1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Hyperspace Navigator - Help</title>
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=VT323&display=swap" rel="stylesheet">
<link href="style.css" rel="stylesheet">
</head>
<body style="font-family: Jura;">
<script>0</script>
<div id="root">
<h1>hyperspace navigator help</h1>
<p class="normal">
HYPERSPACE NAVIGATOR is a game about designing trajectories using <a href="https://tutorial.math.lamar.edu/Classes/CalcII/ParametricEqn.aspx">parametric curves</a>. These are curves where <strong>y</strong> is not determined by some function of <strong>x</strong> (e.g. <strong>y = f[x]</strong>), but where both <strong>x</strong> and <strong>y</strong> are determined by a third quantity <strong>t</strong>, which we might think of as time.
Parametric curves are capable of producing complex and beautiful shapes from relatively simple definitions, and I encourage you to play with the system to see what you can create!
</p>
<p class="normal">
While defining your parametric curves, you have access to the following operations:
</p>
<ul class="normal">
<li>Addition (t+2)</li>
<li>Subtraction (2-t)</li>
<li>Multiplication (2t or 2*t)</li>
<li>Division (t/2)</li>
<li>Exponents (t^2)</li>
<li>Modular arithmetic (t mod 2 or t % 2)</li>
<li>Trigonometric functions (tan, sin, cos, acos, asin, atan, atan2)</li>
<li>Miscellaneous extra functions (abs, exp, log, sqrt, ceil, floor, random, round)</li>
<li>Mathematical constants (pi, e)</li>
</ul>
</div>
<div id="footer">
<a target="_blank" rel="noopener noreferrer"
href="https://sanine.net/git/hyperspace-navigator/tree/?h=main">⌘ source code</a>
</div>
</body>
</html>
|