contact + skip);
}
// Potential contact 2
dVector3Subtract(P, V1, contact->pos);
contact->depth = planevec[3] - dVector3Dot(planevec, contact->pos);
if(contact->depth > 0)
{
dVector3Copy(PlaneNormal, contact->normal);
contact->g1 = Cylinder;
contact->g2 = Plane;
contact->side1 = -1;
contact->side2 = -1;
GeomCount++;
if( GeomCount >= (flags & NUMC_MASK))
return GeomCount; // enough contactgeoms
contact = (dContactGeom *)((char *)contact + skip);
}
// Potential contact 3
dVector3Add(P, V2, contact->pos);
contact->depth = planevec[3] - dVector3Dot(planevec, contact->pos);
if(contact->depth > 0)
{
dVector3Copy(PlaneNormal, contact->normal);
contact->g1 = Cylinder;
contact->g2 = Plane;
contact->side1 = -1;
contact->side2 = -1;
GeomCount++;
if( GeomCount >= (flags & NUMC_MASK))
return GeomCount; // enough contactgeoms
contact = (dContactGeom *)((char *)contact + skip);
}
// Potential contact 4
dVector3Subtract(P, V2, contact->pos);
contact->depth = planevec[3] - dVector3Dot(planevec, contact->pos);
if(contact->depth > 0)
{
dVector3Copy(PlaneNormal, contact->normal);
contact->g1 = Cylinder;
contact->g2 = Plane;
contact->side1 = -1;
contact->side2 = -1;
GeomCount++;
if( GeomCount >= (flags & NUMC_MASK))
return GeomCount; // enough contactgeoms
contact = (dContactGeom *)((char *)contact + skip);
}
}
else
{
dReal t = dVector3Dot(PlaneNormal, vDir1);
C[0] = vDir1[0] * t - PlaneNormal[0];
C[1] = vDir1[1] * t - PlaneNormal[1];
C[2] = vDir1[2] * t - PlaneNormal[2];
s = dVector3Length(C);
// move C onto the circle
s = radius / s;
dVector3Scale(C, s);
// deepest point of disc 1
dVector3Add(C, G1Pos1, contact->pos);
// depth of the deepest point
contact->depth = planevec[3] - dVector3Dot(planevec, contact->pos);
if(contact->depth >= 0)
{
dVector3Copy(PlaneNormal, contact->normal);
contact->g1 = Cylinder;
contact->g2 = Plane;
contact->side1 = -1;
contact->side2 = -1;
GeomCount++;
if( GeomCount >= (flags & NUMC_MASK))
return GeomCount; // enough contactgeoms
contact = (dContactGeom *)((char *)contact + skip);
}
// C is still computed
// deepest point of disc 2
dVector3Add(C, G1Pos2, contact->pos);
// depth of the deepest point
contact->depth = planevec[3] - planevec[0] * contact->pos[0] - planevec[1] * contact->pos[1] - planevec[2] * contact->pos[2];
if(contact->depth >= 0)
{
dVector3Copy(PlaneNormal, contact->normal);
contact->g1 = Cylinder;
contact->g2 = Plane;
contact->side1 = -1;
contact->side2 = -1;
GeomCount++;
if( GeomCount >= (flags & NUMC_MASK))
return GeomCount; // enough contactgeoms
contact = (dContactGeom *)((char *)contact + skip);
}
}
return GeomCount;
}
|