summaryrefslogtreecommitdiff
path: root/libs/pixman-0.40.0/test/cover-test.c
blob: 83e2972d92df51a606b168ae493b7a5a803f1583 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
/*
 * Copyright © 2015 RISC OS Open Ltd
 *
 * Permission to use, copy, modify, distribute, and sell this software and its
 * documentation for any purpose is hereby granted without fee, provided that
 * the above copyright notice appear in all copies and that both that
 * copyright notice and this permission notice appear in supporting
 * documentation, and that the name of the copyright holders not be used in
 * advertising or publicity pertaining to distribution of the software without
 * specific, written prior permission.  The copyright holders make no
 * representations about the suitability of this software for any purpose.  It
 * is provided "as is" without express or implied warranty.
 *
 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
 * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
 * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
 * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
 * SOFTWARE.
 *
 * Author:  Ben Avison (bavison@riscosopen.org)
 *
 */

/*
 * This test aims to verify both numerical correctness and the honouring of
 * array bounds for scaled plots (both nearest-neighbour and bilinear) at or
 * close to the boundary conditions for applicability of "cover" type fast paths
 * and iter fetch routines.
 *
 * It has a secondary purpose: by setting the env var EXACT (to any value) it
 * will only test plots that are exactly on the boundary condition. This makes
 * it possible to ensure that "cover" routines are being used to the maximum,
 * although this requires the use of a debugger or code instrumentation to
 * verify.
 */

#include "utils.h"
#include <stdlib.h>
#include <stdio.h>

/* Approximate limits for random scale factor generation - these ensure we can
 * get at least 8x reduction and 8x enlargement.
 */
#define LOG2_MAX_FACTOR (3)

/* 1/sqrt(2) (or sqrt(0.5), or 2^-0.5) as a 0.32 fixed-point number */
#define INV_SQRT_2_0POINT32_FIXED (0xB504F334u)

/* The largest increment that can be generated by random_scale_factor().
 * This occurs when the "mantissa" part is 0xFFFFFFFF and the "exponent"
 * part is -LOG2_MAX_FACTOR.
 */
#define MAX_INC ((pixman_fixed_t) \
                 (INV_SQRT_2_0POINT32_FIXED >> (31 - 16 - LOG2_MAX_FACTOR)))

/* Minimum source width (in pixels) based on a typical page size of 4K and
 * maximum colour depth of 32bpp.
 */
#define MIN_SRC_WIDTH (4096 / 4)

/* Derive the destination width so that at max increment we fit within source */
#define DST_WIDTH (MIN_SRC_WIDTH * pixman_fixed_1 / MAX_INC)

/* Calculate heights the other way round.
 * No limits due to page alignment here.
 */
#define DST_HEIGHT 3
#define SRC_HEIGHT ((DST_HEIGHT * MAX_INC + pixman_fixed_1 - 1) / pixman_fixed_1)

/* At the time of writing, all the scaled fast paths use SRC, OVER or ADD
 * Porter-Duff operators. XOR is included in the list to ensure good
 * representation of iter scanline fetch routines.
 */
static const pixman_op_t op_list[] = {
    PIXMAN_OP_SRC,
    PIXMAN_OP_OVER,
    PIXMAN_OP_ADD,
    PIXMAN_OP_XOR,
};

/* At the time of writing, all the scaled fast paths use a8r8g8b8, x8r8g8b8
 * or r5g6b5, or red-blue swapped versions of the same. When a mask channel is
 * used, it is always a8 (and so implicitly not component alpha). a1r5g5b5 is
 * included because it is the only other format to feature in any iters. */
static const pixman_format_code_t img_fmt_list[] = {
    PIXMAN_a8r8g8b8,
    PIXMAN_x8r8g8b8,
    PIXMAN_r5g6b5,
    PIXMAN_a1r5g5b5
};

/* This is a flag reflecting the environment variable EXACT. It can be used
 * to ensure that source coordinates corresponding exactly to the "cover" limits
 * are used, rather than any "near misses". This can, for example, be used in
 * conjunction with a debugger to ensure that only COVER fast paths are used.
 */
static int exact;

static pixman_image_t *
create_src_image (pixman_format_code_t fmt)
{
    pixman_image_t *tmp_img, *img;

