1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
|
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
/*
THE ALGORITHM
-------------
solve A*x = b+w, with x and w subject to certain LCP conditions.
each x(i),w(i) must lie on one of the three line segments in the following
diagram. each line segment corresponds to one index set :
w(i)
/|\ | :
| | :
| |i in N :
w>0 | |state[i]=0 :
| | :
| | : i in C
w=0 + +-----------------------+
| : |
| : |
w<0 | : |i in N
| : |state[i]=1
| : |
| : |
+-------|-----------|-----------|----------> x(i)
lo 0 hi
the Dantzig algorithm proceeds as follows:
for i=1:n
* if (x(i),w(i)) is not on the line, push x(i) and w(i) positive or
negative towards the line. as this is done, the other (x(j),w(j))
for j<i are constrained to be on the line. if any (x,w) reaches the
end of a line segment then it is switched between index sets.
* i is added to the appropriate index set depending on what line segment
it hits.
we restrict lo(i) <= 0 and hi(i) >= 0. this makes the algorithm a bit
simpler, because the starting point for x(i),w(i) is always on the dotted
line x=0 and x will only ever increase in one direction, so it can only hit
two out of the three line segments.
NOTES
-----
this is an implementation of "lcp_dantzig2_ldlt.m" and "lcp_dantzig_lohi.m".
the implementation is split into an LCP problem object (dLCP) and an LCP
driver function. most optimization occurs in the dLCP object.
a naive implementation of the algorithm requires either a lot of data motion
or a lot of permutation-array lookup, because we are constantly re-ordering
rows and columns. to avoid this and make a more optimized algorithm, a
non-trivial data structure is used to represent the matrix A (this is
implemented in the fast version of the dLCP object).
during execution of this algorithm, some indexes in A are clamped (set C),
some are non-clamped (set N), and some are "don't care" (where x=0).
A,x,b,w (and other problem vectors) are permuted such that the clamped
indexes are first, the unclamped indexes are next, and the don't-care
indexes are last. this permutation is recorded in the array `p'.
initially p = 0..n-1, and as the rows and columns of A,x,b,w are swapped,
the corresponding elements of p are swapped.
because the C and N elements are grouped together in the rows of A, we can do
lots of work with a fast dot product function. if A,x,etc were not permuted
and we only had a permutation array, then those dot products would be much
slower as we would have a permutation array lookup in some inner loops.
A is accessed through an array of row pointers, so that element (i,j) of the
permuted matrix is A[i][j]. this makes row swapping fast. for column swapping
we still have to actually move the data.
during execution of this algorithm we maintain an L*D*L' factorization of
the clamped submatrix of A (call it `AC') which is the top left nC*nC
submatrix of A. there are two ways we could arrange the rows/columns in AC.
(1) AC is always permuted such that L*D*L' = AC. this causes a problem
when a row/column is removed from C, because then all the rows/columns of A
between the deleted index and the end of C need to be rotated downward.
this results in a lot of data motion and slows things down.
(2) L*D*L' is actually a factorization of a *permutation* of AC (which is
itself a permutation of the underlying A). this is what we do - the
permutation is recorded in the vector C. call this permutation A[C,C].
when a row/column is removed from C, all we have to do is swap two
rows/columns and manipulate C.
*/
#include <ode/common.h>
#include <ode/misc.h>
#include <ode/timer.h> // for testing
#include "config.h"
#include "lcp.h"
#include "util.h"
#include "matrix.h"
#include "mat.h" // for testing
#include "threaded_solver_ldlt.h"
#include "fastdot_impl.h"
#include "fastldltfactor_impl.h"
#include "fastldltsolve_impl.h"
//***************************************************************************
// code generation parameters
// LCP debugging (mostly for fast dLCP) - this slows things down a lot
//#define DEBUG_LCP
#define dLCP_FAST // use fast dLCP object
#define NUB_OPTIMIZATIONS // use NUB optimizations
// option 1 : matrix row pointers (less data copying)
#define ROWPTRS
#define ATYPE dReal **
#define AROW(i) (m_A[i])
// option 2 : no matrix row pointers (slightly faster inner loops)
//#define NOROWPTRS
//#define ATYPE dReal *
//#define AROW(i) (m_A+(i)*m_nskip)
//***************************************************************************
#define dMIN(A,B) ((A)>(B) ? (B) : (A))
#define dMAX(A,B) ((B)>(A) ? (B) : (A))
#define LMATRIX_ALIGNMENT dMAX(64, EFFICIENT_ALIGNMENT)
//***************************************************************************
// transfer b-values to x-values
template<bool zero_b>
inline
void transfer_b_to_x(dReal pairsbx[PBX__MAX], unsigned n)
{
dReal *const endbx = pairsbx + (sizeint)n * PBX__MAX;
for (dReal *currbx = pairsbx; currbx != endbx; currbx += PBX__MAX) {
currbx[PBX_X] = currbx[PBX_B];
if (zero_b) {
currbx[PBX_B] = REAL(0.0);
}
}
}
// swap row/column i1 with i2 in the n*n matrix A. the leading dimension of
// A is nskip. this only references and swaps the lower triangle.
// if `do_fast_row_swaps' is nonzero and row pointers are being used, then
// rows will be swapped by exchanging row pointers. otherwise the data will
// be copied.
static
void swapRowsAndCols (ATYPE A, unsigned n, unsigned i1, unsigned i2, unsigned nskip,
int do_fast_row_swaps)
{
dAASSERT (A && n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n &&
nskip >= n && i1 < i2);
# ifdef ROWPTRS
dReal *A_i1 = A[i1];
dReal *A_i2 = A[i2];
for (unsigned i=i1+1; i<i2; ++i) {
dReal *A_i_i1 = A[i] + i1;
A_i1[i] = *A_i_i1;
*A_i_i1 = A_i2[i];
}
A_i1[i2] = A_i1[i1];
A_i1[i1] = A_i2[i1];
A_i2[i1] = A_i2[i2];
// swap rows, by swapping row pointers
if (do_fast_row_swaps) {
A[i1] = A_i2;
A[i2] = A_i1;
}
else {
// Only swap till i2 column to match A plain storage variant.
