1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
/*
given (A,b,lo,hi), solve the LCP problem: A*x = b+w, where each x(i),w(i)
satisfies one of
(1) x = lo, w >= 0
(2) x = hi, w <= 0
(3) lo < x < hi, w = 0
A is a matrix of dimension n*n, everything else is a vector of size n*1.
lo and hi can be +/- dInfinity as needed. the first `nub' variables are
unbounded, i.e. hi and lo are assumed to be +/- dInfinity.
we restrict lo(i) <= 0 and hi(i) >= 0.
the original data (A,b) may be modified by this function.
if the `findex' (friction index) parameter is nonzero, it points to an array
of index values. in this case constraints that have findex[i] >= 0 are
special. all non-special constraints are solved for, then the lo and hi values
for the special constraints are set:
hi[i] = abs( hi[i] * x[findex[i]] )
lo[i] = -hi[i]
and the solution continues. this mechanism allows a friction approximation
to be implemented. the first `nub' variables are assumed to have findex < 0.
*/
#ifndef _ODE_LCP_H_
#define _ODE_LCP_H_
class dxWorldProcessMemArena;
enum dxLCPBXElement
{
PBX__MIN,
PBX_B = PBX__MIN,
PBX_X,
PBX__MAX,
};
enum dxLCPLHElement
{
PLH__MIN,
PLH_LO = PLH__MIN,
PLH_HI,
PLH__MAX,
};
void dxSolveLCP (dxWorldProcessMemArena *memarena,
unsigned n, dReal *A, dReal pairsbx[PBX__MAX], dReal *w,
unsigned nub, dReal pairslh[PLH__MAX], int *findex);
sizeint dxEstimateSolveLCPMemoryReq(unsigned n, bool outer_w_avail);
#endif
|