    /* We need the left-most and right-most MIN_SRC_WIDTH pixels to have
     * predictable values, even though fence_image_create_bits() may allocate
     * an image somewhat larger than that, by an amount that varies depending
     * upon the page size on the current platform. The solution is to create a
     * temporary non-fenced image that is exactly MIN_SRC_WIDTH wide and blit it
     * into the fenced image.
     */
    tmp_img = pixman_image_create_bits (fmt, MIN_SRC_WIDTH, SRC_HEIGHT,
                                        NULL, 0);
    if (tmp_img == NULL)
        return NULL;

    img = fence_image_create_bits (fmt, MIN_SRC_WIDTH, SRC_HEIGHT, TRUE);
    if (img == NULL)
    {
        pixman_image_unref (tmp_img);
        return NULL;
    }

    prng_randmemset (tmp_img->bits.bits,
                     tmp_img->bits.rowstride * SRC_HEIGHT * sizeof (uint32_t),
                     0);
    image_endian_swap (tmp_img);

    pixman_image_composite (PIXMAN_OP_SRC, tmp_img, NULL, img,
                            0, 0, 0, 0, 0, 0,
                            MIN_SRC_WIDTH, SRC_HEIGHT);
    pixman_image_composite (PIXMAN_OP_SRC, tmp_img, NULL, img,
                            0, 0, 0, 0, img->bits.width - MIN_SRC_WIDTH, 0,
                            MIN_SRC_WIDTH, SRC_HEIGHT);

    pixman_image_unref (tmp_img);

    return img;
}

static pixman_fixed_t
random_scale_factor(void)
{
    /* Get a random number with top bit set. */
    uint32_t f = prng_rand () | 0x80000000u;

    /* In log(2) space, this is still approximately evenly spread between 31
     * and 32. Divide by sqrt(2) to centre the distribution on 2^31.
     */
    f = ((uint64_t) f * INV_SQRT_2_0POINT32_FIXED) >> 32;

    /* Now shift right (ie divide by an integer power of 2) to spread the
     * distribution between centres at 2^(16 +/- LOG2_MAX_FACTOR).
     */
    f >>= 31 - 16 + prng_rand_n (2 * LOG2_MAX_FACTOR + 1) - LOG2_MAX_FACTOR;

    return f;
}

static pixman_fixed_t
calc_translate (int            dst_size,
                int            src_size,
                pixman_fixed_t scale,
                pixman_bool_t  low_align,
                pixman_bool_t  bilinear)
{
    pixman_fixed_t ref_src, ref_dst, scaled_dst;

    if (low_align)
    {
        ref_src = bilinear ? pixman_fixed_1 / 2 : pixman_fixed_e;
        ref_dst = pixman_fixed_1 / 2;
    }
    else
    {
        ref_src = pixman_int_to_fixed (src_size) -
                  bilinear * pixman_fixed_1 / 2;
        ref_dst = pixman_int_to_fixed (dst_size) - pixman_fixed_1 / 2;
    }

    scaled_dst = ((uint64_t) ref_dst * scale + pixman_fixed_1 / 2) /
                 pixman_fixed_1;

    /* We need the translation to be set such that when ref_dst is fed through
     * the transformation matrix, we get ref_src as the result.
     */
    return ref_src - scaled_dst;
}

static pixman_fixed_t
random_offset (void)
{
    pixman_fixed_t offset = 0;

    /* Ensure we test the exact case quite a lot */
    if (prng_rand_n (2))
        return offset;

    /* What happens when we are close to the edge of the first
     * interpolation step?
     */
    if (prng_rand_n (2))
        offset += (pixman_fixed_1 >> BILINEAR_INTERPOLATION_BITS) - 16;

    /* Try fine-grained variations */
    offset += prng_rand_n (32);