for (unsigned k = 0; k <= i2; ++k) {
dxSwap(A_i1[k], A_i2[k]);
}
}
// swap columns the hard way
for (unsigned j = i2 + 1; j < n; ++j) {
dReal *A_j = A[j];
dxSwap(A_j[i1], A_j[i2]);
}
# else
dReal *A_i1 = A + (sizeint)nskip * i1;
dReal *A_i2 = A + (sizeint)nskip * i2;
for (unsigned k = 0; k < i1; ++k) {
dxSwap(A_i1[k], A_i2[k]);
}
dReal *A_i = A_i1 + nskip;
for (unsigned i= i1 + 1; i < i2; A_i += nskip, ++i) {
dxSwap(A_i2[i], A_i[i1]);
}
dxSwap(A_i1[i1], A_i2[i2]);
dReal *A_j = A_i2 + nskip;
for (unsigned j = i2 + 1; j < n; A_j += nskip, ++j) {
dxSwap(A_j[i1], A_j[i2]);
}
# endif
}
// swap two indexes in the n*n LCP problem. i1 must be <= i2.
static
void swapProblem (ATYPE A, dReal pairsbx[PBX__MAX], dReal *w, dReal pairslh[PLH__MAX],
unsigned *p, bool *state, int *findex,
unsigned n, unsigned i1, unsigned i2, unsigned nskip,
int do_fast_row_swaps)
{
dIASSERT (n>0 && i1 < n && i2 < n && nskip >= n && i1 <= i2);
if (i1 != i2) {
swapRowsAndCols (A, n, i1, i2, nskip, do_fast_row_swaps);
dxSwap((pairsbx + (sizeint)i1 * PBX__MAX)[PBX_B], (pairsbx + (sizeint)i2 * PBX__MAX)[PBX_B]);
dxSwap((pairsbx + (sizeint)i1 * PBX__MAX)[PBX_X], (pairsbx + (sizeint)i2 * PBX__MAX)[PBX_X]);
dSASSERT(PBX__MAX == 2);
dxSwap(w[i1], w[i2]);
dxSwap((pairslh + (sizeint)i1 * PLH__MAX)[PLH_LO], (pairslh + (sizeint)i2 * PLH__MAX)[PLH_LO]);
dxSwap((pairslh + (sizeint)i1 * PLH__MAX)[PLH_HI], (pairslh + (sizeint)i2 * PLH__MAX)[PLH_HI]);
dSASSERT(PLH__MAX == 2);
dxSwap(p[i1], p[i2]);
dxSwap(state[i1], state[i2]);
if (findex != NULL) {
dxSwap(findex[i1], findex[i2]);
}
}
}
// for debugging - check that L,d is the factorization of A[C,C].
// A[C,C] has size nC*nC and leading dimension nskip.
// L has size nC*nC and leading dimension nskip.
// d has size nC.
#ifdef DEBUG_LCP
static
void checkFactorization (ATYPE A, dReal *_L, dReal *_d,
unsigned nC, unsigned *C, unsigned nskip)
{
unsigned i, j;
if (nC == 0) return;
// get A1=A, copy the lower triangle to the upper triangle, get A2=A[C,C]
dMatrix A1 (nC, nC);
for (i=0; i < nC; i++) {
for (j = 0; j <= i; j++) A1(i, j) = A1(j, i) = AROW(i)[j];
}
dMatrix A2 = A1.select (nC, C, nC, C);
// printf ("A1=\n"); A1.print(); printf ("\n");
// printf ("A2=\n"); A2.print(); printf ("\n");
// compute A3 = L*D*L'
dMatrix L (nC, nC, _L, nskip, 1);
dMatrix D (nC, nC);
for (i = 0; i < nC; i++) D(i, i) = 1.0 / _d[i];
L.clearUpperTriangle();
for (i = 0; i < nC; i++) L(i, i) = 1;
dMatrix A3 = L * D * L.transpose();
// printf ("L=\n"); L.print(); printf ("\n");
// printf ("D=\n"); D.print(); printf ("\n");
// printf ("A3=\n"); A2.print(); printf ("\n");
// compare A2 and A3
dReal diff = A2.maxDifference (A3);
if (diff > 1e-8)
dDebug (0, "L*D*L' check, maximum difference = %.6e\n", diff);
}
#endif
// for debugging
#ifdef DEBUG_LCP
static
void checkPermutations (unsigned i, unsigned n, unsigned nC, unsigned nN, unsigned *p, unsigned *C)
{
unsigned j,k;
dIASSERT (/*nC >= 0 && nN >= 0 && */(nC + nN) == i && i < n);
for (k=0; k<i; k++) dIASSERT (p[k] >= 0 && p[k] < i);
for (k=i; k<n; k++) dIASSERT (p[k] == k);
for (j=0; j<nC; j++) {
int C_is_bad = 1;
for (k=0; k<nC; k++) if (C[k]==j) C_is_bad = 0;
dIASSERT (C_is_bad==0);
}
}
#endif
//***************************************************************************
// dLCP manipulator object. this represents an n*n LCP problem.
//
// two index sets C and N are kept. each set holds a subset of
// the variable indexes 0..n-1. an index can only be in one set.
// initially both sets are empty.
//
// the index set C is special: solutions to A(C,C)\A(C,i) can be generated.
//***************************************************************************
// fast implementation of dLCP. see the above definition of dLCP for
// interface comments.
//
// `p' records the permutation of A,x,b,w,etc. p is initially 1:n and is
// permuted as the other vectors/matrices are permuted.
//
// A,x,b,w,lo,hi,state,findex,p,c are permuted such that sets C,N have
// contiguous indexes. the don't-care indexes follow N.
//
// an L*D*L' factorization is maintained of A(C,C), and whenever indexes are
// added or removed from the set C the factorization is updated.
// thus L*D*L'=A[C,C], i.e. a permuted top left nC*nC submatrix of A.
// the leading dimension of the matrix L is always `nskip'.
//
// at the start there may be other indexes that are unbounded but are not
// included in `nub'. dLCP will permute the matrix so that absolutely all
// unbounded vectors are at the start. thus there may be some initial
// permutation.
//
// the algorithms here assume certain patterns, particularly with respect to
// index transfer.
