summaryrefslogtreecommitdiff
path: root/src/genome/genome.test.js
diff options
context:
space:
mode:
authorsanine <sanine.not@pm.me>2023-10-30 00:05:00 -0500
committersanine <sanine.not@pm.me>2023-10-30 00:05:00 -0500
commit3793cddeb12993da492f9934b59849442c68aa12 (patch)
treeb6b420b4ab854bd06da87f7933c0bb4a95c0ae8a /src/genome/genome.test.js
parentac0e4eb51ca2fd595814031087039932729199ae (diff)
refactor gene mutations
Diffstat (limited to 'src/genome/genome.test.js')
-rw-r--r--src/genome/genome.test.js102
1 files changed, 82 insertions, 20 deletions
diff --git a/src/genome/genome.test.js b/src/genome/genome.test.js
index 8152f04..e1c8711 100644
--- a/src/genome/genome.test.js
+++ b/src/genome/genome.test.js
@@ -1,29 +1,14 @@
'use strict';
import {
- mutation_type, mutate,
get_size,
parse_genome,
+ mut_gene_source,
+ mut_gene_sink,
+ mut_gene_weight,
} from './genome';
-test('basic gene mutations', () => {
- expect(mutate([0, 1, 2], mutation_type.none, 0)).toEqual([0, 1, 2]);
-
- expect(mutate([0, 1, 2], mutation_type.source, 0.2)).toEqual([0, 1, 2]);
- expect(mutate([1, 1, 2], mutation_type.source, 0.2)).toEqual([0, 1, 2]);
- expect(mutate([0, 1, 2], mutation_type.source, 0.8)).toEqual([1, 1, 2]);
-
- expect(mutate([0, 1, 2], mutation_type.sink, 0.2)).toEqual([0, 0, 2]);
- expect(mutate([0, 1, 2], mutation_type.sink, 0.8)).toEqual([0, 2, 2]);
- expect(mutate([0, 0, 2], mutation_type.sink, 0.2)).toEqual([0, 0, 2]);
-
- expect(mutate([0, 1, 2], mutation_type.weight, 0.5)).toEqual([0, 1, 1]);
- expect(mutate([0, 1, 2], mutation_type.weight, 0.0)).toEqual([0, 1, -1]);
- expect(mutate([0, 1, 2], mutation_type.weight, 1.0)).toEqual([0, 1, 3]);
-});
-
-
test('genome validation and size', () => {
expect(get_size(0, 0, [ [ 0, 0, 1.0 ] ])).toBe(1);
expect(get_size(2, 1, [ [ 0, 2, 1 ] ])).toBe(3);
@@ -39,8 +24,6 @@ test('parse a genome into a neural net', () => {
[1, 2, 1]
]);
- console.log(n);
-
expect(n.input_count).toBe(1);
expect(n.output_count).toBe(1);
expect(n.compute([2], [-1])).toEqual([
@@ -48,3 +31,82 @@ test('parse a genome into a neural net', () => {
[ Math.tanh( 2-1 ) ],
]);
});
+
+
+test('mutate gene source', () => {
+ const n_input = 3;
+ const n_internal = 4;
+ const n_output = 5;
+
+ expect(mut_gene_source(
+ n_input, n_internal, n_output,
+ [0, 4, 0],
+ 0.0
+ )).toEqual([0, 4, 0]);
+
+ expect(mut_gene_source(
+ n_input, n_internal, n_output,
+ [0, 4, 0],
+ 1.0
+ )).toEqual([1, 4, 0]);
+
+ expect(mut_gene_source(
+ n_input, n_internal, n_output,
+ [6, 4, 0],
+ 0.0
+ )).toEqual([5, 4, 0]);
+
+ expect(mut_gene_source(
+ n_input, n_internal, n_output,
+ [6, 4, 0],
+ 1.0
+ )).toEqual([6, 4, 0]);
+});
+
+
+test('mutate gene sink', () => {
+ const n_input = 3;
+ const n_internal = 4;
+ const n_output = 5;
+
+ expect(mut_gene_sink(
+ n_input, n_internal, n_output,
+ [0, 7, 0],
+ 0.0
+ )).toEqual([0, 7, 0]);
+
+ expect(mut_gene_sink(
+ n_input, n_internal, n_output,
+ [0, 7, 0],
+ 1.0
+ )).toEqual([0, 8, 0]);
+
+ expect(mut_gene_sink(
+ n_input, n_internal, n_output,
+ [6, 11, 0],
+ 0.0
+ )).toEqual([6, 10, 0]);
+
+ expect(mut_gene_sink(
+ n_input, n_internal, n_output,
+ [6, 11, 0],
+ 1.0
+ )).toEqual([6, 11, 0]);
+});
+
+
+test('mutate gene weight', () => {
+ const weight_max = 4.0;
+
+ expect(mut_gene_weight(
+ weight_max, [0, 0, 1], 0.0
+ )).toEqual([0, 0, (2 - 4)/3]);
+
+ expect(mut_gene_weight(
+ weight_max, [0, 0, -4], 1.0
+ )).toEqual([0, 0, (-8 + 4)/3]);
+
+ expect(mut_gene_weight(
+ weight_max, [0, 0, 3], 0.5
+ )).toEqual([0, 0, (6+0)/3]);
+});