    /* Test in both directions */
    if (prng_rand_n (2))
        offset = -offset;

    return offset;
}

static void
check_transform (pixman_image_t     *dst_img,
                 pixman_image_t     *src_img,
                 pixman_transform_t *transform,
                 pixman_bool_t       bilinear)
{
    pixman_vector_t v1, v2;

    v1.vector[0] = pixman_fixed_1 / 2;
    v1.vector[1] = pixman_fixed_1 / 2;
    v1.vector[2] = pixman_fixed_1;
    assert (pixman_transform_point (transform, &v1));

    v2.vector[0] = pixman_int_to_fixed (dst_img->bits.width) -
                   pixman_fixed_1 / 2;
    v2.vector[1] = pixman_int_to_fixed (dst_img->bits.height) -
                   pixman_fixed_1 / 2;
    v2.vector[2] = pixman_fixed_1;
    assert (pixman_transform_point (transform, &v2));

    if (bilinear)
    {
        assert (v1.vector[0] >= pixman_fixed_1 / 2);
        assert (v1.vector[1] >= pixman_fixed_1 / 2);
        assert (v2.vector[0] <= pixman_int_to_fixed (src_img->bits.width) -
                                    pixman_fixed_1 / 2);
        assert (v2.vector[1] <= pixman_int_to_fixed (src_img->bits.height) -
                                    pixman_fixed_1 / 2);
    }
    else
    {
        assert (v1.vector[0] >= pixman_fixed_e);
        assert (v1.vector[1] >= pixman_fixed_e);
        assert (v2.vector[0] <= pixman_int_to_fixed (src_img->bits.width));
        assert (v2.vector[1] <= pixman_int_to_fixed (src_img->bits.height));
    }
}

static uint32_t
test_cover (int testnum, int verbose)
{
    pixman_fixed_t         x_scale, y_scale;
    pixman_bool_t          left_align, top_align;
    pixman_bool_t          bilinear;
    pixman_filter_t        filter;
    pixman_op_t            op;
    size_t                 src_fmt_index;
    pixman_format_code_t   src_fmt, dst_fmt, mask_fmt;
    pixman_image_t        *src_img, *dst_img, *mask_img;
    pixman_transform_t     src_transform, mask_transform;
    pixman_fixed_t         fuzz[4];
    uint32_t               crc32;

    /* We allocate one fenced image for each pixel format up-front. This is to
     * avoid spending a lot of time on memory management rather than on testing
     * Pixman optimisations. We need one per thread because the transformation
     * matrices and filtering are properties of the source and mask images.
     */
    static pixman_image_t *src_imgs[ARRAY_LENGTH (img_fmt_list)];
    static pixman_image_t *mask_bits_img;
    static pixman_bool_t   fence_images_created;
#ifdef USE_OPENMP
#pragma omp threadprivate (src_imgs)
#pragma omp threadprivate (mask_bits_img)
#pragma omp threadprivate (fence_images_created)
#endif

    if (!fence_images_created)
    {
        int i;

        prng_srand (0);

        for (i = 0; i < ARRAY_LENGTH (img_fmt_list); i++)
            src_imgs[i] = create_src_image (img_fmt_list[i]);

        mask_bits_img = create_src_image (PIXMAN_a8);

        fence_images_created = TRUE;
    }

    prng_srand (testnum);

    x_scale = random_scale_factor ();
    y_scale = random_scale_factor ();
    left_align = prng_rand_n (2);
    top_align = prng_rand_n (2);
    bilinear = prng_rand_n (2);
    filter = bilinear ? PIXMAN_FILTER_BILINEAR : PIXMAN_FILTER_NEAREST;

    op = op_list[prng_rand_n (ARRAY_LENGTH (op_list))];

    dst_fmt = img_fmt_list[prng_rand_n (ARRAY_LENGTH (img_fmt_list))];
    dst_img = pixman_image_create_bits (dst_fmt, DST_WIDTH, DST_HEIGHT,
                                        NULL, 0);
    prng_randmemset (dst_img->bits.bits,
                     dst_img->bits.rowstride * DST_HEIGHT * sizeof (uint32_t),
                     0);
    image_endian_swap (dst_img);

    src_fmt_index = prng_rand_n (ARRAY_LENGTH (img_fmt_list));
    src_fmt = img_fmt_list[src_fmt_index];
    src_img = src_imgs[src_fmt_index];
    pixman_image_set_filter (src_img, filter, NULL, 0);
    pixman_transform_init_scale (&src_transform, x_scale, y_scale);
    src_transform.matrix[0][2] = calc_translate (dst_img->bits.width,
                                                 src_img->bits.width,
                                                 x_scale, left_align, bilinear);
    src_transform.matrix[1][2] = calc_translate (dst_img->bits.height,
                                                 src_img->bits.height,
                                                 y_scale, top_align, bilinear);