#ifdef dLCP_FAST
struct dLCP {
const unsigned m_n;
const unsigned m_nskip;
unsigned m_nub;
unsigned m_nC, m_nN; // size of each index set
ATYPE const m_A; // A rows
dReal *const m_pairsbx, *const m_w, *const m_pairslh; // permuted LCP problem data
dReal *const m_L, *const m_d; // L*D*L' factorization of set C
dReal *const m_Dell, *const m_ell, *const m_tmp;
bool *const m_state;
int *const m_findex;
unsigned *const m_p, *const m_C;
dLCP (unsigned _n, unsigned _nskip, unsigned _nub, dReal *_Adata, dReal *_pairsbx, dReal *_w,
dReal *_pairslh, dReal *_L, dReal *_d,
dReal *_Dell, dReal *_ell, dReal *_tmp,
bool *_state, int *_findex, unsigned *_p, unsigned *_C, dReal **Arows);
unsigned getNub() const { return m_nub; }
void transfer_i_to_C (unsigned i);
void transfer_i_to_N (unsigned /*i*/) { m_nN++; } // because we can assume C and N span 1:i-1
void transfer_i_from_N_to_C (unsigned i);
void transfer_i_from_C_to_N (unsigned i, void *tmpbuf);
static sizeint estimate_transfer_i_from_C_to_N_mem_req(unsigned nC, unsigned nskip) { return dEstimateLDLTRemoveTmpbufSize(nC, nskip); }
unsigned numC() const { return m_nC; }
unsigned numN() const { return m_nN; }
unsigned indexC (unsigned i) const { return i; }
unsigned indexN (unsigned i) const { return i+m_nC; }
dReal Aii (unsigned i) const { return AROW(i)[i]; }
template<unsigned q_stride>
dReal AiC_times_qC (unsigned i, dReal *q) const { return calculateLargeVectorDot<q_stride> (AROW(i), q, m_nC); }
template<unsigned q_stride>
dReal AiN_times_qN (unsigned i, dReal *q) const { return calculateLargeVectorDot<q_stride> (AROW(i) + m_nC, q + (sizeint)m_nC * q_stride, m_nN); }
void pN_equals_ANC_times_qC (dReal *p, dReal *q);
void pN_plusequals_ANi (dReal *p, unsigned i, bool dir_positive);
template<unsigned p_stride>
void pC_plusequals_s_times_qC (dReal *p, dReal s, dReal *q);
void pN_plusequals_s_times_qN (dReal *p, dReal s, dReal *q);
void solve1 (dReal *a, unsigned i, bool dir_positive, int only_transfer=0);
void unpermute_X();
void unpermute_W();
};
dLCP::dLCP (unsigned _n, unsigned _nskip, unsigned _nub, dReal *_Adata, dReal *_pairsbx, dReal *_w,
dReal *_pairslh, dReal *_L, dReal *_d,
dReal *_Dell, dReal *_ell, dReal *_tmp,
bool *_state, int *_findex, unsigned *_p, unsigned *_C, dReal **Arows):
m_n(_n), m_nskip(_nskip), m_nub(_nub), m_nC(0), m_nN(0),
# ifdef ROWPTRS
m_A(Arows),
#else
m_A(_Adata),
#endif
m_pairsbx(_pairsbx), m_w(_w), m_pairslh(_pairslh),
m_L(_L), m_d(_d), m_Dell(_Dell), m_ell(_ell), m_tmp(_tmp),
m_state(_state), m_findex(_findex), m_p(_p), m_C(_C)
{
dxtSetZero<PBX__MAX>(m_pairsbx + PBX_X, m_n);
{
# ifdef ROWPTRS
// make matrix row pointers
dReal *aptr = _Adata;
ATYPE A = m_A;
const unsigned n = m_n, nskip = m_nskip;
for (unsigned k=0; k<n; aptr+=nskip, ++k) A[k] = aptr;
# endif
}
{
unsigned *p = m_p;
const unsigned n = m_n;
for (unsigned k=0; k != n; ++k) p[k] = k; // initially unpermutted
}
/*
// for testing, we can do some random swaps in the area i > nub
{
const unsigned n = m_n;
const unsigned nub = m_nub;
if (nub < n) {
for (unsigned k=0; k<100; k++) {
unsigned i1,i2;
do {
i1 = dRandInt(n-nub)+nub;
i2 = dRandInt(n-nub)+nub;
}
while (i1 > i2);
//printf ("--> %d %d\n",i1,i2);
swapProblem (m_A, m_pairsbx, m_w, m_pairslh, m_p, m_state, m_findex, n, i1, i2, m_nskip, 0);
}
}
*/
// permute the problem so that *all* the unbounded variables are at the
// start, i.e. look for unbounded variables not included in `nub'. we can
// potentially push up `nub' this way and get a bigger initial factorization.
// note that when we swap rows/cols here we must not just swap row pointers,
// as the initial factorization relies on the data being all in one chunk.
// variables that have findex >= 0 are *not* considered to be unbounded even
// if lo=-inf and hi=inf - this is because these limits may change during the
// solution process.
{
int *findex = m_findex;
dReal *pairslh = m_pairslh;
const unsigned n = m_n;
for (unsigned k = m_nub; k < n; ++k) {
if (findex && findex[k] >= 0) continue;
if ((pairslh + (sizeint)k * PLH__MAX)[PLH_LO] == -dInfinity && (pairslh + (sizeint)k * PLH__MAX)[PLH_HI] == dInfinity) {
swapProblem (m_A, m_pairsbx, m_w, pairslh, m_p, m_state, findex, n, m_nub, k, m_nskip, 0);
m_nub++;
}
}
}
// if there are unbounded variables at the start, factorize A up to that
// point and solve for x. this puts all indexes 0..nub-1 into C.
if (m_nub > 0) {
const unsigned nub = m_nub;
{
dReal *Lrow = m_L;
const unsigned nskip = m_nskip;
for (unsigned j = 0; j < nub; Lrow += nskip, ++j) memcpy(Lrow, AROW(j), (j + 1) * sizeof(dReal));
}
transfer_b_to_x<false> (m_pairsbx, nub);
factorMatrixAsLDLT<1> (m_L, m_d, nub, m_nskip);
solveEquationSystemWithLDLT<1, PBX__MAX> (m_L, m_d, m_pairsbx + PBX_X, nub, m_nskip);
dSetZero (m_w, nub);
{
unsigned *C = m_C;
for (unsigned k = 0; k < nub; ++k) C[k] = k;
}
m_nC = nub;
}
// permute the indexes > nub such that all findex variables are at the end
if (m_findex) {
const unsigned nub = m_nub;
int *findex = m_findex;
unsigned num_at_end = 0;
for (unsigned k = m_n; k > nub; ) {
--k;
if (findex[k] >= 0) {
swapProblem (m_A, m_pairsbx, m_w, m_pairslh, m_p, m_state, findex, m_n, k, m_n - 1 - num_at_end, m_nskip, 1);
num_at_end++;
}
}
}
// print info about indexes
/*
{
const unsigned n = m_n;
const unsigned nub = m_nub;
for (unsigned k=0; k<n; k++) {
if (k<nub) printf ("C");
else if ((m_pairslh + (sizeint)k * PLH__MAX)[PLH_LO] == -dInfinity && (m_pairslh + (sizeint)k * PLH__MAX)[PLH_HI] == dInfinity) printf ("c");
else printf (".");
}
printf ("\n");
}
*/
}
void dLCP::transfer_i_to_C (unsigned i)
{
{
const unsigned nC = m_nC;
if (nC > 0) {
// ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C))
dReal *const Ltgt = m_L + (sizeint)m_nskip * nC, *ell = m_ell;
memcpy(Ltgt, ell, nC * sizeof(dReal));
dReal ell_Dell_dot = dxDot(m_ell, m_Dell, nC);
dReal AROW_i_i = AROW(i)[i] != ell_Dell_dot ? AROW(i)[i] : dNextAfter(AROW(i)[i], dInfinity); // A hack to avoid getting a zero in the denominator
m_d[nC] = dRecip (AROW_i_i - ell_Dell_dot);
}
else {
m_d[0] = dRecip (AROW(i)[i]);
}
swapProblem (m_A, m_pairsbx, m_w, m_pairslh, m_p, m_state, m_findex, m_n, nC, i, m_nskip, 1);
m_C[nC] = nC;
m_nC = nC + 1; // nC value is outdated after this line
}
# ifdef DEBUG_LCP
checkFactorization (m_A, m_L, m_d, m_nC, m_C, m_nskip);
if (i < (m_n-1)) checkPermutations (i+1, m_n, m_nC, m_nN, m_p, m_C);
# endif
}
void dLCP::transfer_i_from_N_to_C (unsigned i)
{
{
const unsigned nC = m_nC;
if (nC > 0) {
{
dReal *const aptr = AROW(i);
dReal *Dell = m_Dell;
const unsigned *C = m_C;
# ifdef NUB_OPTIMIZATIONS
// if nub>0, initial part of aptr unpermuted
const unsigned nub = m_nub;
unsigned j=0;
for ( ; j<nub; ++j) Dell[j] = aptr[j];
for ( ; j<nC; ++j) Dell[j] = aptr[C[j]];
# else
for (unsigned j=0; j<nC; ++j) Dell[j] = aptr[C[j]];
# endif
}
solveL1Straight<1>(m_L, m_Dell, nC, m_nskip);
dReal ell_Dell_dot = REAL(0.0);
dReal *const Ltgt = m_L + (sizeint)m_nskip * nC;
dReal *ell = m_ell, *Dell = m_Dell, *d = m_d;
for (unsigned j = 0; j < nC; ++j) {
dReal ell_j, Dell_j = Dell[j];
Ltgt[j] = ell[j] = ell_j = Dell_j * d[j];
ell_Dell_dot += ell_j * Dell_j;
}
dReal AROW_i_i = AROW(i)[i] != ell_Dell_dot ? AROW(i)[i] : dNextAfter(AROW(i)[i], dInfinity); // A hack to avoid getting a zero in the denominator
m_d[nC] = dRecip (AROW_i_i - ell_Dell_dot);
}
else {
m_d[0] = dRecip (AROW(i)[i]);
}
swapProblem (m_A, m_pairsbx, m_w, m_pairslh, m_p, m_state, m_findex, m_n, nC, i, m_nskip, 1);
m_C[nC] = nC;
m_nN--;
m_nC = nC + 1; // nC value is outdated after this line
}
// @@@ TO DO LATER
// if we just finish here then we'll go back and re-solve for
// delta_x. but actually we can be more efficient and incrementally
// update delta_x here. but if we do this, we wont have ell and Dell
// to use in updating the factorization later.
# ifdef DEBUG_LCP
checkFactorization (m_A,m_L,m_d,m_nC,m_C,m_nskip);
# endif
}
void dLCP::transfer_i_from_C_to_N (unsigned i, void *tmpbuf)
{
{
unsigned *C = m_C;
// remove a row/column from the factorization, and adjust the
// indexes (black magic!)
int last_idx = -1;
const unsigned nC = m_nC;
unsigned j = 0;
for ( ; j < nC; ++j) {
if (C[j] == nC - 1) {
last_idx = j;
}
if (C[j] == i) {
dxLDLTRemove (m_A, C, m_L, m_d, m_n, nC, j, m_nskip, tmpbuf);
unsigned k;
if (last_idx == -1) {
for (k = j + 1 ; k < nC; ++k) {
if (C[k] == nC - 1) {
break;
}
}
dIASSERT (k < nC);
}
else {
k = last_idx;
}
C[k] = C[j];
if (j != (nC - 1)) memmove (C + j, C + j + 1, (nC - j - 1) * sizeof(C[0]));
break;
}
}
dIASSERT (j < nC);
swapProblem (m_A, m_pairsbx, m_w, m_pairslh, m_p, m_state, m_findex, m_n, i, nC - 1, m_nskip, 1);
m_nN++;
m_nC = nC - 1; // nC value is outdated after this line
}
# ifdef DEBUG_LCP
checkFactorization (m_A, m_L, m_d, m_nC, m_C, m_nskip);
# endif
}
void dLCP::pN_equals_ANC_times_qC (dReal *p, dReal *q)
{
// we could try to make this matrix-vector multiplication faster using
// outer product matrix tricks, e.g. with the dMultidotX() functions.