    if (prng_rand_n (2))
    {
        /* No mask */
        mask_fmt = PIXMAN_null;
        mask_img = NULL;
    }
    else if (prng_rand_n (2))
    {
        /* a8 bitmap mask */
        mask_fmt = PIXMAN_a8;
        mask_img = mask_bits_img;
        pixman_image_set_filter (mask_img, filter, NULL, 0);
        pixman_transform_init_scale (&mask_transform, x_scale, y_scale);
        mask_transform.matrix[0][2] = calc_translate (dst_img->bits.width,
                                                      mask_img->bits.width,
                                                      x_scale, left_align,
                                                      bilinear);
        mask_transform.matrix[1][2] = calc_translate (dst_img->bits.height,
                                                      mask_img->bits.height,
                                                      y_scale, top_align,
                                                      bilinear);
    }
    else
    {
        /* Solid mask */
        pixman_color_t color;
        memset (&color, 0xAA, sizeof color);
        mask_fmt = PIXMAN_solid;
        mask_img = pixman_image_create_solid_fill (&color);
    }

    if (!exact)
    {
        int i = 0;

        while (i < 4)
            fuzz[i++] = random_offset ();

        src_transform.matrix[0][2] += fuzz[0];
        src_transform.matrix[1][2] += fuzz[1];
        mask_transform.matrix[0][2] += fuzz[2];
        mask_transform.matrix[1][2] += fuzz[3];
    }

    pixman_image_set_transform (src_img, &src_transform);
    if (mask_fmt == PIXMAN_a8)
        pixman_image_set_transform (mask_img, &mask_transform);

    if (verbose)
    {
        printf ("op=%s\n", operator_name (op));
        printf ("src_fmt=%s, dst_fmt=%s, mask_fmt=%s\n",
                format_name (src_fmt), format_name (dst_fmt),
                format_name (mask_fmt));
        printf ("x_scale=0x%08X, y_scale=0x%08X, align %s/%s, %s\n",
                x_scale, y_scale,
                left_align ? "left" : "right", top_align ? "top" : "bottom",
                bilinear ? "bilinear" : "nearest");

        if (!exact)
        {
            int i = 0;

            printf ("fuzz factors");
            while (i < 4)
                printf (" %d", fuzz[i++]);
            printf ("\n");
        }
    }

    if (exact)
    {
        check_transform (dst_img, src_img, &src_transform, bilinear);
        if (mask_fmt == PIXMAN_a8)
            check_transform (dst_img, mask_img, &mask_transform, bilinear);
    }

    pixman_image_composite (op, src_img, mask_img, dst_img,
                            0, 0, 0, 0, 0, 0,
                            dst_img->bits.width, dst_img->bits.height);

    if (verbose)
        print_image (dst_img);

    crc32 = compute_crc32_for_image (0, dst_img);

    pixman_image_unref (dst_img);
    if (mask_fmt == PIXMAN_solid)
        pixman_image_unref (mask_img);

    return crc32;
}

#if BILINEAR_INTERPOLATION_BITS == 7
#define CHECKSUM_FUZZ  0x6B56F607
#define CHECKSUM_EXACT 0xA669F4A3
#elif BILINEAR_INTERPOLATION_BITS == 4
#define CHECKSUM_FUZZ  0x83119ED0
#define CHECKSUM_EXACT 0x0D3382CD
#else
#define CHECKSUM_FUZZ  0x00000000
#define CHECKSUM_EXACT 0x00000000
#endif

int
main (int argc, const char *argv[])
{
    unsigned long page_size;

    page_size = fence_get_page_size ();
    if (page_size == 0 || page_size > 16 * 1024)
        return 77; /* automake SKIP */

    exact = getenv ("EXACT") != NULL;
    if (exact)
        printf ("Doing plots that are exactly aligned to boundaries\n");

    return fuzzer_test_main ("cover", 2000000,
                             exact ? CHECKSUM_EXACT : CHECKSUM_FUZZ,
                             test_cover, argc, argv);
}