// but i tried it and it actually made things slower on random 100x100
// problems because of the overhead involved. so we'll stick with the
// simple method for now.
const unsigned nC = m_nC;
dReal *ptgt = p + nC;
const unsigned nN = m_nN;
for (unsigned i = 0; i < nN; ++i) {
ptgt[i] = dxDot (AROW(i + nC), q, nC);
}
}
void dLCP::pN_plusequals_ANi (dReal *p, unsigned i, bool dir_positive)
{
const unsigned nC = m_nC;
dReal *aptr = AROW(i) + nC;
dReal *ptgt = p + nC;
if (dir_positive) {
const unsigned nN = m_nN;
for (unsigned j=0; j < nN; ++j) ptgt[j] += aptr[j];
}
else {
const unsigned nN = m_nN;
for (unsigned j=0; j < nN; ++j) ptgt[j] -= aptr[j];
}
}
template<unsigned p_stride>
void dLCP::pC_plusequals_s_times_qC (dReal *p, dReal s, dReal *q)
{
const unsigned nC = m_nC;
dReal *q_end = q + nC;
for (; q != q_end; p += p_stride, ++q) {
*p += s * (*q);
}
}
void dLCP::pN_plusequals_s_times_qN (dReal *p, dReal s, dReal *q)
{
const unsigned nC = m_nC;
dReal *ptgt = p + nC, *qsrc = q + nC;
const unsigned nN = m_nN;
for (unsigned i = 0; i < nN; ++i) {
ptgt[i] += s * qsrc[i];
}
}
void dLCP::solve1 (dReal *a, unsigned i, bool dir_positive, int only_transfer)
{
// the `Dell' and `ell' that are computed here are saved. if index i is
// later added to the factorization then they can be reused.
//
// @@@ question: do we need to solve for entire delta_x??? yes, but
// only if an x goes below 0 during the step.
const unsigned nC = m_nC;
if (nC > 0) {
{
dReal *Dell = m_Dell;
unsigned *C = m_C;
dReal *aptr = AROW(i);
# ifdef NUB_OPTIMIZATIONS
// if nub>0, initial part of aptr[] is guaranteed unpermuted
const unsigned nub = m_nub;
unsigned j = 0;
for ( ; j < nub; ++j) Dell[j] = aptr[j];
for ( ; j < nC; ++j) Dell[j] = aptr[C[j]];
# else
for (unsigned j = 0; j < nC; ++j) Dell[j] = aptr[C[j]];
# endif
}
solveL1Straight<1>(m_L, m_Dell, nC, m_nskip);
{
dReal *ell = m_ell, *Dell = m_Dell, *d = m_d;
for (unsigned j = 0; j < nC; ++j) ell[j] = Dell[j] * d[j];
}
if (!only_transfer) {
dReal *tmp = m_tmp, *ell = m_ell;
{
for (unsigned j = 0; j < nC; ++j) tmp[j] = ell[j];
}
solveL1Transposed<1>(m_L, tmp, nC, m_nskip);
if (dir_positive) {
unsigned *C = m_C;
dReal *tmp = m_tmp;
for (unsigned j = 0; j < nC; ++j) a[C[j]] = -tmp[j];
} else {
unsigned *C = m_C;
dReal *tmp = m_tmp;
for (unsigned j = 0; j < nC; ++j) a[C[j]] = tmp[j];
}
}
}
}
void dLCP::unpermute_X()
{
unsigned *p = m_p;
dReal *pairsbx = m_pairsbx;
const unsigned n = m_n;
for (unsigned j = 0; j < n; ++j) {
unsigned k = p[j];
if (k != j) {
// p[j] = j; -- not going to be checked anymore anyway
dReal x_j = (pairsbx + (sizeint)j * PBX__MAX)[PBX_X];
for (;;) {
dxSwap(x_j, (pairsbx + (sizeint)k * PBX__MAX)[PBX_X]);
unsigned orig_k = p[k];
p[k] = k;
if (orig_k == j) {
break;
}
k = orig_k;
}
(pairsbx + (sizeint)j * PBX__MAX)[PBX_X] = x_j;
}
}
}
void dLCP::unpermute_W()
{
memcpy (m_tmp, m_w, m_n * sizeof(dReal));
const unsigned *p = m_p;
dReal *w = m_w, *tmp = m_tmp;
const unsigned n = m_n;
for (unsigned j = 0; j < n; ++j) {
unsigned k = p[j];
w[k] = tmp[j];
}
}
#endif // dLCP_FAST
static void dxSolveLCP_AllUnbounded (dxWorldProcessMemArena *memarena, unsigned n, dReal *A, dReal pairsbx[PBX__MAX]);
static void dxSolveLCP_Generic (dxWorldProcessMemArena *memarena, unsigned n, dReal *A, dReal pairsbx[PBX__MAX],
dReal *outer_w/*=NULL*/, unsigned nub, dReal pairslh[PLH__MAX], int *findex);
/*extern */
void dxSolveLCP (dxWorldProcessMemArena *memarena, unsigned n, dReal *A, dReal pairsbx[PBX__MAX],
dReal *outer_w/*=NULL*/, unsigned nub, dReal pairslh[PLH__MAX], int *findex)
{
if (nub >= n)
{
dxSolveLCP_AllUnbounded (memarena, n, A, pairsbx);
}
else
{
dxSolveLCP_Generic (memarena, n, A, pairsbx, outer_w, nub, pairslh, findex);
}
}
//***************************************************************************
// if all the variables are unbounded then we can just factor, solve, and return
static
void dxSolveLCP_AllUnbounded (dxWorldProcessMemArena *memarena, unsigned n, dReal *A, dReal pairsbx[PBX__MAX])
{
dAASSERT(A != NULL);
dAASSERT(pairsbx != NULL);
dAASSERT(n != 0);
transfer_b_to_x<true>(pairsbx, n);
unsigned nskip = dPAD(n);
factorMatrixAsLDLT<PBX__MAX> (A, pairsbx + PBX_B, n, nskip);
solveEquationSystemWithLDLT<PBX__MAX, PBX__MAX> (A, pairsbx + PBX_B, pairsbx + PBX_X, n, nskip);
}
//***************************************************************************
// an optimized Dantzig LCP driver routine for the lo-hi LCP problem.
static
void dxSolveLCP_Generic (dxWorldProcessMemArena *memarena, unsigned n, dReal *A, dReal pairsbx[PBX__MAX],
dReal *outer_w/*=NULL*/, unsigned nub, dReal pairslh[PLH__MAX], int *findex)
{
dAASSERT (n > 0 && A && pairsbx && pairslh && nub >= 0 && nub < n);
# ifndef dNODEBUG
{
// check restrictions on lo and hi
dReal *endlh = pairslh + (sizeint)n * PLH__MAX;
for (dReal *currlh = pairslh; currlh != endlh; currlh += PLH__MAX) dIASSERT (currlh[PLH_LO] <= 0 && currlh[PLH_HI] >= 0);
}
# endif
const unsigned nskip = dPAD(n);
dReal *L = memarena->AllocateOveralignedArray<dReal> ((sizeint)nskip * n, LMATRIX_ALIGNMENT);
dReal *d = memarena->AllocateArray<dReal> (n);
dReal *w = outer_w != NULL ? outer_w : memarena->AllocateArray<dReal> (n);
dReal *delta_w = memarena->AllocateArray<dReal> (n);
dReal *delta_x = memarena->AllocateArray<dReal> (n);
dReal *Dell = memarena->AllocateArray<dReal> (n);
dReal *ell = memarena->AllocateArray<dReal> (n);
#ifdef ROWPTRS
dReal **Arows = memarena->AllocateArray<dReal *> (n);
#else
dReal **Arows = NULL;
#endif
unsigned *p = memarena->AllocateArray<unsigned> (n);
unsigned *C = memarena->AllocateArray<unsigned> (n);
// for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i)
bool *state = memarena->AllocateArray<bool> (n);
// create LCP object. note that tmp is set to delta_w to save space, this
// optimization relies on knowledge of how tmp is used, so be careful!
dLCP lcp(n, nskip, nub, A, pairsbx, w, pairslh, L, d, Dell, ell, delta_w, state, findex, p, C, Arows);
unsigned adj_nub = lcp.getNub();
// loop over all indexes adj_nub..n-1. for index i, if x(i),w(i) satisfy the
// LCP conditions then i is added to the appropriate index set. otherwise
// x(i),w(i) is driven either +ve or -ve to force it to the valid region.
// as we drive x(i), x(C) is also adjusted to keep w(C) at zero.
// while driving x(i) we maintain the LCP conditions on the other variables
// 0..i-1. we do this by watching out for other x(i),w(i) values going
// outside the valid region, and then switching them between index sets
// when that happens.
bool hit_first_friction_index = false;
for (unsigned i = adj_nub; i < n; ++i) {
bool s_error = false;
// the index i is the driving index and indexes i+1..n-1 are "dont care",
// i.e. when we make changes to the system those x's will be zero and we
// don't care what happens to those w's. in other words, we only consider
// an (i+1)*(i+1) sub-problem of A*x=b+w.
// if we've hit the first friction index, we have to compute the lo and
// hi values based on the values of x already computed. we have been
// permuting the indexes, so the values stored in the findex vector are
// no longer valid. thus we have to temporarily unpermute the x vector.
// for the purposes of this computation, 0*infinity = 0 ... so if the
// contact constraint's normal force is 0, there should be no tangential
// force applied.
if (!hit_first_friction_index && findex && findex[i] >= 0) {
// un-permute x into delta_w, which is not being used at the moment
for (unsigned j = 0; j < n; ++j) delta_w[p[j]] = (pairsbx + (sizeint)j * PBX__MAX)[PBX_X];
// set lo and hi values
for (unsigned k = i; k < n; ++k) {
dReal *currlh = pairslh + (sizeint)k * PLH__MAX;
dReal wfk = delta_w[findex[k]];
if (wfk == 0) {
currlh[PLH_HI] = 0;
currlh[PLH_LO] = 0;
}
else {
currlh[PLH_HI] = dFabs (currlh[PLH_HI] * wfk);
currlh[PLH_LO] = -currlh[PLH_HI];
}
}
hit_first_friction_index = true;
}
// thus far we have not even been computing the w values for indexes
// greater than i, so compute w[i] now.
dReal wPrep = lcp.AiC_times_qC<PBX__MAX> (i, pairsbx + PBX_X) + lcp.AiN_times_qN<PBX__MAX> (i, pairsbx + PBX_X);
dReal *currbx = pairsbx + (sizeint)i * PBX__MAX;
w[i] = wPrep - currbx[PBX_B];
// if lo=hi=0 (which can happen for tangential friction when normals are
// 0) then the index will be assigned to set N with some state. however,
// set C's line has zero size, so the index will always remain in set N.
// with the "normal" switching logic, if w changed sign then the index
// would have to switch to set C and then back to set N with an inverted
// state. this is pointless, and also computationally expensive. to
// prevent this from happening, we use the rule that indexes with lo=hi=0
// will never be checked for set changes. this means that the state for
// these indexes may be incorrect, but that doesn't matter.
dReal *currlh = pairslh + (sizeint)i * PLH__MAX;
// see if x(i),w(i) is in a valid region
if (currlh[PLH_LO] == 0 && w[i] >= 0) {
lcp.transfer_i_to_N (i);
state[i] = false;
}
else if (currlh[PLH_HI] == 0 && w[i] <= 0) {
lcp.transfer_i_to_N (i);
state[i] = true;
}
else if (w[i] == 0) {
// this is a degenerate case. by the time we get to this test we know
// that lo != 0, which means that lo < 0 as lo is not allowed to be +ve,
// and similarly that hi > 0. this means that the line segment
// corresponding to set C is at least finite in extent, and we are on it.
// NOTE: we must call lcp.solve1() before lcp.transfer_i_to_C()
lcp.solve1 (delta_x, i, false, 1);
lcp.transfer_i_to_C (i);
}
else {
// we must push x(i) and w(i)
for (;;) {
// find direction to push on x(i)
bool dir_positive = (w[i] <= 0);
// compute: delta_x(C) = -dir*A(C,C)\A(C,i)
lcp.solve1 (delta_x, i, dir_positive);
// note that delta_x[i] = (dir_positive ? 1 : -1), but we wont bother to set it
// compute: delta_w = A*delta_x ... note we only care about
// delta_w(N) and delta_w(i), the rest is ignored
lcp.pN_equals_ANC_times_qC (delta_w, delta_x);
lcp.pN_plusequals_ANi (delta_w, i, dir_positive);
delta_w[i] = dir_positive
? lcp.AiC_times_qC<1> (i, delta_x) + lcp.Aii(i)
: lcp.AiC_times_qC<1> (i, delta_x) - lcp.Aii(i);
// find largest step we can take (size=s), either to drive x(i),w(i)
// to the valid LCP region or to drive an already-valid variable
// outside the valid region.
int cmd = 1; // index switching command
unsigned si = 0; // si = index to switch if cmd>3
dReal s = delta_w[i] != REAL(0.0)
? -w[i] / delta_w[i]
: (w[i] != REAL(0.0) ? dCopySign(dInfinity, -w[i]) : REAL(0.0));
if (dir_positive) {
if (currlh[PLH_HI] < dInfinity) {
dReal s2 = (currlh[PLH_HI] - currbx[PBX_X]); // was (hi[i]-x[i])/dirf // step to x(i)=hi(i)
if (s2 < s) {
s = s2;
cmd = 3;
}
}
}
else {
if (currlh[PLH_LO] > -dInfinity) {
dReal s2 = (currbx[PBX_X] - currlh[PLH_LO]); // was (lo[i]-x[i])/dirf // step to x(i)=lo(i)
if (s2 < s) {
s = s2;
cmd = 2;
}
}
}
{
const unsigned numN = lcp.numN();
for (unsigned k = 0; k < numN; ++k) {
const unsigned indexN_k = lcp.indexN(k);
if (!state[indexN_k] ? delta_w[indexN_k] < 0 : delta_w[indexN_k] > 0) {
// don't bother checking if lo=hi=0
dReal *indexlh = pairslh + (sizeint)indexN_k * PLH__MAX;
if (indexlh[PLH_LO] == 0 && indexlh[PLH_HI] == 0) continue;
dReal s2 = -w[indexN_k] / delta_w[indexN_k];
if (s2 < s) {
s = s2;
cmd = 4;
si = indexN_k;
}
}
}
}
{
const unsigned numC = lcp.numC();
for (unsigned k = adj_nub; k < numC; ++k) {
const unsigned indexC_k = lcp.indexC(k);
dReal *indexlh = pairslh + (sizeint)indexC_k * PLH__MAX;
if (delta_x[indexC_k] < 0 && indexlh[PLH_LO] > -dInfinity) {
dReal s2 = (indexlh[PLH_LO] - (pairsbx + (sizeint)indexC_k * PBX__MAX)[PBX_X]) / delta_x[indexC_k];
if (s2 < s) {
s = s2;
cmd = 5;
si = indexC_k;
}
}
if (delta_x[indexC_k] > 0 && indexlh[PLH_HI] < dInfinity) {
dReal s2 = (indexlh[PLH_HI] - (pairsbx + (sizeint)indexC_k * PBX__MAX)[PBX_X]) / delta_x[indexC_k];
if (s2 < s) {
s = s2;
cmd = 6;
si = indexC_k;
}
}
}
}
//static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C",
// "C->NL","C->NH"};
//printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i);
// if s <= 0 then we've got a problem. if we just keep going then
// we're going to get stuck in an infinite loop. instead, just cross
// our fingers and exit with the current solution.
if (s <= REAL(0.0)) {
dMessage (d_ERR_LCP, "LCP internal error, s <= 0 (s=%.4e)",(double)s);
if (i < n) {
dxtSetZero<PBX__MAX>(currbx + PBX_X, n - i);
dxSetZero (w + i, n - i);
}
s_error = true;
break;
}
// apply x = x + s * delta_x
lcp.pC_plusequals_s_times_qC<PBX__MAX> (pairsbx + PBX_X, s, delta_x);
currbx[PBX_X] = dir_positive
? currbx[PBX_X] + s
: currbx[PBX_X] - s;
// apply w = w + s * delta_w
lcp.pN_plusequals_s_times_qN (w, s, delta_w);
w[i] += s * delta_w[i];
void *tmpbuf;
// switch indexes between sets if necessary
switch (cmd) {
case 1: // done
w[i] = 0;
lcp.transfer_i_to_C (i);
break;
case 2: // done
currbx[PBX_X] = currlh[PLH_LO];
state[i] = false;
lcp.transfer_i_to_N (i);
break;
case 3: // done
currbx[PBX_X] = currlh[PLH_HI];
state[i] = true;
lcp.transfer_i_to_N (i);
break;
case 4: // keep going
w[si] = 0;
lcp.transfer_i_from_N_to_C (si);
break;
case 5: // keep going
(pairsbx + (sizeint)si * PBX__MAX)[PBX_X] = (pairslh + (sizeint)si * PLH__MAX)[PLH_LO];
state[si] = false;
tmpbuf = memarena->PeekBufferRemainder();
lcp.transfer_i_from_C_to_N (si, tmpbuf);
break;
case 6: // keep going
(pairsbx + (sizeint)si * PBX__MAX)[PBX_X] = (pairslh + (sizeint)si * PLH__MAX)[PLH_HI];
state[si] = true;
tmpbuf = memarena->PeekBufferRemainder();
lcp.transfer_i_from_C_to_N (si, tmpbuf);
break;
}
if (cmd <= 3) break;
} // for (;;)
} // else
if (s_error) {
break;
}
} // for (unsigned i = adj_nub; i < n; ++i)
// now we have to un-permute x and w
if (outer_w != NULL) {
lcp.unpermute_W();
}
lcp.unpermute_X(); // This destroys p[] and must be done last
}
sizeint dxEstimateSolveLCPMemoryReq(unsigned n, bool outer_w_avail)
{
const unsigned nskip = dPAD(n);
sizeint res = 0;
res += dOVERALIGNED_SIZE(sizeof(dReal) * ((sizeint)n * nskip), LMATRIX_ALIGNMENT); // for L
res += 5 * dEFFICIENT_SIZE(sizeof(dReal) * n); // for d, delta_w, delta_x, Dell, ell
if (!outer_w_avail) {
res += dEFFICIENT_SIZE(sizeof(dReal) * n); // for w
}
#ifdef ROWPTRS
res += dEFFICIENT_SIZE(sizeof(dReal *) * n); // for Arows
#endif
res += 2 * dEFFICIENT_SIZE(sizeof(unsigned) * n); // for p, C
res += dEFFICIENT_SIZE(sizeof(bool) * n); // for state
// Use n instead of nC as nC varies at runtime while n is greater or equal to nC
sizeint lcp_transfer_req = dLCP::estimate_transfer_i_from_C_to_N_mem_req(n, nskip);
res += dEFFICIENT_SIZE(lcp_transfer_req); // for dLCP::transfer_i_from_C_to_N
return res;
}
//***************************************************************************
// accuracy and timing test
static sizeint EstimateTestSolveLCPMemoryReq(unsigned n)
{
const unsigned nskip = dPAD(n);
sizeint res = 0;
res += 2 * dEFFICIENT_SIZE(sizeof(dReal) * ((sizeint)n * nskip)); // for A, A2
res += 7 * dEFFICIENT_SIZE(sizeof(dReal) * n); // for x, b, w, lo, hi, tmp1, tmp2
res += dEFFICIENT_SIZE(sizeof(dReal) * PBX__MAX * n); // for pairsbx,
res += dEFFICIENT_SIZE(sizeof(dReal) * PLH__MAX * n); // for pairslh
res += dxEstimateSolveLCPMemoryReq(n, true);
return res;
}
extern "C" ODE_API int dTestSolveLCP()
{
const unsigned n = 100;
sizeint memreq = EstimateTestSolveLCPMemoryReq(n);
dxWorldProcessMemArena *arena = dxAllocateTemporaryWorldProcessMemArena(memreq, NULL, NULL);
if (arena == NULL) {
return 0;
}
arena->ResetState();
unsigned i,nskip = dPAD(n);
#ifdef dDOUBLE
const dReal tol = REAL(1e-9);
#endif
#ifdef dSINGLE
const dReal tol = REAL(1e-4);
#endif
printf ("dTestSolveLCP()\n");
dReal *A = arena->AllocateArray<dReal> (n*nskip);
dReal *x = arena->AllocateArray<dReal> (n);
dReal *b = arena->AllocateArray<dReal> (n);
dReal *w = arena->AllocateArray<dReal> (n);
dReal *lo = arena->AllocateArray<dReal> (n);
dReal *hi = arena->AllocateArray<dReal> (n);
dReal *A2 = arena->AllocateArray<dReal> (n*nskip);
dReal *pairsbx = arena->AllocateArray<dReal> (n * PBX__MAX);
dReal *pairslh = arena->AllocateArray<dReal> (n * PLH__MAX);
dReal *tmp1 = arena->AllocateArray<dReal> (n);
dReal *tmp2 = arena->AllocateArray<dReal> (n);
double total_time = 0;
for (unsigned count=0; count < 1000; count++) {
BEGIN_STATE_SAVE(arena, saveInner) {
// form (A,b) = a random positive definite LCP problem
dMakeRandomMatrix (A2,n,n,1.0);
dMultiply2 (A,A2,A2,n,n,n);
dMakeRandomMatrix (x,n,1,1.0);
dMultiply0 (b,A,x,n,n,1);
for (i=0; i<n; i++) b[i] += (dRandReal()*REAL(0.2))-REAL(0.1);
// choose `nub' in the range 0..n-1
unsigned nub = 50; //dRandInt (n);
// make limits
for (i=0; i<nub; i++) lo[i] = -dInfinity;
for (i=0; i<nub; i++) hi[i] = dInfinity;
//for (i=nub; i<n; i++) lo[i] = 0;
//for (i=nub; i<n; i++) hi[i] = dInfinity;
//for (i=nub; i<n; i++) lo[i] = -dInfinity;
//for (i=nub; i<n; i++) hi[i] = 0;
for (i=nub; i<n; i++) lo[i] = -(dRandReal()*REAL(1.0))-REAL(0.01);
for (i=nub; i<n; i++) hi[i] = (dRandReal()*REAL(1.0))+REAL(0.01);
// set a few limits to lo=hi=0
/*
for (i=0; i<10; i++) {
unsigned j = dRandInt (n-nub) + nub;
lo[j] = 0;
hi[j] = 0;
}
*/
// solve the LCP. we must make copy of A,b,lo,hi (A2,b2,lo2,hi2) for
// SolveLCP() to permute. also, we'll clear the upper triangle of A2 to
// ensure that it doesn't get referenced (if it does, the answer will be
// wrong).
memcpy (A2, A, n * nskip * sizeof(dReal));
dClearUpperTriangle (A2, n);
for (i = 0; i != n; ++i) {
dReal *currbx = pairsbx + i * PBX__MAX;
currbx[PBX_B] = b[i];
currbx[PBX_X] = 0;
}
for (i = 0; i != n; ++i) {
dReal *currlh = pairslh + i * PLH__MAX;
currlh[PLH_LO] = lo[i];
currlh[PLH_HI] = hi[i];
}
dSetZero (w,n);
dStopwatch sw;
dStopwatchReset (&sw);
dStopwatchStart (&sw);
dxSolveLCP (arena,n,A2,pairsbx,w,nub,pairslh,0);
dStopwatchStop (&sw);
double time = dStopwatchTime(&sw);
total_time += time;
double average = total_time / double(count+1) * 1000.0;
for (i = 0; i != n; ++i) {
const dReal *currbx = pairsbx + i * PBX__MAX;
x[i] = currbx[PBX_X];
}
// check the solution
dMultiply0 (tmp1,A,x,n,n,1);
for (i=0; i<n; i++) tmp2[i] = b[i] + w[i];
dReal diff = dMaxDifference (tmp1,tmp2,n,1);
// printf ("\tA*x = b+w, maximum difference = %.6e - %s (1)\n",diff,
// diff > tol ? "FAILED" : "passed");
if (diff > tol) dDebug (0,"A*x = b+w, maximum difference = %.6e",diff);
unsigned n1=0,n2=0,n3=0;
for (i=0; i<n; i++) {
if (x[i]==lo[i] && w[i] >= 0) {
n1++; // ok
}
else if (x[i]==hi[i] && w[i] <= 0) {
n2++; // ok
}
else if (x[i] >= lo[i] && x[i] <= hi[i] && w[i] == 0) {
n3++; // ok
}
else {
dDebug (0,"FAILED: i=%d x=%.4e w=%.4e lo=%.4e hi=%.4e",i,
x[i],w[i],lo[i],hi[i]);
}
}
// pacifier
printf ("passed: NL=%3d NH=%3d C=%3d ",n1,n2,n3);
printf ("time=%10.3f ms avg=%10.4f\n",time * 1000.0,average);
} END_STATE_SAVE(arena, saveInner);
}
dxFreeTemporaryWorldProcessMemArena(arena);
return 1;
}
|